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This is the first deliverable from WP3 and thus represents the work over the
first two years in the area of qualitative spatial cognition. One of the main
outcomes of the work are the design principles of the overall spatial represen-
tation for CogX. A core concept for the spatial model is that of places which
serve as the smallest unit of space which the majority of the rest of the system
should be reasoning about. Closely related to this is the work on recognising
and categorising such places. We also present our work on defining quantita-
tive measures for topological spatial relations, so far fully developed for the
relation “on”. These spatial relations will be used, for example, when ab-
stracting spatial knowledge and when verbalising such knowledge. We also
show how these relations can be used to implement so called indirect object
search in a principled way. Finally we include a number of theoretical results
regarding the advantage of using a robocentric representation of space – one
of the key ideas in our spatial model, where a robocentric map would contain
a detailed description of the robot’s surroundings, outside which the robot
would start to forget/abstract away information.
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Executive Summary

This report is the first of the deliverables in CogX from WP3 which deals
with representations for qualitative spatial cognition. The first year was
spent on requirements analysis and designing the interface for the spatial
representation for our cognitive system. A mock-up system, presenting the
rest of the system with a working interface similar to the real one, was used in
order to run the overall system during the first year. During the second year
we have been working on some of the components that will constitute the
final system. This report covers the progress to the end of the second year’s
reporting period. More progress in terms of implementation is expected
until the review meeting. This report does not attempt to describe the
implementation part of the work package so much as the scientific issues
and it covers the material that has already been published or submitted to
date.

Relating the work over the first two years to the workplan, the main
focus has been on the overall spatial representation (Task 3.1) and how
to reference spatial entities (Task 3.2). Some initial work has also started
around the issues of how and what to represent in long-term and short-term
spatial memory (Task 3.3). The report focuses on the work on Tasks 3.1
and 3.2 as the work on 3.3 is still to be considered preliminary.

One of the fundamental research questions that we want to investigate
with our spatial design is to what extent the system can operate without a
representation that maintains all its knowledge in a global metric frame of
reference. Our hypothesis is that this is not necessary and we argue that in
fact not using such a global frame makes the problem more tractable and
the system more robust. This said we still believe that metric information
plays an important role on a local scale. Given that most of the existing
techniques for components assume a global metric reference frame it has
resulted in a bit more implementation work than initially anticipated.

In addition to the overall design of the spatial representation and the
issues of integration with the rest of the system such as the architecture
(WP1), vision and perception (WP2), planning and execution (WP4) and
dialogue (WP6), we have been working mainly along four tracks: i) meth-
ods for recognising and categorising spatial regions with categories such as
kitchen, corridor and office, ii) how to make use of spatial relations when de-
scribing, reasoning, communicating and storing spatial knowledge, iii) how
to efficiently find objects using both top-down and bottom-up information
in an efficient way and iv) metric level navigation.

Finally, the work has resulted in a number of high quality publications,
among them 4 journal articles. The content of these and how they relate
to CogX as a whole and this work-package in particular are outlined at the
end of this report.
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Role of spatial cognition in CogX

The overarching goal in CogX is for the robot to self-understand and self-
extend. An important part of this is the robot’s understanding of the space
around it. It needs to be able to navigate, that is know where it is and
how to get from one point to another and it needs to know how to perform
useful tasks in said environment. We are dealing with a cognitive agent
that is assumed to be sharing its environment with people and therefore the
ability to interact with people is very important. The latter brings with it re-
quirements on the spatial representation and understanding that go beyond
simple navigation tasks. The robot needs to be able to exchange knowledge
that is related to the environment with people and other agents, it needs to
be able to plan tasks, reason about high level, human-type concepts such
as objects, rooms, etc. WP3 is about designing, building and maintaining a
spatial representation that supports these requirements.

One of the main goals in CogX is to endow the robot with the ability to
identify gaps in its knowledge and thereby gain a form of self-understanding.
When it comes to self-understanding in the context of WP3, we have iden-
tified a number of gaps at different levels of abstraction in the spatial rep-
resentation which are described in Annexes 2.1.1/[42], 2.1.2/[43], 2.1.3/[56].
In the publications that form the foundation for this deliverable we deal
with a number of these gaps in more detail and we discuss how to fill them
and thus self-extend. In Annexes 2.2.2/[40] and 2.2.3/[41] we deal with the
knowledge gaps regarding room categories which play an important role in
our system where interaction with humans is central. In Annexes 2.4.1/[1]
and 2.4.2/[2] we describe how the robot can fill a gap in knowledge about
the location of object that may arise e.g. when a human orders the robot
to “find object X”. In this process we explictly reason about our knowledge
and plan the best next sensing action to find the object. In Annex 2.5.1/[6]
we perform the same type of knowledge-gathering but from a more theo-
retical standpoint. Annexes 2.5.2/[7] and 2.5.3/[8] address the problem of
gathering knowledge about the geometry of large scale space (the localiza-
tion and mapping problem in robotics). Annex 2.5.4/[5] shows how finite
set statistics can be used to localize a robot without prior information about
the location of the robot which is vital for most tasks that the robot takes
on.

Contribution to the CogX scenarios and prototypes

The work in WP3 is currently mostly related to the Dora scenario (one of
three scenarios/demonstrators in WP7: Scenario-based integration) since
the focus in WP3 is on large-scale space which fits well with Dora. How-
ever, the aim is to work towards a seamless integration with the small-scale
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representation of space that is used in the George scenario. The work on
navigation in WP3 can be used in the George scenario during the third year
if that scenario requires the robot to move to acquire novel views of objects
that are observed or hypothesised about.

In the Dora scenario, the work in WP3 is the “low-level” corner stone in
that it provides the robot with the ability to move about in the environment,
and build up a representation that the rest of the system can make use of
when, for example, planning actions and reasoning about space. There is a
very tight connection with the work in WP6 on adaptive situated dialogue
processing as most of the communication with the human, in the Dora sce-
nario, is about space in one way or another. Questions that cut across these
two work packages and have contributed requirements to the design are, for
example, how to represent the spatial information to facilitate efficient ver-
balisation and how to represent spatial knowledge that is provided by the
human.

EU FP7 CogX v
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1 Tasks, objectives, results

1.1 Planned work

Spatial knowledge constitutes a fundamental component of the knowledge
base of a mobile agent, such as Dora, and many functionalities directly de-
pend on the structure of the spatial knowledge representation, ranging from
navigation, to spatial understanding and communication. These include
localisation, mapping, way-finding and autonomous exploration, but also
understanding and exploiting semantics associated with space, human-like
conceptualisation and categorisation of and reasoning about spatial units
and their relations, human-robot communication, action planning, object
finding and visual servoing, and finally storing and recalling episodic mem-
ories.

WP3 is about qualitative spatial cognition, by which we mean that, in
addition to quantitative aspects, the system must also capture qualitative
aspects. We will work with different scenarios, ranging from the robot being
given only some basic object recognition skills and being asked to build up
the spatial knowledge from scratch, to situations where a substantial amount
of innate knowledge is given a priori to be able to study some aspects that
would otherwise require the system to have operated for a very long time.
We will also make use, when suitable, of knowledge gathered from various
databases which help provide the system with “common sense” knowledge.

The tasks from the workplan we planned to work on during the first two
years were:

Task 3.1: Spatial modelling. The goal is to develop a framework that
allows for a hybrid representation where objects and traditional metric
spatial models coexist.

Task 3.2: Spatial referencing. The goal is to investigate what objects
and other entities in the map should be referenced and how.

Task 3.3: Short-term vs long-term spatial memory. The goal is to in-
vestigate how spatial knowledge should be represented to support both
short-term and long-term storage and access.

Task 3.1 was intended to lay the foundation for the work in WP3 by
defining a spatial representation that caters to the requirements given by
the desired functionality of the robot and the rest of the components in
the system. The task was planned to end by the second year but it is
likely that the design will be updated as the project progresses and new
requirements surface. It is very hard to find all of the requirements before
they have appeared in actuality, especially from components that are not
directly related to the spatial representation. For example, as the scenarios
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George and Dora come closer to each other it is likely that some additional
requirements will appear.

Task 3.2 is part of our strategy to handle abstraction of spatial infor-
mation and facilitate natural communication between humans and robotic
systems. We believe that it is crucial for a cognitive system to be able to
both analyse a scene to determine the spatial relations between entities and
to be able to generate a prior for how a certain described scene might appear
when perceived. Task 3.3 is closely related to Task 3.2 in that we hope that
the results from Task 3.2 can help structure part of the long-term memory.

In the next section we describe how we achieved the goals for the first
two years.

1.2 Actual work performed

Below we summarise the achievements for the individual tasks. We provide
a somewhat disproportionately long description of the design of the spatial
structure motivated by the fact that it is underpinning the entire future
system design.

1.2.1 Task 3.1: Spatial Modelling

As with all designs we started by looking at the requirements that are placed
on our spatial model. Following Davis’ [17] analysis the model must provide:
a) A model of the real world, to allow reasoning also beyond the field of view
of the sensors. As pointed out by many such a model is always going to be
imperfect and due to dynamics and the complexity of the real world also
eventually invalid. b) A definition of the aspects of the world that should
be represented and at what level. c) Definitions for the reasoning that can
be performed within the framework and the possible inferences and their
outcomes. d) A structure that makes processing of the information compu-
tationally tractable with limited resources. e) A medium of communication
between the agent and a human. f) A medium for communication between
components in the system.

With these functional requirements in mind we have designed a repre-
sentation presented in Annexes 2.1.1/[42], 2.1.2/[43], 2.1.3/[56] as well as
in [44] and briefly in [55]. It is designed for representing complex, cross-
modal, spatial knowledge that is inherently uncertain and dynamic. Our
main hypothesis is that it is not a good idea to aim to represent the world
as accurately as possible, due to its complexity and dynamic nature. We
instead argue that the representation should be coarse and only as accu-
rate as needed. Uncertainties and gaps in the spatial knowledge must also
be represented explicitly. An example of such an explicit representation of
gaps is so called placeholders for representing unexplored space. We rep-
resent categorical knowledge separately from location specific information.
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Property Sensory
Layer

Place Layer Categorical
Layer

Conceptual
Layer

Aspects rep-
resented

Accurate ge-
ometry and
appearance

Local spatial
relations,
coarse ap-
pearance &
geometry

Perceptual
categorical
knowledge

High-level
spatial con-
cepts / Links
concepts ↔
entities

Agent’s posi-
tion

Pose within
the local
map

Place ID Relationship
to the cat-
egorical
models

Expressed in
terms of high
level spatial
concepts

Spatial scope Small-scale,
local

Large-scale Global Global

Knowledge
persistence

Short-term Long-term Very long-
term

Life-long
/ Very
long-term

Knowledge
decay

Replacement Generalization,
forgetting

Generalization None / For-
getting

Information
flow

Bottom-up Primarily
bottom-up

Primarily
bottom-up

Top-down
and bottom-
up

Table 1: Comparison of properties of the four layers of the spatial represen-
tation.

Examples of categorical models are the appearance of places [39] and of
objects [37]. Also, as the representation is a key part in human-robot in-
teraction, we model correspondence between the represented symbols and
human concepts of space. This information is used for example to generate
and resolve spatial referring expressions [58]. This is an example of the close
coupling between WP3 and WP6. Results from this year can be found in
Annex 2.2.1 in DR.6.2 [57].

Some of the work we have done is directly related to modelling, while
other parts use the spatial representation and build up the information in it.
In Annexes 2.4.1/[1] and 2.4.2/[2] we describe how the robot can fill the gap
in knowledge about the location of object that can arise for example when a
human orders the robot to “find object X”. In Annex 2.5.1/[6] a theoretical
treatment of the same problem is presented.

Our representation can be divided into four layers which capture different
aspects of the world. Figure 1 provides an illustration of the the structure
and Table 1 summarises the properties characterising each layer. Below, a
brief description of each layer will be given.

Sensory Layer The sensory layer maintains a detailed model of the en-
vironment in close proximity to the robot. Information beyond a certain
distance is forgotten and replaced by new information, making the sensory
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Figure 1: The layered structure of the spatial representation. The position
of each layer within the representation corresponds to the level of abstraction
of the spatial knowledge.
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layer operate as a sliding window. The sensory layer stores low-level features
together with their exact position including uncertainty. The sensory layer
also provides the low level robotic movement systems with data for deriving
basic control laws, e.g., for obstacle avoidance or visual servoing.

Annexes 2.5.2/[7] and 2.5.3/[8] describes the benefits of a robocentric
representation. Annex 2.5.4/[5] explains how to fill gaps in robot pose in-
formation by the use of finite set statistics.

Place Layer The place layer represents the world as a collection of basic
spatial entities called places as well as their spatial relations. The places
are intended to be the smallest units of space that the rest of the system
reasons about. The place layer explicitly represents gaps in knowledge about
explored space by instantiating so called placeholders.

Annexes 2.2.1/[38], 2.2.2/[40] and 2.2.3/[41] all deal with place recogni-
tion and classification.

Categorical Layer This layer contains the categorical models for the
robot’s sensory information. The information is intended to be general
across all environments that the robot has come across. This is the place
where models of objects are defined in terms of low-level features. In the
case of models that correspond to human concepts, they can be learnt in a
supervised fashion, using a top-down supervision signal or from databases.

The papers that were mentioned under the place layer are also connected
with the categorical layer in that they discuss how to train categorical models
for places.

Conceptual Layer The conceptual layer acts as the bridge between the
spatial representation of the robot and that of humans, and makes use of
human-compatible concepts. Information at this level is symbolic and con-
tains links to the lower levels of the spatial models. The conceptual layer
represents a segmentation of the environment into rooms and can supply
default assumptions about which kinds of objects are likely to be found in
which kinds of rooms.

1.2.2 Task 3.2: Spatial Relations

A human might describe a certain office as having a desk in the room,
near the window and having a computer monitor on the desk and a chair
at the desk. A robot on the other hand would typically have the same
scene represented in terms of metric coordinates. If spatial knowledge is
to be passed between the robot and the human through spoken words or
text the robot must be able to verbalise its knowledge in a way that is
understandable to the human and, conversely, understand what the human
says and transform that into a possibly different internal representation.
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Having this ability would also provide qualitative abstractions that facilitate
learning and reasoning and guide top-down processes such as e.g. visual
object search.

During the second year, in the context of task 3.2, we have been exam-
ining functional spatial relations starting with that of mechanical support,
which in English corresponds to the preposition “on”. We have contributed
a novel and general perceptual measure that allows a robot to analyse a
scene in terms of this relation in practice and also show how this can be
used to generate a prediction for the distribution of objects in a scene given
(uncertain) knowledge about their spatial relations (see Annex 2.3.1/[48]).

We have also shown how such a framework can be used to guide visual
object search (Annex 2.4.2/[2]). This allowed for a principled way of making
use of the concept of indirect search [21]. In indirect search the idea is that
in order to find for example a stapler it is often easier to look for the desk
first. This is true for humans and, we believe, even more so for a robot with
much more limited perceptual abilities where every chance to cut down the
search space has to be seized. The spatial relations provide the means to
generate a prior over the locations of objects given common sense knowledge
such as “staplers are typically found on tables”.

1.2.3 Task 3.3: Short-term vs long-term

Although the computer’s ability to store digital information is improved
every year it is still not possible for the robot to store all the information
that it gathers during its life-time. In this task we want to investigate how
to represent information that is meant for short-term and long-term storage
and what types of information go where. The work on this task has so far
been carried out in parallel with task 3.2. We believe that we can make
use of spatial relations to describe and represent long-term common sense
type spatial knowledge. We will have the robot try to learn such spatial
knowledge over long periods of time and also investigate ways to extract
such spatial knowledge from databases. As already mentioned, the spatial
relations provide a means for more efficient learning of certain aspects of
space. In many cases it will be enough for the robot to learn that the object
is typically found on the table rather than trying to learn the full distribution
over space. In the latter case one would need extremely large amounts of
data.

