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A core objective of CogX is to develop systems that can accomplish cer-
tain tasks and extend their knowledge about the world autonomously. Such
systems have to swiftly switch between, and also accommodate a number of
different intentions at the same time to implement the more generic drives of
task accomplishment and self-extension. In CogX we are committed to using
planning to determine how goals are achieved, so the question is how differ-
ent goals, relating to the intentions of the system, can be generated, selected
and managed. This report complements earlier reports and focuses on the
strategies developed within the goal generation and management framework
(GGM) of CogX. It discusses three different such strategies and relates it to
the state of the art.
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Executive Summary

In this deliverable we report on our efforts to combine curiosity- and task-
driven behaviour in our systems resulting in an active management of dif-
ferent goals a system featuring self-understanding and self-extension might
have. The report presents and discusses the final version of the framework
for goal generation and management (GGM) we have developed as part of
our efforts in WP1 of CogX. The approach allows the systematic integra-
tion of different drives within the planning and execution framework (WP4).
“Intention changes”, in the notion of our CogX theory, are the result of
either tasks being given to the system to be accomplished, or new oppor-
tunities that arise from an extended understanding of the world and from
identified gaps in the knowledge about it, leading to curiosity-driven goals.
This report complements DR 1.1 which introduced the general architecture
for goal generation and management. It extends on that earlier report by
presenting and discussing the different strategies that have been proposed,
implemented, and analysed within CogX by means of the two validation sce-
narios Dora and George. We present two rather heuristic strategies tailored
to the needs of Dora and George, respectively, and a third novel strategy
featuring support for task deadlines and principled selection of opportuni-
ties. This last strategy facilitates an informed trade-off of curiosity-driven
self-extension and task accomplishment taking into account the temporal
constraints that come with tasks assigned to a robot. It enables the robot
to be engaged in scenarios where it is expected to support humans in a task-
driven way, while still following its drive to extend its own knowledge about
the world.

Tasks involved

Task 1.2 and 1.4 play the central role for the actual work on “Opportunistic
& interleaved self-extension” in the final year of CogX, in close collaboration
with Tasks 4.3 and 7.7.

Role in CogX

The goal generation and management (GGM) framework has played a key
role within CogX from the very beginning. Due to the central role of plan-
ning in CogX systems the decision about what to achieve plays an important
role, particularly when it comes to switching between curiosity- and task-
driven behaviour, and a combination thereof.
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Contribution to the CogX scenarios and prototypes

The GGM framework is employed in both the Dora and George scenarios.
In both it plays the central role to control the “macro behaviour” of the
respective systems. While in the George scenario, GGM moderates curiosity-
driven and tutor-driven (corresponding to task-driven) interactive learning,
in Dora it integrates curiosity-driven exploration with the accomplishment
of externally assigned tasks.
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1 Planned work

In this report period the focus with regard to goal generation and man-
agement was on combining — and switching between — curiosity-driven and
task-driven behaviour to facilitate self-extension and task accomplishment
at the same time. In particular, according to the work plan (page 28) Task
1.4 is concerned with the “interaction between selected intentions, mecha-
nisms for planning behaviour and the mechanisms for executing behaviour
plans.” In this endeavour it focuses on the challenges of “taking advan-
tage of self-extension opportunities during an otherwise task-driven activ-
ity.” Additionally, work associated with Task 1.2 to “explore designs for
multiple concurrent desire instance generators combined with filter mecha-
nisms” is reported in this deliverable.

2 Actual work performed

The work actually performed followed the work plan for the given periods
almost to the letter, with minor delays in the actual delivery. We have ex-
tended the overall architecture (see Sec. to accommodate different types
of curiosity (Sec. and task-driven goals (Sec. , and implemented
appropriate filter mechanisms (Sec. . We have revisited the different
implementations that stem from fulfilling the requirements of the different
scenarios and integrated them into a unified schema and implementation
(Sec. and [2.3.4)).

Most effort in this last reporting period went into the implementation
of a new activation strategy called “Opportunistic Goal Expansion (OGE)”
(Sec.[2.3.5)). This novel strategy for the first time really allows the scheduling
of opportunistic, curiosity-driven behaviour alongside the accomplishment of
assigned tasks within the CogX domains. As part of the efforts in Task 1.4 we
have therefore extended the planning framework mainly developed in WP4,
integrated it with the goal generation and management architecture, and
developed an evaluation scenario on the basis of the Dora domain used for
case-based analysis of the implementation. Additionally, we have discussed
our work in the context of recent developments of state of the art by related
efforts. This discussion concludes this document in Sec. [3