There is an intimate connection between the work on the spatial model
itself and Task 3.3. Table 1 shows how the persistence of the information
varies with the layer in the spatial representation. Using our design phi-
losophy, one should represent things at the highest level of abstraction and
the higher the abstraction the longer knowledge can be kept since the more
likely it is to be valid over long periods of time.

As was said above when describing the categorical layer in the spatial
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model, it contains persistent long-term models. The acquisition of such
models is therefore intimately linked with Task 3.3. The work presented in
Annex 2.2.3/[41] deals with the issue of incremental learning of such cate-
gorical models for places. One of the contributions of the paper is showing
how information has to be forgotten also in the long-term memory to adapt
to the slow changes in the environment that might occur over time scales of
months.

1.3 Relation to state-of-the-art

Below we briefly discuss how the obtained results relate to the current state-
of-the-art. We refer the reader to the annexes for more in-depth discussions.

1.3.1 Task 3.1: Spatial modeling

All but a few of the mobile robots brought into being to date have been
relying on two-dimensional geometric and global maps. The sensor of choice
was first sonars [34, 12, 54] and later lasers [51, 10, 22]. Lately, more and
more of the work relies on cameras as the main sensory modality [18, 33,
47, 19, 23, 11, 13]. So far the majority of the work has followed the same
direction as with the laser scanners and sonar sensors, that is, trying to
create accurate metric models of the environment. There are also examples
where the information about appearance given by visual data has been used
to build topological maps. Places with a distinct appearance become nodes
in a graph. In fact, some of the really early examples of robot mapping [9] are
based on visual data. Additional work includes for example [26, 52, 16, 15].
All of the work mentioned above treats the problem of mapping as a problem
of representing space to perform navigation tasks. For the applications we
want to support, this is not enough. If we want the robot to perform human-
like tasks and assist humans in complex and dynamic environments the
spatial representations need to support this. We need to expand the scope
of the spatial model so that it can carry out the role of knowledge base for
spatial reasoning, understanding, interaction, etc. In addition, it is not clear
that the level of detail offered by most global metric maps is necessary, or
even desirable. Although the level of detail in the most topological maps
might be right they are still geared towards navigation and do not support
all desired tasks.

The idea of the cognitive map [24] has been used to inspire work in spatial
representation before [28, 25]. The cognitive map contains the spatial knowl-
edge that the agent (human or robot) has gathered about the world. Key
references in this area in robotic is the work by Kuipers et al. [32, 29, 30, 31]
on the TOUR model and the so called Spatial Semantic Hierarchy (SSH)
which can be seen as an implementation of these ideas. An approach akin to
the SSH is the Route Graph model [27]. According to [36], humans have a
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more qualitative, topological perspective on spatial organisation. The focus
in the work by Kuipers is procedural route descriptions and on understand-
ing how much the agent can learn and do without providing it with any or
little prior knowledge. To facilitate smooth and natural interaction between
humans and robots the representation of space should help bridge the gap
between how humans and robots perceive space. The work mentioned above
are examples in this direction. Over the last years a number of systems have
been presented where the robot can acquire and facilitate semantic informa-
tion [50, 49, 20, 53]. The work presented in [50, 49] is mostly concentrated
on linguistic interaction with a human and the robot is not using its sen-
sors to retrieve semantic information. The anchoring approach, presented in
[20], deals mostly with the problem of integrating semantic and spatial levels
using anchoring. Vasudevan et al. [53] suggest a hierarchical probabilistic
representation of space based on objects. In [45] a model for representing
places based on constellations of objects is presented. The Hybrid Spatial
Semantic Hierarchy (HSSH), introduced by Beeson et al. [4], allows a mo-
bile robot to describe the world using different representations, each with
its own ontology.

1.3.2 Tasks 3.2-3

Our work in Task 3.2 is by no means the first attempt to quantify spatial
relations. In [46] the Attention Vector Sum is proposed as a practical numer-
ical measure of how acceptable a particular spatial relation is for describing
a scene (only 2D), and this model is compared to actual human responses.
Lockwood et al [35] present a system which learns to distinguish between
“in”, “on”, “above”, “below” and “left” from sketched images of basic fig-
ures. However, this too is restricted to a 2-dimensional world. Topological
relations specifically are surveyed in [14]. Region connection calculus and its
variants provide a language for expressing qualitative relationships between
regions, such as containment, tangential contact etc. Relations are of an all-
or nothing nature; and they represent objective, geometrical as opposed to
perceptual or functional attributes. The work mentioned above is not well
suited as is for practical robotics application because of its emphasis on pure
geometry, typically in 2 dimensions as well. Our work, in contrast, takes a
novel, functional approach. For example, in the case of the “on” relation
we base it on a single fundamental, objective mechanical property, that of
support. Another contribution of our work lies in treating all the objects
as entire bodies rather than simplifying them into points, a simplification
which ignores important aspects of the relations.
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2 Annexes

The annexes consist almost exclusively of peer-reviewed papers (4 journal
papers, 9 conference papers and 1 technical report). They have been di-
vided according to the task that they are most closely related to. Many
papers cut across several tasks; for example, the work on incremental learn-
ing of categorical models of places is both core to our spatial model and also
highly related to the issue of adapting the long-term memory and forgetting
information that is no longer relevant to describe the environment. Some of
the papers describe the spatial representation and the models therein, while
others describe processes for building the representations and populating
them with information.

Task 3.1

• Annex 2.1.1 Pronobis et al IAS 2010 (accepted) [43]

• Annex 2.1.2 Pronobis et al ICAR 2009 [42]

• Annex 2.1.3 Zender 2010 (technical report) [56]

• Annex 2.2.1 Pronobis et al RAS 2010 [38]

• Annex 2.2.2 Pronobis et al IJRR 2010 [40]

• Annex 2.4.1 Aydemir et al ICRA 2010 [1]

• Annex 2.5.1 Bishop et al ECC 2009 [6]

• Annex 2.5.2 Bishop et al ICRA 2009 [7]

• Annex 2.5.3 Boberg et al ISSNIP 2009 [8]

• Annex 2.5.4 Bishop et al FUSION 2010 (accepted) [5]

• Annex 2.5.5 Basiri et al Systems & Control Letters 2010 [3]

Task 3.2

• Annex 2.3.1 Sjöö et al IROS 2010 (accepted) [48]

• Annex 2.4.2 Aydemir et al IAS 2010 (accepted) [2]
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Task 3.3

• Annex 2.2.3 Pronobis et al IMAVIS 2010 [41]

An alternative way to divide the publications is to look at the topic of the
paper. This is how we choose to present the annexes as we believe that it
makes it easier to read them.

• Structure of the Spatial Representation

• Multi-modal Place Categorization

• Spatial Relations

• Object search

• Metric navigation
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2.1 Structure of the Spatial Representation

The papers and reports in this section describe the overall design of the
spatial representation. Papers [42, 43] are both accepted at conferences.
The paper in annex 2.1.3 is a technical report.

2.1.1 Pronobis et al, “Representing Spatial Knowledge in Mobile
Cognitive Systems”, (IAS 2010)

Bibliography A. Pronobis, K. Sjöö, A. Aydemir, A. Bishop and P. Jens-
felt, “Representing Spatial Knowledge in Mobile Cognitive Systems”, 11th
International Conference on Intelligent Autonomous Systems (IAS-11), Au-
gust 2010, Ottawa, Canada

Abstract A cornerstone for cognitive mobile agents is to represent the
vast body of knowledge about space in which they operate. In order to be
robust and efficient, such representation must address requirements imposed
on the integrated system as a whole, but also resulting from properties of its
components. In this paper, we carefully analyze the problem and design a
structure of a spatial knowledge representation for a cognitive mobile system.
Our representation is layered and represents knowledge at different levels of
abstraction. It deals with complex, cross-modal, spatial knowledge that is
inherently uncertain and dynamic. Furthermore, it incorporates discrete
symbols that facilitate communication with the user and components of a
cognitive system. We present the structure of the representation and propose
concrete instantiations.

Relation to WP This is the first of two publications that describe the
overall spatial design (Taks 3.1) and is thus at the very heart of WP3. This
paper describes the analysis of the problem and the requirements.

EU FP7 CogX 11



DR 3.1: Object based representations of space Jensfelt et al

2.1.2 Pronobis et al, “A Framework for Robust Cognitive Spatial
Mapping”, (ICAR 2009)

Bibliography A. Pronobis, K. Sjöö, A. Aydemir, A.N. Bishop and Patric
Jensfelt, “A Framework for Robust Cognitive Spatial Mapping”, In Proc. of
the International Conference on Advanced Robotics (ICAR’09), June 2009,
Munich, Germany

Abstract Spatial knowledge constitutes a fundamental component of the
knowledge base of a cognitive, mobile agent. This paper introduces a rigor-
ously defined framework for building a cognitive spatial map that permits
high level reasoning about space along with robust navigation and localiza-
tion. Our framework builds on the concepts of places and scenes expressed
in terms of arbitrary, possibly complex features as well as local spatial rela-
tions. The resulting map is topological and discrete, robocentric and specific
to the agent’s perception. We analyze spatial mapping design mechanics in
order to obtain rules for how to define the map components and attempt to
prove that if certain design rules are obeyed then certain map properties are
guaranteed to be realized. The idea of this paper is to take a step back from
existing algorithms and literature and see how a rigorous formal treatment
can lead the way towards a powerful spatial representation for localization
and navigation. We illustrate the power of our analysis and motivate our
cognitive mapping characteristics with some illustrative examples.

Relation to WP This is the second of two publications that are at the
core of WP3 in that they describe the overall design of our spatial represen-
tation (Task 3.1). This paper focuses on the place layer.
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2.1.3 Zender, “Multi-Layered Conceptual Spatial Mapping”, (tech-
nical report)

Bibliography H. Zender, “Multi-Layered Conceptual Spatial Mapping”,
technical report, DFKI GmbH, 2010

Abstract In this paper, we identify structuring of space and categoriza-
tion of large-scale space as two important aspects of spatial understanding
for embodied cognitive systems. In order to enable an autonomous agent
to engage in a situated dialogue about its environment, it needs to have
a human-compatible spatial understanding, whereas autonomous behavior,
such as navigation, requires the agent to have access to low-level spatial
representations. Addressing these two challenges, we present an approach
to multi-layered conceptual spatial mapping. We embed our work in a dis-
cussion of relevant research in human spatial cognition and mobile robot
mapping.

Relation to WP This technical report also gives a description of the
structure of the spatial model (Task 3.1). It relates the research on spatial
mapping undertaken in WP3 with the work on spatially situated dialogue
processing in WP6.
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2.2 Multi-modal Place Categorization

One of the core concepts in our spatial model is that of places. The publi-
cations in this section present work on classification of places, incremental
learning of such models and a benchmark for visual place recognition.

2.2.1 Pronobis et al, “A Realistic Benchmark for Visual Indoor
Place Recognition”, (RAS Jan 2010)

Bibliography A. Pronobis, B. Caputo, P. Jensfelt and H. I. Christensen,
“A realistic benchmark for visual indoor place recognition”, Robotics and
Autonomous Systems, Jan 2010, 58:1, pp. 81–96

Abstract An important competence for a mobile robot system is the abil-
ity to localize and perform context interpretation. This is required to per-
form basic navigation and to facilitate local specific services. Recent ad-
vances in vision have made this modality a viable alternative to the tradi-
tional range sensors, and visual place recognition algorithms emerged as a
useful and widely applied tool for obtaining information about robot’s po-
sition. Several place recognition methods have been proposed using vision
alone or combined with sonar and/or laser. This research calls for standard
benchmark datasets for development, evaluation and comparison of solu-
tions. To this end, this paper presents two carefully designed and annotated
image databases augmented with an experimental procedure and extensive
baseline evaluation. The databases were gathered in an uncontrolled in-
door office environment using two mobile robots and a standard camera.
The acquisition spanned across a time range of several months and differ-
ent illumination and weather conditions. Thus, the databases are very well
suited for evaluating the robustness of algorithms with respect to a broad
range of variations, often occurring in real-world settings. We thoroughly
assessed the databases with a purely appearance-based place recognition
method based on support vector machines and two types of rich visual fea-
tures (global and local).

Relation to WP This paper presents two datasets that are extensively
used when implementing and testing the algorithms in the instantiations of
the spatial model (Task 3.1). It is mostly used in the work on the place
layer but the work on the categorical and sensory layer also benefit greatly
from the data.
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2.2.2 Pronobis et al, “Multi-modal Semantic Place Classifica-
tion”, (IJRR Feb 2010)

Bibliography A. Pronobis, O. Martinez Mozos, B. Caputo and P. Jens-
felt, “Multi-modal semantic place classification”, The International Journal
of Robotics Research (IJRR), Feb 2010, 29:2-3, pp. 298–320

Abstract The ability to represent knowledge about space and its position
therein is crucial for a mobile robot. To this end, topological and seman-
tic descriptions are gaining popularity for augmenting purely metric space
representations. In this paper we present a multi-modal place classification
system that allows a mobile robot to identify places and recognize semantic
categories in an indoor environment. The system effectively utilizes infor-
mation from different robotic sensors by fusing multiple visual cues and laser
range data. This is achieved using a high-level cue integration scheme based
on a Support Vector Machine (SVM) that learns how to optimally combine
and weight each cue. Our multi-modal place classification approach can be
used to obtain a real-time semantic space labeling system which integrates
information over time and space. We perform an extensive experimental
evaluation of the method for two different platforms and environments, on
a realistic off-line database and in a live experiment on an autonomous
robot. The results clearly demonstrate the effectiveness of our cue inte-
gration scheme and its value for robust place classification under varying
conditions.

Relation to WP As already described places are a core concept in the
spatial model. This paper presents a method for classifying places based
on multi-modal input (laser and vision). The learning of the models in the
work is supervised by a human. Currently we are extending this work to be
able to do automatic segmentation of space into places as well. This work
is most closely related to Task 3.1.
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2.2.3 Pronobis et al , “The More You Learn, the Less You Store:
Memory-controlled Incremental SVM for Visual Place Recog-
nition”, (IMAVIS Mar 2010)

Bibliography A. Pronobis, J. Luo and B. Caputo, “The More You Learn,
the Less You Store: Memory-controlled Incremental SVM for Visual Place
Recognition”, Image and Vision Computing (IMAVIS), March 2010

Abstract The capability to learn from experience is a key property for au-
tonomous cognitive systems working in realistic settings. To this end, this
paper presents an SVM-based algorithm, capable of learning model repre-
sentations incrementally while keeping under control memory requirements.
We combine an incremental extension of SVMs [43] with a method reducing
the number of support vectors needed to build the decision function without
any loss in performance [15] introducing a parameter which permits a user-
set trade-off between performance and memory. The resulting algorithm
is able to achieve the same recognition results as the original incremen-
tal method while reducing the memory growth. Our method is especially
suited to work for autonomous systems in realistic settings. We present
experiments on two common scenarios in this domain: adaptation in pres-
ence of dynamic changes and transfer of knowledge between two different
autonomous agents, focusing in both cases on the problem of visual place
recognition applied to mobile robot topological localization. Experiments in
both scenarios clearly show the power of our approach.

Relation to WP One of the long term goals of the project, this work-
package and most of robotics in general is life-long learning. This paper
presents work on how the robot can adapt its place models over time as new
data is made available. This could be one of the mechanisms that will be
used in the future system to maintain the place models. This work has close
ties to Task 3.1 but even more so with Task 3.3 in that it describes a way
to deal adapt long-term spatial knowledge.
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2.3 Spatial Relations

This sections represents the published work on spatial relations. We are cur-
rently working on extending it to other topological spatial relations besides
“on”.

2.3.1 Sjöö et al, “Mechanical support as a spatial abstraction for
mobile robots”, (IROS 2010)

Bibliography K. Sjöö and A. Aydemir and P. Jensfelt, “Mechanical sup-
port as a spatial abstraction for mobile robots”, Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’10), Oct
2010

Abstract Motivated by functional interpretations of spatial language terms,
and the need for cognitively plausible and practical abstractions for mobile
service robots, we present a spatial representation based on the physical sup-
port of one object by another inspired by the preposition ”on”. A perceptual
model for evaluating this relation is suggested, and experiments simulated
as well as using a real robot are presented. We indicate how this model
can be used for important tasks such as communication of spatial knowl-
edge, abstract reasoning and learning, exemplifying this in the context of
direct and indirect visual search. We also demonstrate the model exper-
imentally, showing that it produces intuitively feasible results from visual
scene analysis as well as synthetic distributions that can be put to a number
of uses.

Relation to WP A quantitative functional measure of the spatial relation
“on” is introduced in the paper. This work is directly related to Task 3.2
on spatial relations but also to Task 3.3 by treating the issue of abstracting
information for long-term storage.
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2.4 Active Object Search

We belive objects play an important role in spatial cognition. The papers
in this section represents the result of our published work on active object
search.

2.4.1 Aydemir et al, “Simultaneous Object Class and Pose Esti-
mation for Mobile Robot ic Applications with Minimalistic
Recognition”, (ICRA 2010)

Bibliography A. Aydemir, A.N. Bishop and P. Jensfelt, “Simultaneous
Object Class and Pose Estimation for Mobile Robotic Applications with
Minimalistic Recognition”, Proc. of the IEEE International Conference on
Robotics and Automation (ICRA’10), May 2010, Anchorage, Alaska, USA

Abstract In this paper we address the problem of simultaneous object
class and pose estimation using nothing more than object class label mea-
surements from a generic object classifier. We detail a method for designing
a likelihood function over the robot configuration space. This function pro-
vides a likelihood measure of an object being of a certain class given that
the robot (from some position) sees and recognizes an object as being of
some (possibly different) class. Using this likelihood function in a recursive
Bayesian framework allows us to achieve a kind of spatial averaging and
determine the object pose (up to certain ambiguities to be made precise).
We show how inter-class confusion from certain robot viewpoints can ac-
tually increase the ability to determine the object pose. Our approach is
motivated by the idea of minimalistic sensing since we use only class label
measurements albeit we attempt to estimate the object pose in addition to
the class.

Relation to WP We need to find the objects before we can use them
in our spatial model. This paper addresses the problem of finding objects
with the use of a recognition system that only provides yes/no output to the
question “is the object in the image”. The paper is to be considered more
of a theoretical study on what can be achieved with very limited perceptual
information rather than a suggestion for how to actually implement an effi-
cient search system. A real system should in general make use of as much
of the available information as possible and only trade off using information
if it comes at an extra cost. This work is most closely related to Task 3.1.
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2.4.2 Aydemir et al, “Object search on a mobile robot using
relational spatial information”, (IAS 2010)

Bibliography A. Aydemir, K. Sjöö and P. Jensfelt, “Object search on a
mobile robot using relational spatial information”, Proc. of the 11th Int Con-
ference on Intelligent Autonomous Systems (IAS-11), August 2010, Ottawa,
Canada

Abstract We present a method for utilising knowledge of qualitative spa-
tial rela- tions between objects in order to facilitate efficient visual search
for those objects. A computational model for the relation is used to sample
a probability distribution that guides the selection of camera views. Specif-
ically we examine the spatial relation on, in the sense of physical support,
and show its usefulness in search experiments on a real robot. We also ex-
perimentally compare different search strategies and verify the efficiency of
so-called indirect search.

Relation to WP This paper ties together the work on active visual search
from WP2 with the work on spatial relations from Task 3.2 in WP3.
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2.5 Metric Navigation

2.5.1 Bishop & Jensfelt, “Stochastically Convergent Localization
of Objects by Mobile Sensors and Actively Controllable
Relative Sensor-Object Pose”, (ECC 2009)

Bibliography A.N. Bishop and P. Jensfelt, “Stochastically Convergent
Localization of Objects by Mobile Sensors and Actively Controllable Rela-
tive Sensor-Object Pose”, Proc. of European Control Conference (ECC’09),
2009, Budapest, Hungary

Abstract The problem of object (network) localization using a mobile sen-
sor is examined in this paper. Specifically, we consider a set of stationary
objects located in the plane and a single mobile nonholonomic sensor tasked
at estimating their relative position from range and bearing measurements.
We derive a coordinate transform and a relative sensor-object motion model
that leads to a novel problem formulation where the measurements are lin-
ear in the object positions. We then apply an extended Kalman filter-like
algorithm to the estimation problem. Using stochastic calculus we provide
an analysis of the convergence properties of the filter. We then illustrate
that it is possible to steer the mobile sensor to achieve a relative sensorob-
ject pose using a continuous control law. This last fact is significant since we
circumvent Brockett’s theorem and control the relative sensor-source pose
using a simple controller.

Relation to WP In the sensory layer one of the main activities is to esti-
mate the poses of objects in the robot’s surroundings. This paper presents
a theoretical study into the problem of how to move the sensor to achieve a
certain sensor-object pose. The work is associated with Task 3.1.
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2.5.2 Bishop & Jensfelt, “A Stochastically Stable Solution to the
Problem of Robocentric Mapping”, (ICRA 2010)

Bibliography A.N. Bishop and P. Jensfelt, “A Stochastically Stable So-
lution to the Problem of Robocentric Mapping”, Proc. of the Interntional
Conference on Robotics and Automation (ICRA’09), 2009, Kobe, Japan

Abstract This paper provides a novel solution for robocentric mapping
using an autonomous mobile robot. The robot dynamic model is the stan-
dard unicycle model and the robot is assumed to measure both the range
and relative bearing to the landmarks. The algorithm introduced in this pa-
per relies on a coordinate transformation and an extended Kalman filter like
algorithm. The coordinate transformation considered in this paper has not
been previously considered for robocentric mapping applications. Moreover,
we provide a rigorous stochastic stability analysis of the filter employed and
we examine the conditions under which the mean-square estimation error
converges to a steady-state value.

Relation to WP One of the central ideas in the sensory layer of the spa-
tial model is that the detailed metric information should be maintained in a
robocentric representation. This paper presents the theoretical justification
for this in terms of convergence and stability of the solution and is part of
the work in Task 3.1.
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2.5.3 Boberg et al, “Robocentric Mapping and Localization in
Modified Spherical Coordinates with Bearing Measurements”,
(ISSNIP 2009)

Bibliography A. Boberg and A.N. Bishop and P. Jensfelt, “Robocentric
Mapping and Localization in Modified Spherical Coordinates with Bearing
Measurements”, Proc. of the Fifth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP 2009), De-
cemeber 2009, Melbourne, Australia

Abstract In this paper, a new approach to robotic mapping is presented
that uses modified spherical coordinates in a robotcentered reference frame
and a bearing-only measurement model. The algorithm provided in this pa-
per permits robust delayfree state initialization and is computationally more
efficient than the current standard in bearing-only (delay-free initialized) si-
multaneous localization and mapping (SLAM). Importantly, we provide a
detailed nonlinear observability analysis which shows the system is gener-
ally observable. We also analyze the error convergence of the filter using
stochastic stability analysis. We provide an explicit bound on the asymp-
totic mean state estimation error. A comparison of the performance of this
filter is also made against a standard world-centric SLAM algorithm in a
simulated environment.

Relation to WP This paper presents one example instantiation of a robo-
centric mapping system using vision-only information. The paper provides
further theoretical justifications to the idea of using a robocentric represen-
tation (Task 3.1).
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2.5.4 Bishop & Jensfelt, “Global robot localization with random
finite set statistics”, (FUSION 2010)

Bibliography A.N. Bishop and P. Jensfelt, “Global robot localization
with random finite set statistics”, Proc. of 13th International Conference
on Information Fusion (FUSION), July 2010, Edinburgh, UK

Abstract We re-examine the problem of global localization of a robot
using a rigorous Bayesian framework based on the idea of random finite
sets. Random sets allow us to naturally develop a complete model of the
underlying problem accounting for the statistics of missed detections and of
spurious/erroneously detected (potentially unmodeled) features along with
the statistical models of robot hypothesis disappearance and appearance.
In addition, no explicit data association is required which alleviates one of
the more difficult sub-problems. Following the derivation of the Bayesian
solution, we outline its first-order statistical moment approximation, the
so called probability hypothesis density filter.n c We present a statistical
estimation algorithm for the number of potential robot hypotheses consistent
with the accumulated evidence and we show how such an estimate can be
used to aid in re-localization of kidnapped robots. We discuss the advantages
of the random set approach and examine a number of illustrative simulations.

Relation to WP This paper presents work on localization which is one
of the fundamental competencies in a robotics system. What makes the
work interesting for CogX is that it provides a framework for incorporating
linguistic information into the localization system in a principled way. This
means, for example, that the robot could make use of statements such as
“Your are in front of the door” and thus connect nicely with the work in,
for example, WP6. The work is part of Task 3.1.
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2.5.5 Basiri et al, “Distributed Control of Triangular Formations
with Angle-Only Constraints”, (Systems & Control Letters
2010)

Bibliography M. Basiri, A.N. Bishop and P. Jensfelt, “Distributed Con-
trol of Triangular Formations with Angle-Only Constraints”, Systems &
Control Letters, Feb 2010, issue 2, pp.147–154

This article was listed at 4th place on a list with the Top 25 Hottest
Articles1 in the Systems & Control Journal.

Abstract This paper considers the coupled formation control of three mo-
bile agents moving in the plane. Each agent has only local inter-agent bear-
ing knowledge and is required to maintain a specified angular separation
relative to both neighbor agents. Assuming the desired angular separation
of each agent relative to the group is feasible, then a triangle is generated.
The control law is distributed and accordingly each agent can determine
their own control law using only the locally measured bearings. A conver-
gence result is established in this paper which guarantees global asymptotic
convergence of the formation to the desired formation shape.

Relation to WP This paper dicusses the problem of formation control of
robots when they only have access to local bearing information. It provides
an important theoretical result that could be of use when a system wants
to make use of mobile sensors in the sensory layer. This work is associated
with Task 3.1.

1http://top25.sciencedirect.com/subject/engineering/12/journal/systems-control-
letters/01676911/archive/26/
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and Patric Jensfelt. Representing spatial knowledge in mobile cognitive
systems. In 11th International Conference on Intelligent Autonomous
Systems (IAS-11), Ottawa, Canada, August 2010.

[44] Andrzej Pronobis, Kristoffer Sjöö, Alper Aydemir, Adrian N. Bishop,
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Vrečko, Hendrik Zender, and Michael Zillich. Self-understanding &
self-extension: A systems and representational approach. IEEE Trans-
actions on autonomous mental development, 2010. Accepted for publi-
cation.

EU FP7 CogX 29



DR 3.1: Object based representations of space Jensfelt et al

[56] Hendrik Zender. Multi-layered conceptual spatial mapping. Technical
report, DFKI GmbH, 2010.

[57] Hendrik Zender, Christopher Koppermann, Fai Greeve, and Geert-
Jan M. Kruijff. Anchor-progression in spatially situated discourse: a
production experiment. In Proceedings of the Sixth International Nat-
ural Language Generation Conference (INLG 2010), pages 209–213,
Trim, Co. Meath, Ireland, July 2010. Association for Computational
Linguistics.

[58] Hendrik Zender, Geert-Jan M. Kruijff, and Ivana Kruijff-Korbayová.
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Abstract. A cornerstone for cognitive mobile agents is to represent the

vast body of knowledge about space in which they operate. In order to

be robust and efficient, such representation must address requirements
imposed on the integrated system as a whole, but also resulting from

properties of its components. In this paper, we carefully analyze the
problem and design a structure of a spatial knowledge representation for

a cognitive mobile system. Our representation is layered and represents

knowledge at different levels of abstraction. It deals with complex, cross-
modal, spatial knowledge that is inherently uncertain and dynamic. Fur-

thermore, it incorporates discrete symbols that facilitate communica-

tion with the user and components of a cognitive system. We present
the structure of the representation and propose concrete instantiations.

1. Introduction

Many recent advances in the fields of robotics and artificial intelligence have been
driven by the ultimate goal of creating artificial cognitive systems able to perform
human-like tasks. Several attempts have been made to create integrated cogni-
tive architectures and implement them on mobile robots [2,3,13,1,4]. There is an
increasing interest in, and demand for, robots that are capable of dealing with
complex and dynamic environments outside the traditional industrial workplaces.
These next generation robots will not only have to track their position and nav-
igate between points in space, but reason about space and their own knowledge,
plan tasks and knowledge acquisition and interact with people in a natural way.

Spatial knowledge constitutes a fundamental component of the knowledge
base of a cognitive agent providing a basis for navigation, reasoning, planning and
episodic memories. Moreover, it is a common ground for communication between
a robot and a human. In order for the process of acquisition, interpreting, storing
and recalling of the spatial knowledge to be robust and efficient under limited
resources and in realistic settings, the knowledge must be properly structured and
represented. Such knowledge representation must address requirements imposed
on the integrated system as a whole, but also resulting from properties of its com-
ponents. Due to this central role, the design of a spatial knowledge representation
should be one of the first steps in building a cognitive system.

In this work, we develop a structure of a spatial knowledge representation for
a cognitive mobile system that we call COARSE (Cognitive lAyered Representa-
tion of Spatial knowledgE). We carefully analyze the role of a spatial represen-



tation and formulate design assumptions and requirements imposed by the func-
tionality and components of an integrated system. Our representation is layered
and represents knowledge at different levels of abstraction, from low-level sensory
input to high level conceptual symbols. It is designed for representing complex,
cross-modal, spatial knowledge that is inherently uncertain and dynamic and in-
cludes discrete symbols that facilitate communication with the user and compo-
nents of the system. Moreover, we propose models and algorithms that could be
used as instantiations of each layer of the representation.

This paper is motivated by the desire to create a framework that is power-
ful, robust and efficient, but most importantly suited for mobile agents perform-
ing typical human-like tasks. The literature contains many algorithms for spatial
mapping and instantiations of mobile robotic systems. However, the existing rep-
resentations are either designed for a very specific domain [7,12], they concentrate
on a fraction of the spatial knowledge [20,23] or are designed to solve a single al-
gorithmic task very efficiently rather than for use within a larger system [8,10,18].
The idea of this paper, is to take a step back, focus on structuring the whole body
of spatial knowledge and see how an analysis of requirements can lead the way
towards a powerful spatial representation for a cognitive mobile robot.

2. Related Work

There exists a broad literature on mobile robot localization, navigation and map-
ping and many algorithms relying on spatial knowledge have been proposed. These
include solutions to such problems as Simultaneous Localization and Mapping
(SLAM) [8,15,10,18] or place classification [16,20]. Every such algorithm main-
tains a representation of spatial knowledge. However, this representation is usu-
ally specific to the particular problem and designed to be efficient within the
single mapping system detached from any other interacting components. Other,
more general concepts, such as the Spatial Semantic Hierarchy [14] concentrate
on lower levels of spatial knowledge abstraction and do not support higher-level
conceptualization or representation of categorical information.

At the same time, we witness a growing interest in building artificial mobile
cognitive systems [2,3,1,4]. These are complex, usually modular, systems that
require a unified and integrated approach to spatial knowledge representation. The
central role of spatial knowledge in those systems has been recognized and several
authors proposed subsystems processing spatial knowledge integrated with other
components such as dialogue systems [25,22]. However, neither of those provides
a clear structure of the represented knowledge, perform a thorough analysis of
the needs of different components of a mobile cognitive system or encapsulates
all major aspects of spatial knowledge.