2.1 The CogX Motivation Architecture for Goal Generation
and Management

Throughout the CogX project, we adopted a planning-central approach to
self-understanding and self-extension, resulting in the CogX Layered Archi-
tecture Schema (CLAS) sketched in Fig. and described in greater detail
in DR 7.3, DR 7.4, and DR 7.5. Goals are being generated, selected, and
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managed by the goal generation and management (GGM) framework de-
picted in Fig In the general aim of CogX this framework allows to
trade-off between task-driven and curiosity-driven behaviour. Hence, the
framework’s purpose is to generate either task goals resulting from a ver-
balised intention of a human (e.g. to find and deliver a named object) or
from an analysis of the robot’s current beliefs to identify gaps of knowledge
(see DR 1.5 for a taxonomy and detailed discussion of knowledge gaps in
CogX) that subsequently give rise to epistemic goals. The framework is
employed in both the Dora and the George validator systems with minor
adaptation and devises tasks for the switching planner framework.

The GGM taken together implements the drives of a CogX system which
can be summarised as to autonomously explore the world (curiosity-driven)
to gain the most benefit in short time, and to obey human orders (task-
driven). These drives manifest themselves in the different goal generators
that are implemented and the way a subset of these goals is chosen for
accomplishment at any given time.

2.2 Generating Goals

At the bottom of Fig. one can see the goal generators. They are re-
sponsible for populating the framework with potential goals that are then
actively managed to decide which of those potential large set of goals are
currently considered by the system. A goal is defined as a tuple

g = (797T97ig)tga Eg7pg)

with a dedicated goal condition 7, to be reached by the plan. This is repre-
sented in PDDL and directly understood by the planning framework. Each
goal also is assigned an optional deadline T, indicating a temporal con-
straint! for the planner. The goal condition ¢ has to be true at the given
time T,. If no deadline is given then no constraint is present. Addition-
ally to those parameters that control the planning process directly, some
meta-management information is present with each goal as well: A positive
importance i4 value is used to determine the relevance of a goal, with higher
numbers indicating a higher importance. This value is considered when de-
ciding which goals to pursue in different ways together with the priority P,
which is a discrete value, being either low, normal, or high. The type t,
of the goal indicates the origin of the goal (see below) and its discrete sta-
tus ¥, that can yield specific information about the goal relevant for the
management processes. Effectively, completed goals are removed from the
framework after their successful completion.

!Time and durations, as far as planning and deadlines are concerned in this report,
are quantified in time step units for practical reasons. These units are proportional to
seconds in real time. Hence, a deadline of 1 corresponds to about 3 seconds in the latest
Dora system.
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(CLAS). The GGM framework is located in the de-
liberative layer of the architecture and devises tasks
for the planner based on an analysis of the prob-
abilistic belief state. Due to its abstract nature it
is employed both in Dora and George systems with

sign for a goal generation and management
(GGM) framework. Goals are depicted as
circles. Each goal g is composed of a PDDL
definition of the associated goal condition v
to be reached, a temporal deadline Ty until

minor modifications. when a goal has to be achieved, a positive

importance ig value, the type t4 of the goal,
its discrete status X4, and a discrete prior-
ity Py. The priority of a goal is also visu-
alised by the thickness of the icon’s lines and
font.

Figure 1: The goal generation and management (GGM) framework within
CLAS.

2.2.1 Curiosity-driven Goals

In CLAS, the different modal sub-systems in the competence layer also ex-
plicitly represent the hypotheses formed about the world (for instance so-
called placeholders in the spatial representation of Dora) and encode the
uncertainty about specific entities or concepts in a probabilistic framework.
Hence the probabilistic belief state comprises a number of gaps of the robot’s
knowledge about the world that subsequently give rise to epistemic goals
which are generated by individual goal generators, one for each type of gap
that the system is expecting. In CLAS, these goal generators exploit do-
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Figure 2: Places (coloured) and hypothesised placeholders (grey) in Dora’s
topological map.

main knowledge to monitor the belief state in order to identify such gaps
and subsequently generate goals to fill them. For example, in George, there
are dedicated goal generators that monitor beliefs about objects in the scene
for confidence about a number of different features, such as colour, shape,
or identity. If the robot is uncertain about any of these for any object, it
detects this lack of confidence as a gap and generates a corresponding goal
ge (e.g. 7y, =(colour-learned <belief-id>) with <belief-id> being an
unique reference to the belief about the object). Another example, this time
taken from the domain of Dora, is the exploration of placeholders. These
are hypothesised places in the topological map of the mobile robot that are
generated through an analysis of the occupancy map. Fig. [2] depicts an ex-
emplary map produced by Dora with hypotheses generated by the mapping
and navigation components (cf. Fig .

If such a hypothesis is spotted within the belief state it gives rise to a
goal g, with 7, =(= (status <belief-id>) trueplace). In both cases,
the respective epistemic goal originates from a detected gap of knowledge
and will — if scheduled for planning and execution — lead to curiosity-driven
exploration [12] and learning [22] of our robots?.