The most comprehensive relevant representation has been proposed in [25].
However, it has several major drawbacks that makes it unsuitable for systems that
deal with dynamic and uncertain knowledge within large-scale, complex environ-
ments. First of all, the knowledge is never fully abstracted and is always grounded
in an accurate global metric map. This makes the system less robust and scalable.
Moreover, the categorical knowledge is not explicitly represented. The high-level
conceptualization relies on rigid ontologies and ignores uncertainties associated



with represented symbols. Finally, it is modality-specific and does not allow for
knowledge fusion from multiple sources. In the rest of the paper, we propose an
approach to spatial knowledge representation that addresses those problems.

3. Analysis of the Problem

Before designing a representation of spatial knowledge, it is important to review
the aspects a representation should focus on. In this section, we analyze those
aspects and propose our definition of a generic spatial knowledge representation.
Then, we formulate the problem within the context of cognitive systems.

3.1. What is a Spatial Knowledge Representation?

Following the analysis by Davis [9], we formulate several points that characterize
a general representation of spatial knowledge. A spatial representation can be
seen as:

a) A substitution (surrogate) for the world that allows the agent to perform
reasoning about the parts of the environment which are beyond its sensory hori-
zon. Such a surrogate is naturally imperfect, and is incomplete (some aspects are
not represented), inaccurate (captured with uncertainty), and will become invalid
(e.g. due to dynamics of the world that cannot be observed and is too complex
to be captured by the representation). Moreover, since the representation cannot
be perfect, all the inferences based on that representation, such as the outcomes
of the localization process, are uncertain. The only perfect representation of the
world or the environment in which the agent operates is the environment itself.

b) A set of ontological commitments that determine the terms in which the
agent thinks about space. The representation defines the aspects of the world that
should be represented. Moreover, it defines the level of detail at which they should
be represented as well as their persistence. The ontology should be understood
in more general terms, from spatial concepts and their relations to categorical
models or types of features extracted from the sensory input.

c) A set of definitions that determine the reasoning that can be (and that
should be) performed within the framework and the possible inferences and their
outcomes. The reasoning will typically correspond to determining the current lo-
cation with respect to the internal map (topologically, semantically etc.), provid-
ing necessary knowledge for the navigation process, determining the properties
of a location in space etc. Moreover, the representation defines how the location
of the agent is represented and in what terms it is possible to refer to points in
space (e.g. in terms of metric coordinates, semantic category of a place etc.).

d) A way of structuring the spatial information so that it is computationally
feasible to perform all the necessary processing and inferences in a specified time
(e.g. in real time) despite limited resources.

e) A medium of communication between the agent and human. If the agent is
supposed to exchange information with humans, the representation must be de-
signed in a way that allows the agent to interpret human expressions and generate
expressions that are comprehensible to humans.

f) Similarly, a medium of communication between components of an inte-
grated system.



3.2. Spatial Representation for Mobile Cognitive Systems

In this work, we narrow the focus to mobile cognitive systems. Based on the
analysis of existing approaches [3,1,23] as well as ongoing research on artificial
cognitive systems [2], we have identified several areas of functionality, usually
realized through separate subsystems, that must be supported by the represen-
tation. These include localization, navigation, and autonomous exploration, but
also understanding and exploiting semantics associated with space, human-like
conceptualization and categorization of space, reasoning about spatial units and
their relations, human-robot communication, action planning, object finding and
visual servoing, and finally recording and recalling episodic memories.

Having in mind the aforementioned functionalities, aspects covered by a rep-
resentation of spatial knowledge as well as limitations resulting from practical
implementations, we have identified several desired properties and designed a
representation reflecting those properties.

Complex, cross-modal, spatial knowledge in realistic environments is inher-
ently uncertain and dynamic. Therefore, it is futile to represent the environment
as accurately as possible. A very accurate representation must be complex, re-
quire a substantial effort to synchronize with the world and still cannot guarantee
that sound inferences will lead to correct conclusions [9]. Our primary assumption
is that the representation should instead be minimal and inherently coarse and
the spatial knowledge should be represented only as accurately as it is required
to support the functionality of the system. Furthermore, redundancy should be
avoided and whenever possible and affordable, new knowledge should should be
inferred from the existing information. It is important to note that uncertainties
associated with represented symbols should be explicitly modeled.

Information should be abstracted as much as possible to make it robust to
dynamic changes. Moreover, representations that are more abstract should be
used for longer-term storage. At the same time, knowledge extracted from im-
mediate observations can be much more accurate (e.g. for the purpose of visual
servoing). In other words, the agent should use the world as an accurate repre-
sentation whenever possible. It is important to mention that rich and detailed
representations should not constitute a permanent base for more abstract ones
(as is the case in [25]). Similarly, space should be represented on different spatial
scales from single scenes to whole environments.

Space should be discretized into a finite number of spatial units. Discretization
of continuous space is one of the most important abstracting steps as it allows to
make the representation robust, compact and tractable. Discretization drastically
reduces the number of states that have to be considered e.g. during the planning
process [11] and serves as a basis for higher level conceptualization [25].

A representation should allow not only for representing instantiations of spa-
tial segments visited by the robot. It is equally important to provide means for
representing unexplored space. Furthermore, categorical knowledge should be rep-
resented that is not specific to any particular location and instead corresponds
to general knowledge about the world. Typical examples would be categorical
models of appearance of places [20] or objects [19].

Finally, we focus on the fundamental role of the representation in human-
robot interaction. Spatial knowledge representation should model correspondence



between the represented symbols and human concepts of space. Spatial properties
(e.g. shape, size), semantic categories of rooms (e.g. kitchen, office) or spatial
segments (e.g. rooms, floors, buildings) recognized by humans are examples of
such concepts. This correspondence could be used to generate and resolve spatial
referring expressions [24] or path descriptions.

4. Structure of the Representation

In this section, we propose a representation of spatial knowledge that adheres
to the desired properties formulated above. Figure 1 gives a general overview of
the structure of the representation. It is sub-divided into four layers which can
be regarded as sub-representations focusing on different aspects of the world,
abstraction levels of the spatial knowledge and different spatial scales. Moreover,
each layer defines its own spatial entities and the way the agent’s position in the
world is represented. The properties of each layer are summarized in Table 1.

At the lowest abstraction level, we have the sensory layer which maintains an
accurate representation of the robot’s immediate environment extracted directly
from the robot’s sensory input. Higher, we have the place and categorical layers.
The place layer provides fundamental discretisation of the continuous space into
a set of distinct places. The categorical layer focuses on low-level, long-term cate-
gorical models of the robot’s sensory information. Finally, at the top, we have the
conceptual layer, which associates human concepts with the categorical models in
the categorical layer and groups places into human-compatible spatial segments
such as rooms. The following sections provide details about each of the layers.

4.1. Sensory Layer

In the sensory layer, a detailed robocentric model of the robot’s immediate en-
vironment is represented based on direct sensory input as well as data fusion
over space around the robot and short time intervals. The sensory layer stores
low-level features and landmarks extracted from the sensory input together with
their exact position with respect to the robot. Measures of uncertainty are also
included in this representation. Landmarks that move beyond a certain distance
are forgotten and replaced by new information. Thus, this representation is akin
to a sliding window, with robocentric and up-to-date direct perceptual informa-
tion. It is also essentially bottom-up only, though directives and criteria, such as
guiding the attentional process, may be imposed from upper layers.

The representation in the sensory layer helps to maintain stable and accurate
information about the relative movements of the robot. Moreover, it allows for
maintaining and tracking the position of various features while they are nearby.
This can be useful for providing ”virtual sensing” such as 360◦ laser scans based
on short-term temporal sensory integration as well as generation of features based
on spatial constellations of landmarks located outside the field of view of the
sensor. Additionally, it could be used for temporal filtering of sensory input or
providing robustness to occlusions. Finally, the sensory layer can provide the low
level robotic movement systems with data for deriving basic control laws such as
for obstacle avoidance or visual servoing.



Figure 1. The layered structure of the spatial representation. The position of each layer within

the representation corresponds to the level of abstraction of the spatial knowledge.

Property Sensory Layer Place Layer Categorical
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Table 1. Comparison of properties of the four layers of the spatial representation.



4.2. Place Layer

The place layer is responsible for the fundamental, bottom-up discretization of
continuous space. In the place layer, the world is represented as a collection of
basic spatial entities called places as well as their spatial relations. Each place
is defined in terms of features that are represented in the sensory layer, but
also spatial relations to other places. The aim of this representation is not to
represent the world as accurately as possible, but at the level of accuracy sufficient
for performing required actions and robust localization despite uncertainty and
dynamic variations. Similarly, the relations do not have to be globally consistent
as long as they are preserved locally with sufficient accuracy. The representation
of places in the place layer persists over long term.

Besides places, the place layer also defines paths between them. The semantic
significance of a path between two places is the possibility of moving directly
between one and the other. This does not necessarily imply that the robot has
traveled this path previously. A link might be created for unexplored place e.g.
based on top-down cues resulting from the dialogue with the user (e.g. when the
user indicates part of the environment that should be of interest to the robot, but
not immediately). In addition, the place layer explicitly represents unexplored
space. Tentative places are represented which the robot would probably uncover
if it moved in a certain direction.

The place layer operates on distinct places as well as their connectivity and
spatial relations to neighboring places. No global representation of the whole en-
vironment is maintained. Still, since the local connectivity is available, global rep-
resentation (e.g. a global metric map) can be derived when needed. This represen-
tation will not be accurate, but will preserve the connectivity and relaxed spatial
relations between all the places.

4.3. Categorical Layer

The categorical layer contains long-term, low-level representations of categorical
models of the robot’s sensory information. The knowledge represented in this layer
is not specific to any particular location in the environment. Instead, it represents
a general long-term knowledge about the world at the sensory level. In this layer
models of landmarks, objects or appearance-based room category or other prop-
erties of spatial segments such as shape, size or color are defined in terms of low-
level features. The position of this layer in the spatial representation reflects the
assumption that the ability to categorize and group sensory observations is the
most fundamental one and can be performed in a feed-forward manner without
any need for higher-level feedback from cognitive processes.

The categorical models stored in this layer give rise to properties that are
utilized by conceptual layer. In many cases, the values of those properties will
correspond to human spatial concepts, not to internal concepts of the robot (e.g.
office-like appearance or elongated shape). The properties might require compli-
cated models that can only be inferred from training data samples. In case of
models that correspond to human concepts, they can be learned in a supervised
fashion, using a top-down supervision signal.



4.4. Conceptual Layer

The conceptual layer provides an ontology that represents taxonomy of the spa-
tial concepts and properties of spatial entities that are linked to the low-level
categorical models stored in the categorical layer. This associates semantic inter-
pretations with the low-level models and can be used to specify which properties
are meaningful e.g. from the point of view of human-robot interaction. Moreover,
the conceptual layer represents relations between the concepts and instances of
those concepts linked to the spatial entities represented in the place layer. This
makes the layer central for verbalization of spatial knowledge and interpreting
and disambiguating verbal expressions referring to spatial entities.

The second important role of the conceptual layer is to provide definitions of
the spatial concepts related to the semantic segmentation of space based on the
properties of segments observed in the environment. A building, floor, room or
area are examples of such concepts. The conceptual layer contains information
that floors are usually separated by staircases or elevators and that rooms usu-
ally share the same general appearance and are separated by doorways. Those
definitions can be either given or learned based on asserted knowledge about the
structure of a training environment introduced to the system.

Finally, the conceptual layer provides definitions of semantic categories of
segments of space (e.g. rooms) in terms of values of properties of those segments.
The properties can reflect the general appearance of a segment as observed from a
place, its geometrical features or objects that are likely to be found in that place.

5. Instantiations

This section indicates specific models and algorithms maintaining those models
that we propose to use for representing knowledge stored in each layer.

We propose to realize the sensory layer using a robocentric, metric SLAM [6,
5]. Robocentric mapping reflects the properties of the sensory layer and allows for
a straightforward treatment of forgetting knowledge that falls outside a certain
horizon around the robot. The robocentric map can be seen as a sliding window
centered on the robot and containing a detailed view of the world, which allows
the robot to maintain a drift free estimate of the pose as long as it stays in a
local region of space. The SLAM algorithm explicitly represents the uncertainty
associated with the pose of the robot and the location of all landmarks in the
local surrounding using a multivariate Gaussian distribution [6,5].

We propose to instantiate the place layer based on the mapping framework
proposed in [21]. Central to the approach is the place map represented as a col-
lection of places. A place is defined by a subset of values of arbitrary, possibly
complex, distinctive features and spatial relations reflecting the structure of the
environment. The features provide information about the world and can be per-
ceived by an agent when at that place. In this sense, the places build on the
perception of the agent and are based on its perceptual capabilities.

The categorical layer can be seen as an ensemble of categorical models of the
robot’s sensory information. The literature provides a broad range of models that
could be used for this purpose. First, in order to represent visual and geometrical
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properties of areas in the environment, we suggest to use the multi-modal place
classification algorithm presented in [20]. Other methods can be employed for
representing landmarks (e.g. doors [17]) and object categories [19].

For the conceptual layer, we propose a possible instantiation presented in Fig-
ure 2. The conceptual layer provides an ontology that represents the taxonomy of
the spatial concepts and properties as well as dependencies between the concepts,
properties and instances of spatial entities. We use a fixed, handcrafted ontology
for representing the taxonomy and a probabilistic model for representing the de-
pendencies. In such an approach, the ontology is largely encoded in the structure
of the probabilistic model. We represent the location of the robot within segments
of space (e.g. a room or an area such as a dining area), the observed properties
of areas and rooms as well as semantic categories of areas and rooms in terms of
random variables. In the illustration in Figure 2, we can consider the circles as
random variables and the solid arrows as dependencies within a graphical model.
At the same time, the is-a relations link the random variables with their values.
Further, the model represents the spatial hierarchy of segments of space. There
is a dependency between the location of the robot at different levels of this hi-
erarchy (e.g. a room and an area within the room). Moreover, the dependency
between the instance of a place and the properties of areas and rooms observed
from this place is represented. Those properties in turn influence the semantic
categories of areas or rooms to which the place belongs. Finally, the proposed
model represents the dependency between the area and room properties observed
as the robot explores the environment and the probability that the robot crossed
a boundary of a spatial segment. This link effectively defines the concepts of a
room and an area and can be used to provide semantic segmentation of space.

6. Conclusions and Future Works

In this paper, we presented an analysis of the requirements for a spatial knowl-
edge representation for cognitive systems and proposed a layered representation
that conforms to those requirements. The representation provides a unified and
coherent view on the structure of spatial knowledge and a basis for designing



artificial cognitive systems. We further proposed specific models and algorithms
as possible instantiations. Future work will focus on integrating those algorithms,
which so far were only evaluated in separation, into a complete spatial subsystem
providing spatial understanding capabilities for a mobile robot.
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A Framework for Robust Cognitive Spatial Mapping

Andrzej Pronobis, Kristoffer Sjöö, Alper Aydemir, Adrian N. Bishop and Patric Jensfelt

Abstract— Spatial knowledge constitutes a fundamental com-
ponent of the knowledge base of a cognitive, mobile agent. This
paper introduces a rigorously defined framework for building
a cognitive spatial map that permits high level reasoning
about space along with robust navigation and localization. Our
framework builds on the concepts ofplaces and scenes expressed
in terms of arbitrary, possibly complex features as well as
local spatial relations. The resulting map is topological and
discrete, robocentric and specific to the agent’s perception. We
analyze spatial mapping design mechanics in order to obtain
rules for how to define the map components and attempt to
prove that if certain design rules are obeyed then certain map
properties are guaranteed to be realized. The idea of this paper
is to take a step back from existing algorithms and literature
and see how a rigorous formal treatment can lead the way
towards a powerful spatial representation for localization and
navigation. We illustrate the power of our analysis and motivate
our cognitive mapping characteristics with some illustrative
examples.

I. I NTRODUCTION

An autonomous mobile agent needs to represent its sur-
roundings in order to reason an plan actions within it. The
typical spatial knowledge representations used in mobile
robotics are purely metrical and rely on information extracted
from simple, but accurate metric sensors. However, as the
robots are designed to perform human-like tasks in more
and more complex and dynamic environments [3], [8], [14],
metrical global maps become harder to control and observe
[5]. Moreover, it is not clear that the level of detail offered
by such maps is necessary, or even desirable, when the agent
is a cognitive system intended to interact with the world in
a human-like way [5], [14]. It is commonly accepted [5],
[8], [9], [14], that the spatial knowledge of a cognitive agent
should be abstracted in order to make it robust to dynamic
variations, easier to maintain and useful for spatial reasoning.
At the same time, the agent should be able to exploit sensory
information that might be complex and non-metric [3], [8],
[9], yet reflects crucial aspects of the environment.

This paper is motivated by desire to create a powerful
cognitive mapping framework, which is suitable for cognitive
conceptualization, encompasses complex spatial information,
and provides robustness against natural changes in the en-
vironment, while maintaining a description that permits for-
mal proofs and derivations. Although the literature contains
many algorithms for spatial mapping, there is little work on
the formal analysis of their fundamental requirements and
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properties. The idea of this paper, is to take a step back
and see how a rigorous formal treatment can lead the way
towards a powerful spatial representation for localization and
navigation.

The contribution of the work presented here is a cognitive
mapping framework that builds on the concepts ofplaces
andscenesexpressed in terms of arbitrary, possibly complex
features as well as local spatial relations. The resulting
map is topological and discrete, robocentric and specific to
the agent’s perception. We analyze spatial mapping design
mechanics in order to obtain rules for how to define the map
components and attempt to prove that if certain design rules
are obeyed then certain map properties are guaranteed to be
realized. Moreover, we suggest localization and navigation
strategies that can be applied in this framework. Finally, we
illustrate the power of our analysis and motivate our cognitive
mapping characteristics with illustrative examples.

The paper is organized as follows: after a general overview
of the framework, Section III presents the formal definition
of the map and its components. Then, Section IV gives a
method for expressing the map through a set of functions
and provides rules that must be obeyed in order for the
map to be valid. Sections V and VI propose methods for
performing navigation as well as probabilistic localization
within the framework. The paper concludes with a summary
and a brief discussion.

II. A N OVERVIEW OF THE FRAMEWORK

The role of a cognitive map is not to represent the world
as accurately as possible, but rather to allow the agent
to act in an environment despite uncertainty and dynamic
variations. Such a map does not need to provide perfect
global consistency as long as the local spatial relations are
preserved with sufficient accuracy. In our framework, the
map is represented as a collection of basic spatial entities
calledplaces.

A place is defined by a subset of values of arbitrary,
possibly complex, distinctive features and spatial relations
reflecting the structure of the environment. The features
provide information about the world and can be perceived by
an agent when at that place. In this sense, the places build on
the perception of the agent and are based on its perceptual
capabilities. Additionally, we introduce the concept of a
scenewhich facilitates the generation of places by providing
groupings of similar feature values. In addition to this, a
scene provides a segmentation of space that serves as a basis
for defining spatial relations.

The structure of the framework and its formalization
described in the next section represent a certain view on



a cognitive map. First, the map is defined in terms of the
agent’s perception of space and adapts to its perceptual
capabilities. Second, the perceived features can be abstract
and non-metric and describe for instance visual propertiesof
the world. In this sense, the map is subjective and robocentric
as the robot’s observations do not have to be expressed in
terms of any objectively defined quantities or any global
coordinate system. The map is fragmented (consists of a
set of independent places), topological and does not require
maintaining global spatial consistency.

This framework is designed so that a robot can build
from the bottom-up a cognitive map of the environment
which follows certain cognitive principles. The idea is that
such principles can actually lead to better performance in
localization, navigation and loop-closing for robots moving
in large-scale environments; e.g. see the practical demonstra-
tions in [5], [8]. The work of [5] involves a similarly designed
mapping framework to the one analyzed in this paper and
motivates the need to take a step back and analyze what
desirable properties of the cognitive map can be provably
obtained. The next section provides a formal definition of
the place map and each of its components.

III. D EFINITION OF THE PLACE MAP

Consider a set{fi}nf

i=1 of featuresfi defined as

fi (x, t) : C × R → Fi ∈ Rn (1)

whereC represents theconfiguration spaceof the agent (e.g.
C = R2 if only position in a 2D metric space is considered
andC = R2×SO(1) if the value of features can depend on
both position and heading),t ∈ R represents time, andFi is
the range of values of the featurefi. Features thus provide
information about the world as it would be perceived by an
agent located at the configurationx ∈ C. Each feature can
be time-varying.

An example feature-type is Euclidean distance,fi(x, t) =
‖x−y‖2, with Fi = [0,∞), which maps every point inC to
a value dependent on how farx ∈ C is to a specific landmark
located aty ∈ C. Features do not necessarily have to describe
metric properties of the world (such as distance or size).
Consider for instance a visibility-type feature for whichFi =
{0, 1}, which relates every posex ∈ C to a binary output
depending on whether or not a specific landmark is visible in
that pose. Another example would be a featurefi(x, t) with
Fi = [0, 1], which represents the average hue perceived by
the robot’s visual sensor, or even the full HSV color space,
in which caseFi = [0, 1]× [0, 1]× [0, 1]. Such features may
be time-varying e.g. due to changes in illumination.

Other, more abstract, feature types are possible in this
framework. An example could be features typically em-
ployed in visual topological localization [3], [5], [9] such
as clouds of image keypoints characterized by the local
SIFT [7] or SURF [2] descriptors. Features such as the “gist”
of a scene [13] (principal components of outputs of spatially
oriented image filters) or other global image features applied
for visual place classification [9] could also be used in this
framework in a straightforward manner. In such case,fi(x, t)

is a vector representing local descriptors for theN strongest
keypoints or the global descriptor.

Given the definition of features, we can now introduce the
feature space

F = F1 ×F2 × . . .×Fnf
, (2)

in which each tuple(ζ1, . . . , ζnf
) of the feature valuesζi =

fi(x, t) corresponds to a single point. We are now ready to
define the concept of ascene.

Definition 1: We introduce a set{Si}ns
i=1 of scenesSi

defined as
Si =

{
(ζ1, . . . , ζnf

)
} ⊆ F (3)

such that∀iSi 6= ∅ and ∀i6=jSi ∩ Sj = ∅. In other words,
scenes are (non-overlapping) collections of tuples of features
that could be perceived by the robot. Then, it is possible to
specify the extent of a scene in the configuration space at
time t:

CSi
(t) =

{
x ∈ C :

(
f1(x, t), . . . , fnf

(x, t)
) ∈ Si

}
(4)

It is important to note that no assumptions need to be made
about the properties or structure of the feature functions in
order to determine if a pointx ∈ C is within the spatial
extent of a sceneSi at time t. In particular, a closed-form
expression is not required as long as the feature values can
be obtained. This has important practical implications as it
permits the use of more complex features.

The definition of scenes gives raise to a segmentation of
the configuration space. Depending on the features, however,
this segmentation may not reflect the spatial relationshipsin
the world that constitute a large portion of the spatial knowl-
edge. Intuitively, the definition of scenes leads to a division
of metric space into regions based on properties such as
appearance. As such, two distant disconnected regions could
share similar properties (see e.g. Figure 1(a)). Additional
power to distinguish between such regions can be attained
using knowledge about spatially neighboring regions.

Consider a set{ri}nr
i=1 of spatial relationsri defined as

ri (x, t) : C × R → Ri ∈ Rm, (5)

whereRi is the range of values of the relationri. Each
spatial relationri is defined with respect to the set of scenes
{Si}i and describes the spatial relation of the pointx in
the configuration spaceC at time t to some or all of those
scenes. Relations permit discriminating between points using
region-based concepts such as the region connection calcu-
lus, RCC [10], often applied in qualitative spatial reasoning.
Moreover, in many cases, the values of relations can be
estimated in practice by performing a dynamic action in
the environment (e.g. the agent moving between points in
configuration space that correspond to different scenes).

Consider, for instance, the adjacency relation for which
Ri = {1, 0}. The adjacency relationrSi

(x, t) of a point
x ∈ C to the regionCSi

can be expressed in terms of the
RCC-8 [10] predicateEC (externally connected) as

rSi
(x, t) =

∨
Sj

x ∈ CSj
∧ EC(CSi

, CSj
). (6)



Alternatively, a relation could be defined based on the
minimum distance between a regionCSi

and a pointx in
the configuration space as follows

rSi
(x, t) = min

y∈CSi

‖x− y‖. (7)

We have now defined scenes and spatial relations, the main
building blocks of the spatial entities constituting our map.
Analogously to the feature space, we can introduce theplace
descriptor space

D = F ×R1 ×R2 × . . .×Rnr
, (8)

in which each tupleD = (ζ1, . . . , ζnf
, ρ1, . . . , ρnr

) of the
feature values and relation valuesρi = ri(x, t) corresponds
to a single point.

Definition 2: Let us define theplace mapas a set

M =
{P1,P2, . . . ,Pnp

}
(9)

of placesPi defined as

Pi = {D} ⊆ D (10)

such that∀iPi 6= ∅ and∀i6=jPi ∩ Pj = ∅.
In other words, similarly to scenes, places are groups
of values of features; however, they encompass additional
knowledge about the structure of the world encoded in the
values of relations.

As a result, it is possible to specify the extent of a place
in the configuration space at timet, as follows

CPi
(t) = {x ∈ C : (f1(x, t), . . . , fnf

(x, t),
r1(x, t), . . . , rnf

(x, t)) ∈ Pi} (11)

Note that not every pointx ∈ C is necessarily assigned to
a placePi. The set of pointsQ(t) = C /

⋃{CPi
(t)}np

i=1 is
denotedunassigned spaceat time t. Again, no assumptions
have to be made about the structure of the functions used
to obtain the values of features and relations in order to
determine if a pointx ∈ C is within the spatial extent of a
place at timet.

Let us discuss the properties of places in the configuration
space. Places are defined exclusively in terms of the values
of features and spatial relations that are in functional relation
to (x ∈ C, t ∈ R). Moreover, places do not overlap in the
descriptor space. As a consequence, places do not overlap in
configuration space:∀i6=j,t∈R CPi

(t) ∩ CPj
(t) = ∅.

Also, if features and relations are time-invariant, the
extents of places will be time-invariant as well. Typically, the
nature of relations will mean that they are time-invariant as
long as the features are. Note that if the configuration space
reflects both position and heading, the places might spread
across several positions and only a subset of headings.

A. Example 1 - Abstract Features and Relations

Consider a simple example of a small environment pre-
sented in Figure 1(a) consisting of 4 rooms characterized by
the color of the floor. We define a single featuref1(x, t) :
C×R → F1 that corresponds to the hue of the floor color at
the locationx ∈ C = R2. Then, the feature space is simply

(a) Map of the environment and metric extents of places.

(b) Scenes defined in the feature space.

(c) Places defined in the descriptor space.

Fig. 1. Illustrative example of an environment and definitionsof places in
the descriptor space.

defined by the range of the hue values e.g.F1 = [0, 255].
If we divide the feature space into regions as presented
in Figure 1(b), we can differentiate between three scenes:
red (S1), yellow (S2) and green (S3). We can clearly see
that the sceneS1 corresponds to two separate rooms which
could be distinguished if we consider their relations to other
scenes. Let us define an adjacency relation with respect
to the sceneS3, r1(x, t) : C × R → R1 = {1, 0} as
explained in Section III, and create the place descriptor space
D = F1 × R1. In that space, we can create four non-
overlapping placesP1-P4 by dividing the sceneS1 into two
places, one of which is adjacent to the sceneS3 and the
other is not. This division is reflected in the clustering of the
descriptor space presented in Figure 1(c).

IV. SPACE SEGMENTATION USING APPLICABILITY

The division of the feature space and descriptor space that
gives rise to scenes and then to places can be expressed in
many different ways. This section describes the segmentation
in terms of real-valued functions over space, which encode
the degree of belonging to the different places or scenes.

This view imposes certain restrictions on the functions and
thereby on the features and relations used, but given that
these are satisfied it is shown that a consistent segmentation
results. As will be demonstrated in Sections V and VI, this
information can also be used to support both navigation and
localization. We describe these functions both for scenes and
places, denoting the feature/descriptor space (as the casemay
be) byA, and an arbitrary point in that space byA. The
reasoning is analogous for both cases.

We introduce a set{gi}ng

i=1 of applicability functionsgi

defined as

gi(A) : A → Gi ⊆ (R+ ∪ {0}), (12)



Definition 3: Given the set of applicability functions
{gi}ng

i=1, we define a clusterKi ⊆ A as

Ki = {A ∈ A : gi(A) > gj(A) > 0,∀i 6= j} (13)

and note especially thatgi(A) = 0 ⇒ A /∈ Ki.
Definition 3 suggests that we can think of the functionsgi(A)
asmeasuresof how applicable a pointA is to the clusterKi.
The clusters are non-overlapping inA: ∀i6=jKi∩Kj = ∅. We
now examine the requirements this places on the spatially
defined feature and relation functions.

To do this let us introduce an additional function

χi(x) = gi(A) = gi(a1(x, t), . . . , ana
(x, t)) (14)

which represents the applicability over the configuration
space. (Here, theai may be features only or features and
relations, depending on whetherA = F or A = D.) As a
result, it is similarly possible to specify the extent of a place
in the configuration space at timet, as follows

CPi
(t) = {x ∈ C : χi(x) > χj(x) > 0, ∀i 6= j}

Q(t) = {x : χi(x) = 0,∀i} (15)

However, this leaves parts ofC undefined wherever noχi

is greater than any other. If this occurs anywhere but on an
infinitesimal borderline between places/scenes, it represents
an ambiguity. To avoid this we introduce the following:

Definition 4: Let µ(S) ≥ 0 denote the Lebesgue measure
of the setS and∆ the set of all points not defined by Eq. 15.
If µ (∆) = 0, the spatial segmentation by{χi} is said to be
consistent.

Proposition 1: Suppose thatχi is a piecewise analytical
function, i.e. thatχi = {χi,α, if x ∈ Di,α} ,∀α whereα is
a countable index and where eachχi,α is a real analytic
function on its open domainDi,α for all t. Assume that
µ(Di,α) > 0 and {⋃α cl(Di,α)} = C where cl(Di,α) is
the closure ofDi,α in C. In the same way, letχj =
{χj,β , if x ∈ Dj,β} ,∀β in the same way. Now assume that
χi andχj are not identical on any entire intersection of their
analytical pieces (except where both are identically zero):

∀α∀β : Di,α ∩ Dj,β 6= ∅ ⇒
⇒ χi(x) 6≡ χj(x) ∨ χi(x) ≡ χj(x) ≡ 0 on Di,α ∩ Dj,β

If the above holds for all pairsi 6= j, the segmentation of
space into place via Eq. 15 is consistent, as per Definition 4.

Proof: The functionχi − χj , is real and analytic on
each non-emptyDij,α,β , Di,α ∩ Dj,β Because of this, on
Dij,α,β the zeros ofχi−χj are isolated unlessχi andχj are
equivalent functions, which is disallowed by the assumption,
except where both functions are identically zero. Thus, the
Lebesgue measure of the zero set ofχi − χj is zero (the
borders of theDi,α,β also have measure 0). The proposition
follows immediately.

A simple, but useful, corollary of this proposition is as
follows.

Corollary 1: The segmentation of space into places via
Eq. 15 is consistent, as per Definition 4, ifχi and χj are
real analytic functions on the domainC, andχi 6≡ χj on C.

If ai are piece-wise analytic functions and each applica-
bility function gi is analytic onA, then χi is piece-wise
analytic on a partitioning ofC (where the partitioning is a
function of the domains on whichai are analytic).