2.2.2 Task-driven Goals

Besides the above introduced curiosity-driven goals, our robots also fea-
ture support for task-driven behaviour, i.e. tasks that they have been com-
manded by a human to achieve. Of course, such goals can indeed also lead
to gaps being filled whenever this is required for a task to be achieved. For
example, if Dora is given a task to find a box of cereal in a house this will
drive her to also explore placeholders in order to find the object. But in

2A Dora video of such curiosity-driven behaviour is available from http://youtu.be/
1043nnY_e2Y
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contrast to curiosity-driven behaviour, this exploration is directly caused by
the actual task given to the planning system.

In our system we employ abductive reasoning to infer a human’s intention
in situated dialogues in order to translate them into the respective goal if
they relate to a task the robot can accomplish. The number of different tasks
our systems can understand and achieve is still limited, but the principle
can easily be extended to more of them. We have specialised an abstract
implementation of a generic goal generator to implement components for
specific types of goals inferred from the respective intention. More details
on the generation of goals from interpreted intentions through dialogue can
be found in [16] 22, 21].

In general, task-driven goals do not at all differ from curiosity-driven
ones. Just by assigning different importance i, and priority P, a difference in
managing such goals in comparison to curiosity-driven goals can be achieved
as will be detailed in Sec. An example of a task-driven goal g; taken
from the Dora domain is

Yg. = (exists (7o - visualobject) (and (= (label 7o) magazine) (reported ?0)))
which requests Dora to find an object of type “magazine” and report back
its position to the human who expressed the intention that the robot should
engage with this task.

2.3 Managing Goals

Once goals are created and populate the GGM framework the management
of these goals has to take place. By “managing” we refer to the processes
and mechanisms that filter and choose a subset of all the potential goals
for actual accomplishment — called “activation” — by the robot at a given
time. Inspired by the work in [3], we adopted a multi-stage process to the
management of goals resulting in a disjunct division of all the goals in the
framework into individual subsets which are visualised in Fig.

2.3.1 Attention Filter

We work from the assumption that as a goal passes up through the frame-
work from a generator and influences a systems behaviour, it is inspected
by processes of greater and greater computational complexity. Therefore
the lower strata of the framework exist to protect these processes (and thus
overall system resources) from having to consider more goals than is neces-
sary (where this could be a contingent judgement). The main mechanism
in the framework for protecting the management processes is the attention
filter. This is a coarse barrier which uses simple, fast processing to let some
goals through to the management mechanisms whilst blocking others. Goals
which make it through this filter are described as surfaced, forming the sub-
set G5 C G of all possible goals G. Thus the goals which fail to pass the
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filter are referred to as unsurfaced G, C G with Gs;NG, = @ . In Fig.
all goals shown with a shade of gray are unsurfaced and are not consid-
ered for any further processing. It shall be noted that filtering, and likewise
managing in higher stratas of the framework, are non-monotonic processes
which continuously monitor all goals to potentially relocate them within the
framework.

In order to keep the computational complexity manageable (we might
have goals in the order of high tens or even hundreds within our system,
originating from different gaps of knowledge and tasks assigned to the robot)
we look at the goals individually and not within context to one another at
this stage. Hence filtering can be dependent on the overall system’s context,
but it does not compare the goals with each other. The filters implemented
within the George and Dora systems are mostly based on the type ¢4, the
importance iy, and the status X, of each individual goal. Different filters
can be chained together so that a goal has to pass all of them in order to
become surfaced. The list of implemented goal filters includes:

e type-based manual selection which allows the supression of specific
types of goals, mainly for system configuration purposes;

e status-based supression of goals that have failed to be accomplished a
number of times (to sort out invalid goals); and

e importance-based supression of goals that are heuristically assessed as
not being beneficial enough to be considered for further processing.

2.3.2 Activation

Goals that are surfaced G, are subject to more computationally complex
management that involves comparison between different goals and a more
informed selection of which goals shall become activated. The activated goals
G, again form a subset of the surfaced goals so that G, C G and G, # @,
i.e. there is at least one of the surfaced goals active at any given time.

In the course of the CogX project we have implemented three different
strategies to realise the activation process in order to select the goals to be
included in G, — all utilising the very same GGM framework, but allowing
for different drives to be chosen, each appropriate to the respective domain.
The three strategies are built upon each other with the later ones subsuming
functionality of the earlier ones. The first one to be presented in Sec. 2.3.3]
selects a single goal for activation at any given time taking into account
the predicted information-gain and the respective costs of each individual
goal. It is tailored to the requirements of purely curiosity-driven behaviour
as presented in the Dora scenario of year 1 of the project. The second
one (Sec. adds priority-based selection to the first strategy to realise
sequential tasks of interactive learning in the George scenario facilitating
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different modes of initiative. Finally, in the third strategy (Sec. , we
present a method to accomplish task-driven goals given temporal constraints
while still exploiting opportunities to extend knowledge in a curiosity-driven
way. The final strategy selects one of the task-driven goals similarly to the
second and first strategy, but expands the set of activated goals G, by
including other curiosity-driven goals in an opportunistic way.