The requirement thatχi, ∀i are real analytic functions
on all of C is sufficient but not necessary. In some cases
this requirement is too restrictive; e.g. it prohibits binary
(true/false) type features. The following result providesan
useful augmentation.

Proposition 2: Suppose thatχi = (χd
i + χa

i )χb
i andχj =

(χd
j + χa

j )χb
j , whereχa

i and χa
j are real analytic functions

on C, andχd
i andχd

j are piecewise constant onC. Moreover,
χb

i and χb
j are functions taking values in{0, 1} over all C.

Assume thatχa
i − χa

j 6≡ C where C is a constant. Then
the segmentation of space into places is consistent, as per
Definition 4.

Proof: Note first that with no loss of generality we
can ignore the effect ofχb

i and χb
j and consider only the

remaining functions.χd
i is a constant functionχd

i ≡ Cα

on each open domainDi,α, where{⋃α cl(Di,α)} = C, and
analogously forχd

j . Then,χi−χj is a piecewise real analytic
function on each non-emptyDij,α,β , Di,α∩Dj,β , andχi−
χj ≡ χa

i − χa
j + Cα − Cβ on Dij,α,β . The zero set of this

function can only have a non-zero Lebesgue measure ifχa
i −

χa
j is constant, which is disallowed.
The last proposition accounts for discrete-valued feature

types to be used in admissibility functions as a special
case (given that they are accompanied by a continuous
component).

Features of the typefi(x, t) : C → {0, 1} are useful since
so-called visibility features are of this type. That is, a point
y∗ ∈ C is either visible (1) or not visible (0) from another
pointx ∈ C. The support of a visibility featurefi(x, t) : C →
{0, 1} belongs to the class of so-called star-shaped sets; e.g.
see [4].

In the final corollary, we show how two useful classes
of feature functions can be combined in an applicability
function to provide a consistent segmentation of space:

Corollary 2: Assume that

χi = Ωi

({ab
k}k∈Mb

)  ∑
k∈Md

λikad
k + χa

i

 (16)

where ab
k are binary-valued features fromA, and ad

k are
piece-wise constant functions taken fromA. Ω is any logical
expression on theab

k. Assume thatχa
i − χa

j 6≡ C whereC
is a constant. Then the segmentation of space into places is
consistent, as per Definition 4.

A. Example 2 - Distance and Visibility Features

As a theoretical illustration, consider a small office with
three desks (see Figure 2(a)). The desks each have a com-
puter screen and one additionally a framed picture. They are
partially surrounded by partitions which block the view.

Four places have been assigned, all defined by different
features (t omitted for clarity):
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Fig. 2. Two configurations of an office and their consequent place regions.

• P1 - “Close to door object”
χ1(x) = fdoorc

(x) = 1
1+‖pdoor−x‖

• P2 - “Close to picture and picture visible”
χ2(x) = fpicv

(x) · fpicc
(x) = fpicv

(x) · 1
1+‖ppic−x‖

• P3 - “Close to computer b and in front of desk”
χ3(x) = fdeskf

(x) · fcomp2c
(x)

= fdeskf
(x) · 1

1+‖pcomp2−x‖
• P4 - “Close to computer c and computer c visible”

χ4(x) = fcomp3v
(x) · fcomp3c

(x)
= fcomp3v

(x) · 1
1+‖pcomp3−x‖

Here,

fpicv
(x) =

{
1 if picture unoccluded fromx
0 otherwise

and analogously forfcomp2v
andfcomp3v

. The “in front of”
feature is also binary:

fdeskf
(x) =

{
1 x ∈ Xdesk

0 otherwise

whereXdesk is a region projecting straight outward from the
edge of the desk – cf. Figure 2(b).

These applicability functions fulfill the requirements of
Proposition 2, as the radial components have different cen-
ters. It is assumed that there is a threshold for the applica-
bility functions, below which a point is not considered part
of any of the places (hence the circular borders). In effect,
the regions belonging to the four places “compete” for the
space and the best match wins out at each point.

These features exemplify the different sorts of functional
aspects that define places to a cognitive agent. In a real-world
scenario, places would likely be characterized by a larger
number of features combined, for increased robustness. For
the same reason, the granularity of places would typically
also be finer. Also, since the features would be selected
autonomously by a robotic agent their definition might be
less human-comprehensible than the above selection. Still,
this discrepancy will ideally be kept small, so that the spatial
conceptualization of human and robot are invariant to similar
types of features.

In Figure 2(b), the same office is shown after a rearrange-
ment of the desks. Note how the regions, though their shape
and size have changed, remain well-defined and how the
cognitively conceptualized places (in the sense of having
functionally conceived features) maintain their semanticsig-
nificance despite having entirely different metric properties.

V. NAVIGATION

The places discussed in Section III provide the segmen-
tation of space into discrete units, and allow an agent to
localize itself in the environment, by evaluating places’
descriptor sets at its current location using its sensors. Amap
must, besides allowing for localization, provide a means for
navigating through it. We do this in terms ofpaths, which
represent the (potential) movement from one (start) place to
another (goal) place. Just as places are defined by descriptors,
so each path is associated with apath precept.

Definition 5: LetS represent the space of low-level sensor
inputs available to the agent. Similarly, letO represent the
space of low-level control outputs. Then, a path precept is a
mapping from a low-level sensory states ∈ S to a control
outputo ∈ O:

πi : S 7→ O (17)
A path is always associated with exactly one precept.S is

of course given by the system instantiation, and may include
virtual sensor modalities, such as local metric maps built over
a period of time. It is in general a richer representation than
the feature spaceF , and allows for low-level considerations
such as obstacle avoidance and other reactive behaviours.

The above definition is very general and admits path
precepts that produce any sort of output. We therefore
distinguish betweenproper and improper path precepts.

Definition 6: A proper path precept will, if applied con-
tinuously while moving from the start place of the path, bring
the agent to the goal place.

Note that, in an unpredictable real-world application, this
property of path precepts is a random variable; a precept
might be more or less proper depending on its success rate.
Also, a dynamic world implies that path precepts may cease
to be proper due to changes in the environment.

A. Principles for path precepts

The fundamental attribute of a proper path precept is that
the output brings the agent to the place to which the path is
leading. Places, in turn, are defined in terms of descriptors.
These two facts give rise to the following basic rule for
creating proper path precepts:

Remark 1:A path precept should be defined such that
it, given a sensory state, produces a control output that
is expected to increase the relative (compared to those of
competing places) applicability function of the goal place.

Thus, the form of the precept naturally arises from the
descriptor that define places: A precept that keeps success-
fully increasing the applicability function must eventually
reach the goal place; conversely, the goal cannot be reached
without increasing it. Obviously, the method of accom-
plishing this can vary. Local hill-climbing approaches are
general, but suffer from local maxima, whereas global maxi-
mization though more robust requires more information and
sophisticated control. The actual control policy chosen will
depend on available sensory information, control outputs,and
efficiency considerations.

Remark 2: If the instantiation permits applicability to be
evaluated outside of the immediate surroundings of the
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(a) Paths leading from place 1 to
places 2 and 4.
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(b) Place graph for the office.

Fig. 3. Examples of paths.

current configurationx ∈ C and if the control output is
of an abstraction level that admits set-points inC, then the
following specialization of the above rule can be made:

x∗ = argmax
x∈C

(
χi(x)−max

j 6=i
χj(x)

)
(18)

wherex∗ is the set-point for the agent’s controller,i is the
goal place, andχk the applicability function for placek.

The above principles may still leave some ambiguity as
to the precise contents of the precept; different descriptors
may suggest entirely different movement rules, and the way
different descriptors change with movement may be more or
less easy to predict in varying sensory circumstances. Any
implementation that mixes different types of descriptors will
therefore require a facility for estimating the applicability
of the goal place at a distance – or at least, caching
such information when it is available – and, based on this,
producing a local navigation goal for lower-level navigation
to carry out.

Apart from being proper, a path precept also needs to
be well-defined for all sensor states. Moreover, it should
be efficient in execution (i.e. minimizing the time, distance,
energy etc. necessary to reach the goal) and efficient to
evaluate (i.e. computationally).

B. Example

As a simple example of path precepts derived from place
descriptors, regard the office in Figure 2(a). The simplicity
of each place’s applicability function makes it easy to define
path precepts through Remark 2. Take for examplei = 2:

x∗ = argmax
x∈R2

(
χ2(x)−max

j 6=2
χj(x)

)
= ppic

In other words, the precept is simply to move towards the
picture in order to reach placeP2. Figure 3(a) illustrates
how different points in placeP1 will give rise to different
trajectories into placeP2, and correspondingly for placeP4.
Note that once the agent enters the goal place and detects
this, there’s no point in continuing to the set point; the path
precept is simply meant to take it within the boundary of the
place.

The above path precept forP2 does not necessarily work
as well in P3 and P4, however. If it is assumed that the
agent is unable to detect the picture behind the partition (such
as by virtual sensing), or if it lacks the obstacle avoidance

capacity to approachppic except by a straight line, then this
path precept is not proper to the paths fromP3 andP4 to
P2.

In the same way, the natural path precept fromP2 to
P3 (moving toward computer b) is not proper to that path.
Figure 3(b) shows a graph containing the paths which have
proper precepts. Note that the path fromP2 to P4 is more
proper than its reverse.

The distinction between proper and improper path precepts
is not clear-cut even in this simple example: there are points
in P3 from which the picture inP2 is visible, and points in
P2 where the computer inP4 cannot be seen.

If the room is rearranged, as in Figure 2(b), then while the
path precepts remain the same (being defined as in Remark 2)
they will no longer be proper or improper to the degree
indicated by the graph in Figure 3(b). An agent relying on
that information to navigate in the office may fail to do so,
but can update its representation by invalidating paths that
fail and creating new ones from the unchanged precepts.

VI. L OCALIZATION

According to the definition ofplaces in Section III,
given the true values of place descriptors (features and
spatial relations)Dt = (ζ1,t, . . . , ζnf ,t, ρ1,t, . . . , ρnr,t) ob-
tained at timet for location x(t), the place to which that
x corresponds is uniquely identified. Consider a function
D(x, t) = (f1(x, t), . . . , fnf

(x, t), r1(x, t), . . . , rnr
(x, t))

that provides the true values of place descriptors for location
x and timet. Then, forDt = D(x(t), t), the true place is
given byLt , i : Dt ∈ Pi.

However, in the real world an agent is moving through
space, following paths to get from place to place and needs
to maintain its localization in the face of uncertainty. Let
us denote the observation of all descriptors at timet as
D̂t = Dt + et, where e is an error. We view the agent’s
progress from place to place as a Markov process with
Lt the state at (discrete) timet and D̂t the measurement.
Localization is then carried out iteratively according to the
following formula:

p
(
Lt | {D̂}t, {α}t−1

)
(19)

=
∑
Lt−1

p
(
Lt | Lt−1, D̂t, αt−1

)
× p

(
Lt−1 | {D̂}t−1, {α}t−2

)
where{D̂}t represents all measurements up until timet, and
equivalently for the actionsα.

The probability update in Eq. 19 is computed as follows:

p
(
Lt | Lt−1, D̂t, αt−1

)
(20)

= γ · p
(
D̂t | Lt

)
p (Lt | Lt−1, αt−1)

Here, γ is a normalization constant, andαt is the action
taken at timet; that is, a choice of a path to follow and an
according path precept.



The factors in Eq. 20 represent respectively the mea-
surement integration step, and the prediction step, of the
localization update.

A. Prediction

The prediction step encapsulates the probability of tran-
sitioning from one place to another given the actionαt.
If xt and xt+1 are the configurations at timet and t + 1
respectively, then

p (Lt+1 |Lt, αt) (21)

=
∫

xt+1

p(Lt+1 |xt+1)p(xt+t |Lt, αt)dxt+1

=
∫∫

xt+1∈CLt+1
xt

1 · p(xt+1 |xt, αt)p(xt |Lt)dxtdxt+1

The factor p(xt+1 | xt, αt) represents the evolution of
the exact configuration during the transition, and can be
computed via the Fokker-Planck equation (see e.g. [11]); we
assume the continuous-time process can be written:

dξ = fα(ξ)dτ + N(ξ)dη (22)

ξ(0) = xt

xt+1 = ξ (min{τ : Sα (ξ(τ), τ) = 0})
where fα represents the motion model, given the chosen
path precept, anddη represents the random evolution of
a stochastic process such as a Brownian motion.N is a
configuration-dependent transformation of the process noise.
The transition ends when the stopping conditionS, given by
the path precept, evaluates to0.

The resulting integral is very difficult to compute in
general, and an analytic solution will not be feasible except
for the very simplest cases.

Because of this, it may be more profitable to view the state
transition probabilities as hidden model parameters:

p (Lt+1 = j | Lt = i, α) = θi,j,α (23)

Given an initial estimate forθi,j,α and observations of out-
comes of action execution in a real or simulated setting, the
parameters can be iteratively estimated through Expectation-
Maximization.

The basic constraint is that
∑

i θi,j,α = 1. Reasonable
initial estimates will vary with instantiation, and may be
taken from appropriately defined relations; as an example,
a transition to a nearby or adjacent place might be assigned
a higher probability by default. The simplest assumption is
that of uniform probability:θi,j,α = 1/nP wherenP is the
number of places.

B. Measurement integration

After the action is finished, the measurement step incor-
porates observations of descriptors into the probability dis-
tribution. As is seen below, this expression is complicatedby
the fact that knowing the place does not imply a probability

distribution over exact locationsx, nor over descriptor values
D.

Observed descriptor values are conditionally independent
of place, given true descriptor valuesD′:

p
(
D̂t | Lt

)
(24)

=
∫

D′∈D
p

(
D̂t | D′

)
p (D′ | Lt) dD′

The first factor is simply the likelihood of the observation.
Expressed using the probability distribution of the measure-
ment error, it becomes:

p
(
D̂t | D′

)
= pe

(
D̂t −D′

)
(25)

If observation errors are taken to be conditionally indepen-
dent, given the true descriptor values, the likelihood function
can be written:

p
(
D̂t | D′

)
(26)

=
nf∏
i=1

p
(
ζ̂i,t | ζi

) nr∏
i=1

p (ρ̂i,t | ρi)

=
nf∏
i=1

pei

(
ζ̂i,t − ζi

) nr∏
i=1

pe′i (ρ̂i,t − ρi)

whereei ande′i are the errors associated with the measure-
ment of featurei and relationi, respectively.

The second factor in Eq. 24 represents the way descriptor
values are distributed inside places. One way of dealing with
it is to assume a normalized distribution ofD′ over Pi,
i.e. a constant. However, this distribution is dependent on
the details of the instantiation. If it cannot be modeled or
estimated, another approach is to evaluate

p (D′ | Lt) (27)

=
∫

x∈C
δ (D′ −D (x, t)) p (x | Lt) dmx

=
∫

x∈Ψ

p (x | Lt)
|∇D(x, t)|d

m−1x

where Ψ denotes allx which satisfyD′ = D(x, t). δ is
the Dirac distribution, and the final step uses the generalized
scaling property of integrals over Dirac distributions.m is
the dimension ofC.

p (x | L) can be modeled either as a constant overCLt
or

estimated based on observations. If a place is defined in terms
of an applicability function, the spatial information encoded
in it can also be used to model this distribution.

VII. D ISCUSSION

Despite the fact that the framework presented in the
previous section represents a certain view on the structure
of a cognitive map, it is also very general and allows
for expressing many existing approaches as specific cases.
Consider for instance the topological map constituting a
part of the Multi-Layered Conceptual Spatial Representation
presented in [14]. The authors propose to create a topological
representation on top of a two-dimensional metric line map,



and ground each topological node around a point anchored
to the metric map. Such approach can be easily expressed
in our framework if we define a featureζ = f(x, t) = x,
wherex ∈ C = R2 represents the coordinates on the metric
map, and a set of applicability functions{gi(ζ)}nt

i=1 such
that gi(ζ) = 1/(1 + |ti − ζ|) for each of thent topological
nodes, whereti is the center of the node expressed in the
coordinates of the metric line map.