2.3.3 Heuristic Gain-Cost Trade-off (GCT)

In [10] and [12] we have presented the details of autonomous extension and
exploration realised by means of the GGM framework and the heuristic gain-
cost trade-off (GCT) strategy, and presented results of its application in the
Dora scenario. We shall now only briefly revisit the main aspects of this
work and its results in the context of the overall approach discussed here.

The GCT strategy evolves around the idea that a single goal is selected
to be activated at any given time, while the other goals remain surfaced.
The goal is chosen based on trade-off between an estimated information
gain vy and the respective costs ¢, the goal would incur. Both factors are
compiled into the goal’s importance i, = -* and the goal with the highest i,
is chosen for activation. Naturally, this strategy is best suited for curiosity-
driven epistemic goals which actually yield an information gain assigned to
each individual goal. In order to assess this strategy we implemented two
curiosity-driven goal generators for two types of knowledge gaps. One for
the placeholders occurring in the map, as introduced already in Sec.
and another one that gave rise to epistemic goals to determine the category
of rooms found in the map (cf. Fig for a map with two rooms separated
by a doorway). When it comes to the actual selection of goals, the costs
and the information gain for each goal have to be estimated. The cost
metric to be minimised by the planning algorithm is the overall duration to
achieve a goal. Hence, all actions are assigned costs in the domain definition
according to their average execution time based on our own experience.
While this allows the costs for all the goals to be computed by querying
the planner directly, a more efficient estimate is usually preferable to reduce
computational load. Hence, for specific types of goals, dedicated estimators
have been implemented. For instance, the cost of exploring a placeholder is
estimated as the distance in the topological graph from the current position
to that placeholder. If no such estimator is available for a specific type, the
planner is queried for the costs.

However, the quantification of the information gain for different kinds
of goals is a not as straight-forward as the costs. This problem has also
been discussed in [12]. While there exist suitable heuristics for quantifying
the information gain of goal of specific kinds (e.g. the goals to explore
placeholders based on the information gain in a robot’s SLAM map [I])
the problem becomes even harder if one aims to compare goals of different
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types. For instance, if no further constraints are given, it is not clear if
exploration of another placeholder or finding out about the category of a
room (whether it is a kitchen or an office) yields more information. This
has been discussed as an inevitable challenge of any purely curiosity-driven
goal selection mechanism that has to trade-off different types of goals. We
have evaluated the heuristic chosen in [12] and were able to show in [10] that
this strategy can improve overall performance in exploration compared to a
conjunction of all the individual goals in terms of planning and execution
time.

In summary, the GCT strategies enables GGM to select the single most
promising goal at any time being precisely informed about the costs and
weighing this up against the heuristically predicted gain. It suffers from
the principally not well defined comparison between different types of goals,
a drawback which is addressed by the dynamic prioritisation strategy pre-
sented next.

2.3.4 Dynamic Prioritisation (DP)

While the GCT strategy proved suitable for purely curiosity-driven explo-
ration, the interactive nature of the George scenario demanded a slightly
modified approach, still implemented within the general GGM framework
using a combination of appropriate filter and strategy mechanisms. The
George system is a robot which interacts with a single human in order to
learn the colours, shapes and identities of objects on a tabletop [23] (see
also DR 7.5). Because all interaction is done through dialogue, the overall
behaviour of the robot is necessarily limited to a sequence of single tasks,
where these tasks are derived from questions or commands posed by either
the human or the robot. These two sources of tasks roughly correspond
to task-driven and curiosity-driven goals: task-driven goals are created to
respond to the human’s learning and questioning utterances (“this is a red
7. “what colour is this?”), curiosity-driven goals are created to provide
George with more information about particular objects (“what colour is the
box?”), or the world in general (“please show me a compact object”).

The constrained, sequential nature of George’s behaviour means that the
goal activation problem is reduced to selecting the most appropriate single
goal at any time. Whilst this is a simpler problem in many respects than
appears in Dora, the fact that there are still many different things George
can do at any point means that developing an effective management and
activation scheme is still a challenging task. We have approached this using
a dynamic priority filter with delays. This is based on a priority hierarchy
which reflects the different drives George has. The highest priority drive is
to respond to the human (in a task-driven fashion). This is followed by the
curiosity drive to fill gaps in knowledge via extrospection (i.e. inspecting the
world external to the agent). At the lowest level is the (curiosity) drive to

bozx
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fill knowledge gaps by introspection.

When goals are generated they are assigned a priority level, P, based on
their source. The attention filter in George is also associated with a priority
level, Pr. When a goal g reaches the filter, the filter inspects the priority
level and performs one of the following actions:

o If Py > P, then g remains unsurfaced.
o If Py == P, then g surfaces.

e If Py < P, then g surfaces, Py is set to Py, and all currently surfaced
goals (which necessarily have priorities lower than P;) are unsurfaced.

The effect of this approach is that only goals which are of the highest avail-
able priority are allowed to be surfaced. When a goal is unsurfaced due to
completion or cancellation then this process is (approximately) run in re-
verse, allowing the priority of the filter to decrease to the highest remaining
priority.

Goals which surface are managed using the heuristic trade-off approach
described in Section [2.3.3] selecting for only the highest ranked goal. This
means that within a priority level George always performs the behaviour
which provides the most information at the lowest cost. This is only used
at the curiosity levels, as it is not possible in our scenario for George to be
given two task-driven goals at once (although there is no reason the system
could not support this).

In George, the motivation framework is also responsible for ensuring that
interactions with the robot are structured appropriately. Whilst the selec-
tion of only a single, dynamically-prioritised, goal at any time contributes
to this, we have also found it necessary to add a surfacing delay to the filter.
This mechanism is able to delay the surfacing of particular classes of goals
until a given duration after the completion of the previous goal. We apply
delays only to curiosity-driven goals. This ensures that George allows its
interlocutor sufficient time to engage it as they desire (i.e. asking questions
or issuing learning instructions) before it starts generating utterances of its
own.

2.3.5 Opportunistic Goal Expansion (OGE)

The final strategy called “Opportunistic Goal Expansion (OGE)” improves
on the two introduced above (i) by activating more than just one goal at a
time allowing for more efficient behaviour, (ii) by its more informed selection
process that takes the dependencies between goals into account, and (iii)
by the additional support for temporal constraints to goals to effectively
combine task-driven with curiosity-driven opportunistic behaviour. It allows
the CogX robots to achieve specified tasks within the given time constraint
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(deadline) while at the same time taking opportunities to self-extend their
knowledge.

For this approach to work we built upon the two other strategies, but
involved the planning process in the actual selection of the goals by defining
activation as follows:

1. Like in “Dynamic Prioritisation” (Sec. curiosity-driven goals are
assigned a lower priority than task-driven goals. However all goals are
surfaced and considered for activation. Again the intention is that
commands given by a human overrule any self-extension drive of the
robot. All curiosity-driven goals g. € G are assigned the lowest
priority Py, = low.

2. Consequently, all task-driven goals g; € G*** are assigned higher pri-
orities Py, € {normal, high} than the curiosity-driven goals.

3. Based on the set of all surfaced task-driven goals G*** the same se-
lection principle as in the dynamic prioritisation strategy (described
in Sec. is employed to select a subset of relatively highest pri-
ority goals. For instance, if G'®* contains goals with normal and
high priority, only the ones with high are further considered for acti-
vation. From this subset, a single goal g; is selected using an ad hoc
strategy. In our current implementation they are selected in order of
appearance. For task-driven goals this an appropriate strategy if one
assumes that the robot shall carry out tasks in the same order it has
received them from a commanding human. Other strategies are yet to
be explored. The single chosen goal g; is considered as a hard goal, i.e.
a goal that has to be accomplished by any plan generated. Formally, a
hard goal has an infinite importance iy = co. Additionally, the hard
goal is assigned a time constraint in form of a deadline Tyx. The actual
deadline depends on the type of the goal and is currently arbitrarily
determined by the user. It defines the upper boundary of the summed
duration D = ) .. d(a) of all planned actions a to achieve the goal
(with d(a) being the duration of action a in plan 7 that accomplishes
g7). A valid plan has to achieve the goal within the time constraint,
ie. Tyr < Ds.

4. All curiosity-driven goals g. € G®" with priorities lower than high are
taken as soft goals, i.e. goals that have a certain importance 0 < iy, <
00. The nature of soft goals is that they can be accomplished by a plan,
but they can also be forfeited if either they cannot be accomplished
given other constraints (e.g. a deadline of a hard goal), or they are not
important enough given the costs their accomplishment would occur.
Hence, the importance values assigned to the soft goals in relation to
the incurred costs determine which of the soft goals will actually be
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activated and which will be suppressed. The importance value of all
the soft goals are computed similarly to the strategy introduced in the
Sec. taking into account the type and the estimated information
gain.