The generality of the presented approach can accommo-
date a very wide range of different methods for abstracting
space into places. Exact grid decomposition [1] as well
as fixed decomposition can both be described in terms of
this framework, given properly chosen features, as can the
“islands of reliability” of [12]. Even a system such as the
Spatial Semantic Hierarchy [6] is possible to express in
these terms; however, to accomplish this, a relatively high
level of abstraction must be assumed for the features and
the sensor input. Nevertheless, it is our expectation that
such requirements will not apply in general to powerful and
cognitively well-founded instantiations of this framework.

A. Future work

Possible directions in which to extend this work include:
1) Feature selection:Within this paper we have assumed

a set of features as given. In a practical system, an agent
will have access to high-dimensional low-level sensor data
and the features used for building scenes will need to be
abstracted from this data. This can be done in either a pre-
programmed or an automatic manner.

2) Virtualized sensors:Herein, features are defined as
functions of single points in configuration space; in effect,
a feature is conceived of as an abstract sensor output while
the agent is at that point. In practice, techniques that allow
information to be integrated over time may serve as “virtual”
sensor input permitting more advanced features to be defined.

3) Clustering: This paper has suggested one way of
clustering the feature space into scenes using applicability
functions. Methods for automatic and dynamically updated
clustering could be applied.

4) Spatial reasoning:One principal use for segmenting
space, in a cognitive systems context, is high-level spatial
reasoning, planning, learning and communication. It would
be useful to explore the implications of a feature-based place
concept when integrated as a component of a full cognitive
system.

VIII. C ONCLUSIONS

We have presented a general framework for building a
spatial map based on places and scenes which supports lo-
calization and navigation using arbitrary features and higher-
level spatial relations. We suggested how the framework
would be used to instantiate a system with cognitively
plausible features, as well as how to extract precepts for
moving from one place to another. Probabilistic expressions
used for localization in the framework were presented and
the necessity for additional assumptions was highlighted.

The framework has been shown to entail existing spatial
representations. In the future, we hope to demonstrate in-
stantiations built directly on the proposed framework, which
will prove the viability of the approach and its usefulness in
higher-level reasoning.
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Abstract

In this paper, we identify structuring of space and categorization of large-scale space as two
important aspects of spatial understanding for embodied cognitive systems. In order to enable
an autonomous agent to engage in a situated dialogue about its environment, it needs to have
a human-compatible spatial understanding, whereas autonomous behavior, such as navigation,
requires the agent to have access to low-level spatial representations. Addressing these two
challenges, we present an approach to multi-layered conceptual spatial mapping. We embed
our work in a discussion of relevant research in human spatial cognition and mobile robot
mapping.

1 Motivation and Background

We are driven by the research question of spatial understanding and its connection to acting and
interacting in indoor environments. We want to endow autonomous embodied agents with the
capability to conduct spatially situated dialogues. For this the agent must be able to understand
space in terms of concepts that can be expressed in, and resolved from natural language.

We start from the assumption that the environment is not instrumented in order to facilitate
the mapping problem. The kinds of environments that we are interested in are indoor spaces that
are designed by humans for humans – and that are intuitively and easily understood by humans.
This includes ordinary and everyday indoor office environments or apartments that are populated
by humans working and living there. This also includes virtual spaces that are designed in such
a way that humans who control an avatar using a 3D client software perceive of them as if they
were realistic models of natural physical spaces. We call this class of environments that are made
and designed by humans for being used and populated by humans human-oriented environments.
Figure 2 demonstrates examples of different human-oriented environments in which autonomous
agents have to operate. Figure 1 shows how a robot’s sensors (cameras and laser range finders)
perceive such an environment.1

There exist many different approaches for equipping autonomous embodied agents, most notably
mobile robots, with spatial models. The problem is that these models are usually specifically
tailored for the tasks the agent is supposed to fulfill. This means that the features of the spatial
representation are typically only meaningful with respect to the algorithms that work on these
representations. These include, for instance, occupancy grid maps (see Figure 3a on page 4 for an

1Still images and sensor readings taken from the CoSy Localization Database (COLD) [32].
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(a) Perspective image taken from a digital camera
mounted on the top platform of the robot, facing forward
(height: 140cm, field of view: 68.9◦).

(b) Omnidirectional image taken from a digital camera
facing up towards a hyperbolic mirror (height: 116cm,
field of view: 360◦).
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(c) Frontier of the corresponding laser range scan taken at a
vertical height of 30cm in parallel to the floor plane (field of
view: 180◦).

ActivMedia ActivMedia iRobot
PeopleBot at Pioneer-3 at ATRV-Mini at
Saarbrücken Freiburg Ljubljana

Figure 3: Three different mobile platforms employed for image acquisition at the three labs. The portable
socket with the camera setup is shown in the top right corner.

illumination and weather conditions that could be classified into three groups: sunny weather, cloudy
weather and night. For the different illumination conditions, the acquisition procedure was repeated at
least thrice, resulting in a minimum of three image sequences, acquired one after the other, under similar
conditions.

At each lab, two different paths were followed by the robot during image acquisition: (a) the standard
path, where the robot was driven across rooms that are most likely to be found in most labs; (b) the
extended path, where the robot was driven across all the available rooms. Figure 4-5 presents the two
types of paths that the robot followed in each environment. The extended path generally contained
more rooms than the standard path, and the additional rooms are usually specific for each particular
lab. In each case, a set of standard and extended image sequences was collected at each lab. Detailed
information about the number of sequences in the database can be found in Table 3. Table 4 presents a
list of rooms covered by each sequence type at each lab. Due to the manual control of the robot, strong
viewpoint variations can be observed between different sequences, even if they were recorded following
the same type of acquisition path. The total number of frames in each image sequence depends on the
lab and the path that the robot followed (roughly 1000-2800 for Saarbrücken, 1600-2800 for Freiburg
and 2000-2700 for Ljubljana).

5 Data Annotation

In order to label the acquired images, the same procedure as in [3, 2] was followed: the robot pose was
estimated during the acquisition process using a laser-based localization technique [1]. The pose was
represented in a predefined global coordinate system (see Appendix C). Each image was then labeled
as belonging to one of the available rooms according to the position (i.e. estimated coordinates in the
global coordinate system) of the robot at the moment of acquisition. This strategy could not be directly
followed in Ljubljana, because the robot patform did not have a laser scanner. Thus, for the sequences
captured in Ljubljana, the annotation procedure was accomplished using odometry data with manual
corrections. Description of the file format used to store odometry and laser range data can be found in
Appendix B.

For the perspective camera, an important consequence of this annotation procedure is that when the

5

(d) The mobile robot used for acquiring the data.
The cameras and the laser scanner can be seen on
the top and bottom platforms, respectively.

Figure 1: An office environment “seen” from the point of view of a robot using different sensors.
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(a) Autonomous mobile robots – left: Explorer and, right: Dora – operating in an office building.

(b) A virtual character in a household environment within the Twinity world.

Figure 2: Examples of human-oriented environments.
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example2), which address the challenge of representing which parts of an environment are likely to be
free and unobstructed, and which ones contain potential obstacles [39], or line maps that represent
static features of the environment for the purpose of simultaneous localization and mapping (SLAM),
illustrated in Figure 3b3.

In contrast to this, what we need are human-like features. In order to be able to talk in and
about space, the agent needs to abstract from its internal, machine-compatible representations of
space to a level that is at least comparable to the way humans perceive of space.

Chapter 5: Tests and Results 40

Figure 5.2: Results after running on St.Pere Pescador Dataset(a) Underwater grid map of a marina in San Pere
Pescador, Spain [22].

(b) Line-feature map of an indoor
environment.

Figure 3: Examples of robotic spatial representations for SLAM.

Spatial understanding comprises two aspects. For one, it concerns structuring of spatial orga-
nization. That is, which are the units a human-oriented environment is composed of? Secondly, it
concerns categorization of space. That is, which are the concepts that describe these spatial units,
and how are they determined? We call spatial knowledge representations that address these issues
human-compatible representations of space.

To this end the work presented in this thesis builds upon and extends the author’s previous
research on multi-layered conceptual spatial mapping [44, 45] in the tradition of approaches like the
(Hybrid) Spatial Semantic Hierarchy [25, 26, 1], the Route Graph model [42, 23], hybrid maps [4],
and multi-hierarchical semantic maps for mobile robots [16, 15]. The approach is inspired by human
cognition. On the lower layers it contains sensor-based representations. These are abstracted into
basic categories (free space vs. occupied space, areas vs. humans vs. objects, rooms vs. corridors,
etc.). The basic spatial relation is spatial containment, corresponding to the container schema,
which is among the most prominent, most important, and most fundamental schemata in human
cognition [27].

2Image generated from the marina dataset [35], courtesy of Shanker Keshavdas [22].
3Image taken from [47].
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1.1 Structuring space

Research in cognitive psychology addresses the inherently qualitative nature of human spatial knowl-
edge. It tries to answer the question how the human mind represents spatial information in a so-
called cognitive map. Following the results of empirical studies, it is nowadays generally assumed
that humans adopt a partially hierarchical representation of spatial organization [38, 29]. The basic
units of such a qualitative spatial representation are topological regions [8], which correspond to
more or less clearly bounded spatial areas. The borders may be defined physically, perceptually,
or may be purely subjective to the human. It has been shown that even in natural environments
without any clear physical or perceptual boundaries, humans decompose space into topological hi-
erarchies by clustering salient landmarks [19]. In our approach, topological areas are the primitive
units of the conceptual map that is used for human-robot interaction and dialogue, and the basic
spatial relation is topological inclusion.

Recent advances in cognitive neuroscience have found evidence for brain structures that supply
the topological representations of the so-called “place-cells” with a metric one encoded in the so-
called “grid cells” [20]. This does not contradict the assumption that the global-scale representation
of large-scale space in the cognitive map is a topological one. It rather provides insight into how
local scenes, i.e., small-scale space, might be represented in the human mind and speaks in favor of
a multi-layered, hybrid representation of space in the cognitive map.

1.1.1 Large-scale space and small-scale space

There is an important distinction to make when investigating any kind of spatially situated behavior,
be it acting, planning, observing, learning, or communicating, namely if it pertains to space that
constitutes the agent’s immediate surroundings, or if it pertains to larger spatial structures. The
dichotomy between small-scale space and large-scale space for human spatial cognition [18, 17] is
central to the work presented in this thesis.

[24] defines large-scale space as “a space which cannot be perceived at once; its global structure
must be derived from local observations over time,” whereas small-scale space consist of the here-
and-now. For example, a drawing is a large-scale space “when viewed through a small movable
hole, while a city can be small-scale when viewed from an airplane” [24]. In more common everyday
situations, an office environment, one’s house, a city, or a university campus are large-scale spaces.
A table-top or a particular corner of one’s office are examples of small-scale space.

This crucial distinction is reflected in the spatial models (WP3) developed in the CogX project
as well as the methods for situated natural language processing (WP6).

1.1.2 Segmenting and partitioning space

As mentioned earlier, it is important that autonomous agents which are supposed to interact with
humans in a human-oriented environment have a notion of spatial units that are also meaningful
for humans. Topological regions are such units that are meaningful to humans. We call the units
of indoor spaces areas. We distinguish between two basic kinds of areas. Rooms are spatial areas
whose primary purpose is defined by the kinds of actions they afford. The other major class of
indoor areas are passages whose primary purpose is to link rooms and provide access to other spatial
areas.

The challenge for intelligent agents is to autonomously build spatial representations that are
composed of such areas. The previously mentioned distinction between physical, perceptual and
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subjective boundaries of topological areas corresponds to a spatial segmentation along geometric
features versus functional features. In indoor environments, walls are the physical boundaries of
areas. They determine the geometric layout of the space they surround. Functional features, can be
determined by specific objects – but also by the spatial layout and the composition of the objects
and their surroundings.4 Similarly, the gateways that link areas can be defined geometrically or on
a functional-perceptional basis.

However, as we showed in the previous sections, the sensors of a robot are not particularly
geared towards perceiving architectural structures. Neither do computer vision methods exist that
allow to visually recognize arbitrary objects – let alone their functional affordances. Currently, the
main purpose of robotic exteroceptive sensors is to discriminate free space from physical obstacles,
and to provide a means for localizing the robot with respect to local landmarks. It is therefore
necessary to make use of other cues to segment an environment into topological units.

A special kind of free space are geometrically bounded gateways. In a spatial representation that
is based upon free space and its inter-connectivity, gateways play an important role in structuring
and segmenting free space. In a map that only implicitly represents the boundaries of spatial areas,
gateways divide space into regions that belong to one spatial area from regions that belong to
other spatial areas. “Cognitively this allows the world to be broken up into smaller pieces” [5].
Gateways constitute an important factor for spatial cognition and navigation of autonomous agents
in large-scale space [6]. [7] explains the special role of gateways for autonomous robots like this:

“In buildings, these [gateways] are typically doorways. . . Therefore, a gateway occurs
where there is at least a partial visual separation between two neighboring areas and the
gateway itself is a visual opening to a previously obscured area. At such a [location],
one has the option of entering the new area or staying in the previous area.”

Likewise, our approach is based on the assumption of the importance of gateways (especially door-
ways) for human-compatible spatial representations of human-oriented environments. Later we
show how our approach makes use of information about doorways in order to maintain a represen-
tation that is composed of rooms and other spatial areas (e.g., corridors).

1.1.3 Hierarchical subdivision of space

One prominent spatial relation we experience physically and abstractly every day is spatial con-
tainment . [11] consider the space within a room as a small-scale space in which people experience
cognitive image schemata, e.g., the container-surface schema. However, people routinely employ
the same schemata to larger structures, for example when saying “the bench is in the garden” [27].
Similar to objects that are inside a room, streets are in a city, and several districts form a country.
The space around us can thus be decomposed into smaller units, or can combine with other spatial
units to larger regions. The container schema can – with a few constraints – also be applied to
large-scale space – at least when considering objects of comparable size and similar observation
scale [36].

Containment of objects or spatial units is a productive schema for spatial language [9], and one
of the structuring principles in the cognitive map [38, 29]. Likewise, hierarchical subdivisions of
space are a basic topological relation for geographical information systems (GIS) [28, 40].

4Strictly speaking, the presence of a coffee machine alone does not turn a room into a kitchen – it could as well
be a storeroom. The space in the room must afford the preparation of coffee, just as the coffee machine must be
reachable and usable.
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Topological hierarchies can be expressed as spatial-relation algebras, which, unlike usual compu-
tational geometry-based calculations, “rely on symbolic computations over small sets of relations.
This method is very versatile since no detailed information about the geometry of he objects, such
as coordinates of boundary points or shape parameters, is necessary to make inferences” [11]. This
makes them a prime candidate for a basic human-compatible relation to structure and subdivide
space.

Conceptually, containment does not form a strict hierarchy. One spatial region can be contained
in several different spatial regions, which, in turn, might not be in a containment relation. Consider,
for example, an intersection of two corridors. While the intersection itself forms a spatial region,
it can also be assumed to be a part of each individual corridor. The representation of spatial
abstraction hierarchies is thus rather a partially ordered set (poset) [21].

Definition 1 (Partially ordered sets (posets) [21]).
Let P be a set. A partial order on P is a binary relation ≤ on P such that, for every
x, y, z ∈ P :

1. x ≤ x (reflexive)
2. if x ≤ y and y ≤ x, then x = y (antisymmetric)
3. if x ≤ y and y ≤ y, then x ≤ z (transitive)

A set P with a reflexive, antisymmetric and transitive relation (order relation) ≤ is
called a partially ordered set (or poset). For every partially ordered set P we can find
a new poset, the dual of P , by defining that x ≥ y is in the dual if y ≤ x ∈ P . Any
statement about a partially ordered set can be turned into a statement of its dual be
replacing ≤ with ≥, and vice versa. ≥ is called the inverse of ≤.