This strategy actually selects the goals to be activated by presenting the
decision on which goals to activate as an oversubscription planning problem.
It defines one task-driven goal as a hard goal with a given deadline and all
the surfaced curiosity-driven goals as soft goals with respectively assigned
importance values. This problem can be solved by a planner that provides
support for deadlines and soft goals. The planner will make the decision
about which soft goals shall be accomplished by the final plan taking into
account their incurred costs in relation to the importance while ensuring
that the hard goal is accomplished within the time constraint. Once a
plan has been found, all soft goals that are accomplished by the plan and
the hard goal are activated. Instead of employing a third-party planning
framework that would generally fulfil our requirements, like SAPA which is
employed in some work related to ours [19], we decided to further extend
the Fast-Downward planner [I3] which we have already adapted for the
implementation of the CogX switching planner [7] to support probabilistic
belief states and assumptive actions. Adding combined deadline and soft
goal support to this planner facilitates more direct applicability in CogX
domains. In the following, the required extensions to the Fast-Downward
planner are introduced.

Planning with deadlines We built a simple extension that can handle
a subset of planning problems with deadlines upon the classical Fast Down-
ward planner. A classical planning problem with action costs IT consists of a
initial state sg, a set of actions a € A with associated costs ¢(a) and a goal ~.
The planning problem involves finding a sequence of actions 7 = [ay, . . . , ay]
that reach the goal from the initial state. A (non-parallel) planning problem
with deadline T assigns a duration d(a) to each action and involves finding
aplan 7s.t. Dy =) . d(a) <T.

In the simplest case, action durations can be directly mapped onto action
costs. In this case, planning with a deadline T" reduces to finding a plan
with a cost bound C' = T. We use a heuristic forward search planner that
employs a weighted A* algorithm to find good plans efficiently. Weighted A*,
combined with an admissible heuristic, guarantees that for a given weight w
any plan found by the search is at most a factor of w more expensive than
the optimal plan. In general, higher weights improve planning speed at the
expense of plan quality.

Algorithm [1| shows a simplified version of weighted A* search for trees?.

3In the planner, a more complicated version applicable to graphs is used, but those
details are not relevant to the work described here.
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Algorithm 1 W A*-Planner
Input: Planning problem IT = (sg, A, ), weight w
Output: Plan 7 or failure
9(s0) < 0
Queue < (sp, g(s0) + wh(so))
while s < Por(Queue) do
if CHECKGOAL(s) then
return BACKTRACK(S)
end if
for a,s’ € SUCCESSORS(s) do
9(s") <= g(s) + c(a)
Queue < (', g(s") + wh(s"))
end for
: end while
return failure

e e
e e

We initialize a priority queue with the initial state (line 4) and the priority
function f(s) = g(s) + wh(s). We take the lowest cost state from the queue
and check whether it satisfies the goal. If yes, we backtrack and return the
path that lead to this state (lines 5-7). Otherwise, we generate all states
that can be reached from the current state via an action e and put them
into the priority queue (lines 9-11). If the priority queue is empty and no
satisfying state has been found, we return failure.

We can make two simple modifications to make sure that the found plans
respect the deadline T', which are shown in Algorithm First, we check
if the g-value of a state exceeds T (lines 6-7): if this is true, the plan that
reaches this state will already have exceeded the deadline. This alone is
sufficient to make sure that the planner only returns a plan that respects T'
if one exists, but is throwing away information. If our heuristic function h
is admissible, then f(s) = g(s) + h(s) is a lower bound on the actual costs
of a plan involving this state. Thus, if this value is already greater than T,
we can refrain from putting it into the priority queue (lines 14-15).

The problem becomes more complicated if we include soft goals in the
planning framework. A soft goal is a goal condition ~; together with an
importance i, and the planning task is to find a plan 7 that minimizes the
cost of the plan plus the priorities of the unsatisfied soft goals. The easiest
way to solve problems with soft goals, is to compile them back into a classical
planning problem as described by Keyder and Geffner [I4]. This involves
the creation of forfeit-actions for every soft goal, that have costs equal to
the goal’s importance. Now, the direct correspondence between action costs
¢(a) and action durations d(a) no longer holds: The forfeit actions have non-
zero costs, but zero duration: not satisfying a soft goal does not take any
time. The same holds true for assumptive actions as used in our continual
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Algorithm 2 Deadline-Planner-Simple

1: Input: Planning problem II = (sg, A, ), weight w, deadline 7'
2: Qutput: Plan 7 or failure

3: g(So) 0

4: Queue < (sp, g(s0) + wh(so))

5. while s < Por(Queue) do

6: if g(s) > T then

7: continue

8 end if

9:  if CHECKGOAL(s) then

10: return BACKTRACK(S)

11:  end if

12.  for a,s’ € SUCCESSORS(s) do
13: g(s') + g(s) + c(a)

14: if g(s') + h(s') < T then

15: Queue + (s, g(s") + wh(s"))
16: end if

17:  end for
18: end while
19: return failure

planner [7, 2].

Listing |3| shows the modifications to our search process that are required
to deal with these differences. In addition to the costs g, each state s also
keeps track of the elapsed time #(s) (lines 4, 15) and uses this to abort
search if it exceeds the deadline (line 7). In addition, we can no longer
use the heuristic h(s) to get an lower bound estimate on the remaining
time. We use a modified heuristic function h! that uses durations instead
of costs to compute the heuristic value of a state and use this function for
the early pruning of states (line 16). While this doubles in the worst case
the number of heuristic calculations that are required, experiments suggest
that the savings from pruning states that are known to exceed the deadline
easily makes up for this.

Validation Runs We have tested the OGE strategy in the context of a
modified Dora scenario using the standard planning domain and system in-
stantiation described in detail in DR 7.3, including the planning domain
in DTPDDL. Here, we gave Dora a number of patrolling tasks which basi-
cally involve travelling around a partially explored environment to repeatedly
inspect, i.e. visit, a number of designated places within a certain time con-
straint. This task is informed by typical security applications that require
a (human) guard to “check in” at specific spots according to a given sched-
ule. Accordingly, Dora will always have one task-driven goal g; at a time
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Algorithm 3 Deadline-Planner

1: Input: Planning problem II = (sg, A, ), weight w, deadline 7'
2: Qutput: Plan 7 or failure

3: g(So) 0

4: L‘(So) 0

5. Queue < (s9,g(so) + wh(so))

6: while s < Por(Queue) do

7. if t(s) > T then

8: continue

9: end if

10:  if CHECKGOAL(s) then

11: return BACKTRACK(S)

12 end if

13:  for a,s’ € SUCCESSORS(s) do
14: g(s") < g(s) + c(a)

15: t(s') + t(s) + d(a)

16: if t(s') + h!(s') < T then

17: Queue < (s',g(s") + wh(s'))
18: end if

19: end for
20: end while
21: return failure

to reach and inspect a given place and it will have a deadline 7} assigned
to this task that it has to respect. However, as the environment is partially
unexplored, Dora has the opportunity to extend her knowledge by pursuing
other curiosity-driven goals g. € G““", which will eventually lead to a map
extended to the one previously known and prepare her for future tasks, e.g.
to patrol a larger area or finding objects in newly discovered rooms [9].

Fig. visualises the simulation environment we set up to test the
OGE extension with the integrated Dora system. A simulation environment
has been chosen to ease reproducibility and controllability for the tasks
at hand. The figure also indicates the starting position of the robot in
each of the runs. This position corresponds to the location of the robot
in Fig. which visualised the robot’s knowledge at start time, i.e. the
partially explored map comprised of places (disks with numbers up to 10 in
the figure), connection between those places (red arrows), a door, walls, and
placeholders as introduced in Fig

As said before, all the placeholders give rise to curiosity-driven soft goals
with a low priority to form G". Additionally, the one task-driven goal g; is
given to subsequently patrol to places 0, 5, 10, and 6, an order also indicated
by the coloured superimposed balls in Fig. This is implemented using
a specialised goal generator that emits goals of type t,+ = patrol. Whenever
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| i

L
(a) The stage simulation map used in- (b) The robot’s representation about the partially explored
cluding the robot’s starting position. environment. The superimposed balls with numbers (1-4)

indicate the order of patrolling tasks issued to the system
to be accomplished sequentially.

Figure 3: The situation at start-up time for experiments on opportunistic
goal expansion in the Dora patrolling scenario.

the current task to patrol a given place has successfully been accomplished,
this generator emits a new goal to patrol the next place in the given order,
looping through the list of given goals over and over again, leading to an
assignment of places to patrol to respective goals shown in Tab.

The deadline Ty assigned to the goal is varied to study its effect. In our
experiments we chose three different parameterisations Ty: € {10,15,20}
resulting in three different conditions DL10, DL15, and DL20, respectively.
The importance of all soft goals g. € G" is fixed to ¢4, = 500. This high
value effectively enforces the OGE strategy to activate as many soft goals
as possible under the given deadline constraint 7j:.

To study the effect of the different conditions DL10, DL15, and DL20, the
size of the explored map has been measured in “number of places explored”.
In each run, the system starts off in a partially explored map comprised of
a total of 8 places (of which the place with ID 9 is a door, see Fig. [3(b)).
Then it is set to accomplish its patrolling tasks and take the opportunities
to explore placeholders. It is expected that higher values for the deadline of
the patrolling goals give the robot more time to exploit exploration oppor-

Order | Place Task no.
seFigfsp)) | ID|1 2 3 4 5 6 7 8 9 10 11
1 0]X X X
2 5 X X X
3] 10 X X X
4 6 X X

Table 1: The places to patrol in the respective task corresponding to the

results in Fig.
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——DL15 —— explored places
place hypotheses

0 2 4 6 8 10 12 1 2 3 4 5 6 7 8 9 10 11

(a) Number of explored places in the combined  (b) Number of explored places and still existing
patrolling exploration task under varied dead-  place hypotheses in condition DL10.
line conditions.

Figure 4: Progress of exploration in opportunistic goal expansion.

tunities, effectively leading to a faster exploration of its environment. This
hypothesis is confirmed by the results shown in Fig. which shows results
for a total of 11 iterations of patrolling tasks given to the system according
to Tab. [1l

In all three conditions, the robot adhered to the deadline, i.e. it gen-
erated plans to patrol the places according to the schedule. However, it is
apparent that after 11 iterations in the different conditions the amount of
explored space explored map is higher the higher the deadline in the respec-
tive condition. The map contains only 13 explored places in condition DL10,
whereas the strategy yielded 23 and 25 explored places in conditions DL15
and DL20, respectively.

It can also be seen in Fig. that in condition DL10 the size of the
map has reached a plateau from task 8 onwards. The number of explored
places does not increase anymore, even if the system is left running for more
iterations, because all placeholders that can be opportunistically explored
with the tight deadline have been explored, and the constraint simply does
not allow the system to extend the map any further as it is bound by its
high-priority task-driven goal. Fig. shows that indeed there are still
placeholders left to be explored, i.e. soft goals to be accomplished, but
OGE does not include any of them due to the deadline.

On the contrary, in conditions DL15 and DL20 the plateau has not yet
been reached and the opportunistic exploration of the robot still continues
even after iteration 11 because there are still a number of exploration goals
that can be accomplished while pursuing an assigned task without violating
the deadline. The final map in condition DL20 is visualised in Fig. [f] which
contains a total of 25 places. Therefore the OGE strategy allowed the robot
to opportunistically add another 17 places to its topological map and to
discover two new rooms whilst accomplishing all of its patrolling duties.
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Figure 5: Final map after interleaved task- and curiosity-driven goal man-
agement in condition DL20.

3 Relation to the state-of-the-art

Although the problem of generating and managing goals for an integrated
system has not been studied widely by the Al community, there is a body
of work to which our work relates. The work of Coddington [5] supports
the link between motivation and planning complexity. In a limited setting
she compared two approaches to generating goals for an agent: reactive
generation, and encoding all the system’s goals as resources in its planning
domain. This work demonstrated that by only using reactive goal generators
the system could not guarantee to satisfy all of its desires, as the effects of
actions in current or future plans were not reasoned about by the generators.
Coddington views using a planning process to decide which goals should be
pursued as a solution to this. As a planning approach would consider all in-
teractions between possible goals and current actions it prevents potentially
deleterious situations occurring. However, Coddington demonstrated that
the computational cost of encoding all possible goals in a planning prob-
lem prevented the system tackling problems beyond a certain size. This is
clear motivation for filtering and prioritisation mechanisms prior to activa-
tion, provided that they are appropriately designed to ensure mission-critical
goals surface appropriately.
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The problems and benefits of autonomous goal generation in an inte-
grated system setting are demonstrated by the work of Schermerhorn et al.
[19]. They present a system that can use the preconditions and effects of
planning actions to generate new goals for a system at run-time. This ap-
proach has clear benefits in unpredictable worlds and would fit cleanly within
a generator in our framework. [20] highlights the problems of treating goal
activation as a rational decision making problem. The primary difficulty is
getting reliable, comparable models of actions and the environment. Our
systems face this problem when attempting to compare measures of infor-
mation gain from different types of curiosity-driven goals. In [24] the same
team also show how, in an open-world domain, new observations can be
the source of new goals. They distinguish between hard and soft goals, and
associate goals with deadlines, but they do not consider other management
criteria.

Klenk et al.’s [15] [I8] framework for goal-driven autonomy is the work
that most closely aligns with our framework. One difference between the
designs is that they introduce an additional explanation component which
can be used to generate goals from discrepancies between expectations and
observations. For us this is just an example of the kind of behaviour a goal
generator could demonstrate, and does not warrant special attention. They
also do not address the difference between task- and curiosity-driven goals,
which we see as key to the use of such a framework in the real world. Their
framework has also not been tested outside of a naval warfare simulation,
where it is used to control autonomous vehicles in large-scale deployments.
This different application perhaps best explains our differences in focus.

Other frameworks for goal generation or management have been pro-
posed previously. These approaches typically fail to make the distinction
between generation, surfacing and activation, instead assuming that gener-
ation implies activation (ignoring the requirement to deliberate about pos-
sible goals). We can consider such approaches (in terms of goal generation
and management) as implementations of a subset of our framework. Ex-
amples can be found in belief-desire-intention systems (e.g. [6]), behaviour-
based systems (e.g. [4]), and reactive planners with goal management exten-
sions (which represents perhaps the largest body of work on this subject)
(e.g. [8,17]). For a full review of related literature, see [11].
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