In DR6.2, we show how a hierarchical subdivision of space provides the basic structure for the
production and understanding of spatially situated language.

1.2 Categorizing space

Aside from the functionality of the cognitive map, another relevant question from cognitive science
is how people categorize spatial structures. Categories determine how people can interact with, and
linguistically refer to entities in the world. Basic-level categories represent the most appropriate
name for a thing or an abstract concept. The basic-level category of a referent is assumed to provide
enough information to establish equivalence with other members of the class, while distinguishing
it from non-members [3, 37]. We draw from these notions when categorizing the spatial areas in
the robot’s conceptual map. We are specifically concerned with determining appropriate properties
that allow a robot to both successfully refer to spatial entities in a situated dialogue between the
robot and its user, and meaningfully act in its environment.

Our work rests on the assumption that the basic-level categories of spatial entities in an envi-
ronment are determined by the actions they afford. Many types of rooms are designed in a way
that their structure and spatial layout afford specific actions, such as corridors, or staircases. Other
types of rooms afford more complex actions. These are in most cases provided by objects that are
located there. For instance, the concept ‘living room’ applies to rooms that are suited for resting.
Having a rest, in turn, can be afforded by certain objects, such as couches or TV sets. We thus
conclude that besides basic geometric properties, such as shape and layout, the objects that are
located in a room are a reliable basis for appropriately categorizing that room.
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2 Representing Space at Different Levels of Abstraction

If an autonomous agent is required to perform navigation tasks, it must have access to low-level
spatial representations that are suitable for fine-grained hardware control. These are typically quan-
titative spatial representations, such as metric coordinate systems. Metric maps rely on accurately
measurable distances and dimensions. The sensors modern robots are typically equipped with,
such as time-of-flight cameras or laser range finders, provide quite exact measurements of free and
occupied space in the robot’s surrounding. Such sensor readings are hence often stored in metric
maps of different kinds. Metric maps are also an obvious choice for online avatars because they can
have easy access to the virtual world, which typically consists of 3D models.

Humans, on the other hand, use the topological structuring of space to form a more qualitative
sense of space. This is reflected in natural language, which is full of vague, qualitative spatial ex-
pressions. In order to be able to communicate successfully and naturally with humans, autonomous
conversational agents must be able to establish such a quantitative spatial understanding on the
basis of the low-level maps they can build from their sensory input.

To this end, we present multi-layered conceptual spatial mapping . The approach addresses
the problems of human-compatible structuring and categorization of space. It comprises spatial
representations at different levels of abstraction, ranging from low-level metric maps to symbolic
conceptual representations.

Figure 4 on the following page shows two instantiations of the multi-layered conceptual spatial
mapping principle. The spatial representation in Figure 4a on the next page is the basis for the
integrated robotic systems of the CogX project (WP7). More recently, [34] presented a refined
approach to multi-layered mapping, in which, most notably, the representations of the lower map
layers were re-defined. The integrated robotic system Dora [43] makes use of this refined multi-
layered map. It is illustrated in Figure 4b on the following page.

In the following sections we outline the different spatial representations underlying the individual
abstraction layers.

2.1 Related work

Recently, a number of methods originating in robotics research have been presented that construct
multi-layered environment models. These layers range from metric sensor-based maps to abstract
conceptual maps that take into account information about objects acquired through computer vision
methods. [41] suggest a hierarchical probabilistic representation of space based on objects. The
work by [16, 15] presents an approach containing two parallel hierarchies, spatial and conceptual,
connected through anchoring. Inference about places is based on objects found in them. This
approach is based on the Multi-AH-graph model by [13]. The work by [10] creates a metric map
through a guided tour. The map is then segmented into discrete rooms according to the labels
given by the instructor. Furthermore, the Hybrid Spatial Semantic Hierarchy (HSSH), introduced
by [1], allows a mobile robot to describe the world using different representations, each with its own
ontology.

2.2 The different map layers

In the following, we briefly describe the properties of the individual layers. The conceptual map
layer is central to the work presented in this thesis. The other layers, i.e., the metric, navigation,
and topological layers will be referred to as the “lower layers” of the spatial model. They are outside
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(a) Illustration of a multi-layered conceptual spa-
tial map.

(b) COARSE (Cognitive lAyered Representation of
Spatial knowledgE) [34]. Adapted from [43].

Figure 4: Two instantiations of the multi-layered mapping principle.

9



the scope of this thesis. While they are important for robot navigation and self-localization, their
sole relevance to the work of this thesis is that they provide input to the conceptual layer based on
perception of the real world.

Unless the agent is equipped with a form of external localization – such as robots acting in
instrumented environments (which, in turn, are faced with their own challenges [12]), or avatars
that operate in the 3D coordinate system of the virtual world – it must be equipped with sensors that
allow it to perceive its surroundings. In the simplest case, such sensors are only used to prevent
the robot from hitting an obstacle5 or to enable the robot to move to a fixed target position.6

This, however, does not amount to much spatial understanding other than a robot-centric frame of
reference that captures the here-and-now small-scale space.

An understanding of large-scale space requires that the agent at least be able to represent – i.e.,
remember and retrieve – landmarks that are outside the currently observable part of space. Some
approaches to mapping of large-scale space generate metric maps, ranging from interconnected
patches of local maps [2] to larger, global metric maps of the whole operating environment [14]. In
contrast, there are other approaches to mapping of large-scale space that do without local metric
maps, but rather represent the positions of landmarks with respect to each other in terms of control
laws that take the robot from one landmark to another [25].

Such maps, referred to as either metric maps or called the sensory map layer serve the principal
purpose of allowing the robot to safely navigate its environment while staying localized within its
representation of large-scale space. This self-localization can be performed in an absolute frame
of reference or in a relative frame of reference with respect to a local landmark. As a result, such
maps are essentially representations of free and reachable space and its connectivity, rather than
faithful models of the architectural structure around that free space.

In order to allow for efficient path planning it is common practice to abstract away from sensor-
based metric maps. The first abstraction step is discretization of the continuous metric space.
Examples of such a discretization are free-space markers [31] which are used to form a navigation
graph map layer in the implementation in the CoSy Explorer [47]. Recently [33] introduced the
notion of places to form an intermediate map layer, which is part of the Dora integrated robotic
system.

This level of discretization provides a basic notion of the topological structure of an environment.
However, the discrete units are not guaranteed to be meaningful to humans. It is thus necessary to
aggregate the units of the intermediate layer into human-compatible spatial units, such as rooms.

This then provides a topological partitioning that can be used for human-compatible structuring
and categorization of space. In this view, the exact shape and boundaries of an area are irrelevant.
Basic notions that are represented in such a map are adjacency and connectivity .

Together, the intermediate discretization layer and the topological layer provide a symbolic
abstraction over continuous, sensor-based metric data. The symbols correspond to the units of the
respective maps (e.g., places, navigation nodes, areas, objects, and landmarks) and the relations
that hold between them (e.g., adjacency, inclusion, visibility). These symbols are the basis for the
conceptual map layer . In the conceptual map, different kinds of symbolic reasoning are used to
provide a human-compatible structuring and categorization of space that can be used for situated
human-machine interaction.

5For instance, the e-puck educational robot is equipped with eight infrared (IR) proximity sensors, which measure
the presence of nearby obstacles [30].

6The iRobot c© Roomba c© autonomous vacuum cleaner has the capability to find its way to a docking station by
sensing the IR signals that the station emits.
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Figure 5: Illustration of a part of the commonsense ontology of an indoor office environment.
Edges with hollow arrow heads denote the taxonomical subclass relation. Edges labeled with
contains express that the given subclass of Room is defined as containing at least one instance of
the pointed-to Object subclass. T stands for the universal top-level concept (i.e., > or owl:Thing).

With each abstraction step, the available spatial information gets coarser, while the conceptual
knowledge increases. Apart from immediate adjacency of topological areas, the model is unable to
derive a global structure other than containment of one portion of space in another. Specifically this
means that the model cannot predict that two known areas are adjacent to each other unless their
connectivity has been explicitly recognized. This corresponds, on a smaller scale, to the human
performance in novel environments. Imagine the surprise when, e.g., while walking through a large
furniture store, one realizes that the bathrooms are behind the bedroom closets. A similar behavior
becomes apparent in [46] when the robot enters a partially explored room through a different door
(thus at first believing that yet another new room has been discovered), and only afterwards arrives
at a previously visited place that it knows belongs to an already known room.

In the conceptual map, information stemming from vision and dialogue is related to the spatial
units generated in the lower map layers. This allows, for instance, to represent the fact that a specific
object was encountered in a specific room together with the information that the human user called
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Figure 6: Combining different types of knowledge in the conceptual map.

that room “the kitchen.” Internally, the conceptual map represents information about spatial areas
and objects in the environment in an ontological reasoning module. It consists of a commonsense
ontology of an indoor environment, which describes taxonomies (i.e., subclass relations) of room
types, and couples room types to typical objects found therein through contains relations. Figure 5
on the previous page shows such a commonsense ontology.

These conceptual taxonomies have been handcrafted and cannot be changed online. However,
instances of the concepts are added to the ontology during run-time. Using a reasoner, new knowl-
edge can be inferred. For example, if the robot knows that it is in an area where there is a coffee
machine and an oven, it can infer that it can categorize this area as a kitchen. Like this, linguistic
references to areas can be generated and resolved.

3 Information Processing

Depending on the origin of a piece of information, we distinguish between acquired , asserted , innate,
and inferred knowledge. These notions are important for the characterization of the information
flow during map acquisition.

• Acquired knowledge is derived from the robot’s own sensors, including the spatial informa-
tion encoded in the lower map layers and objects recognized by a computer vision software.
The information that an avatar receives from the virtual world engine is another example of
acquired knowledge.
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• Asserted knowledge is provided by another agent, for example a human tutor. It is typically
given through verbal input (for example, the tutor might say “you are in the laboratory.”).

• Innate knowledge is any kind of information that is incorporated into the system in a way that
does not allow for on-line manipulation of the knowledge. In our approach, the conceptual
ontology is an example of innate knowledge.

• Any piece of information that can be derived on the basis of the combination or evaluation of
other information provides inferred knowledge, such as knowledge inferred by the Description
Logic-based reasoning mechanisms in the conceptual map.

Figure 6 on the preceding page illustrates how different pieces of information are combined and
processed in the conceptual map layer.

4 Summary

We have presented an approach to multi-layered conceptual spatial mapping for autonomous agents.
It addresses the challenges of structuring space as well as categorizing space, which are prerequi-
sites of spatial understanding. Since the kinds of agents we are dealing with have to operate in
non-instrumented human-oriented environments it is crucial that they be endowed with a human-
compatible spatial representation in order to engage in meaningful situated dialogues about spatial
topics with its human user. Moreover, the presented approach allows for integration with lower-level
robotic maps that provide the robot with safe and reliable navigation and control mechanisms, and
which take the recent advances in robot sensing, mapping, and motion control into account.
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[11] Max J. Egenhofer and M. Andrea Rodŕıguez. Relation algebras over containers and surfaces:
An ontological study of a room space. Spatial Cognition and Computation, 1(2):155–180, 1999.

[12] Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme. Connecting the physical
world with pervasive networks. IEEE Pervasive Computing, 1(1):59–69, 2002.
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[23] Bernd Krieg-Brückner, Udo Frese, Klaus Lüttich, Christian Mandel, Till Massokowski, and
Robert J. Ross. Specification of an ontology for Route Graphs. In Christian Freksa, Markus
Knauff, Bernd Krieg-Brückner, Bernhard Nebel, and Thomas Barkowsky, editors, Spatial Cog-
nition IV. Reasoning, Action, and Interaction, volume 3343 of Lecture Notes in Artificial
Intelligence, pages 390–412. Springer Verlag, Heidelberg, Germany, 2005.

[24] Benjamin Kuipers. Representing Knowledge of Large-Scale Space. PhD thesis, MIT-AI TR-418,
Massachusetts Institute of Technology, Cambridge, MA, USA, May 1977.

[25] Benjamin Kuipers. The Spatial Semantic Hierarchy. Artificial Intelligence, 119:191–233, 2000.

[26] Benjamin Kuipers, Joseph Modayil, Patrick Beeson, Matt MacMahon, and Francesco Savelli.
Local metrical and global topological maps in the Hybrid Spatial Semantic Hierarchy. In
Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA
2004), New Orleans, LA, USA, April 2004.

[27] George Lakoff and Mark Johnson. Philosophy in the Flesh: The Embodied Mind and Its
Challenge to Western Thought. Basic Books, New York, NY, USA, 1999.

[28] Robert W. Marx. The TIGER system: Automating the geographic structure of the United
States census. Government Publications Review, 13(2):181–201, March–April 1986.

[29] Timothy P. McNamara. Mental representations of spatial relations. Cognitive Psychology,
18:87–121, 1986.

[30] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christopher Cianci, Adam
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Abstract

An important competence for a mobile robot system is the ability to localize and
perform context interpretation. This is required to perform basic navigation and to
facilitate local specific services. Recent advances in vision have made this modality
a viable alternative to the traditional range sensors and visual place recognition
algorithms emerged as a useful and widely applied tool for obtaining information
about robot’s position. Several place recognition methods have been proposed using
vision alone or combined with sonar and/or laser. This research calls for standard
benchmark datasets for development, evaluation and comparison of solutions. To
this end, this paper presents two carefully designed and annotated image databases
augmented with an experimental procedure and extensive baseline evaluation. The
databases were gathered in an uncontrolled indoor office environment using two
mobile robots and a standard camera. The acquisition spanned across a time range
of several months and different illumination and weather conditions. Thus, the
databases are very well suited for evaluating the robustness of algorithms with
respect to a broad range of variations, often occurring in real-world settings. We
thoroughly assessed the databases with a purely appearance-based place recogni-
tion method based on Support Vector Machines and two types of rich visual features
(global and local).

Key words: Visual place recognition, Robot topological localization, Standard
robotic benchmark
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1 Introduction

A fundamental competence for an autonomous agent is to know its position
in the world. Providing mobile robots with abilities to build an internal repre-
sentation of space and obtain robust information about their location therein
can be considered as one of the most urgent problems. The topic is vastly
researched. This resulted, over the years, in a broad range of approaches span-
ning from purely metric [27,18,63], to topological [59,58,17], and hybrid [54,12].
As robots break down the fences and start to interact with people [64] and
operate in large-scale environments [17,58], topological models are gaining
popularity for augmenting or replacing purely metric space representations.
In particular, the research on topological mapping has pushed methods for
place recognition. Scalability, loop closing, and the kidnapped robot problem
have been at the forefront of the issues to be addressed.

Traditionally, sonar and/or laser have been the sensory modalities of choice
for place recognition and topological localization [42,38]. The assumption that
the world can be represented in terms of two dimensional geometrical informa-
tion allowed for many practical implementations. Yet, the inability to capture
many aspects of complex realistic environments leads to the problem of per-
ceptual aliasing [29], and greatly limits the usefulness of purely geometrical
methods. Recent advances in vision have made this modality emerge as a natu-
ral and viable solution. Vision provides richer sensory input allowing for better
discrimination. It opens new possibilities for building cognitive systems, ac-
tively relying on semantic context. Not unimportant is the cost effectiveness,
portability and popularity of visual sensors. As a result, this research line is
attracting more and more attention, and several methods have been proposed
using vision alone [56,48,51,17], or combined with more traditional range sen-
sors [28,53,50].

In spite of large progress, vision-based localization still represents a major
challenge. First of all, visual information tends to be noisy and difficult to
interpret. The visual appearance of places varies in time because of illumina-
tion changes (day and night, artificial light on and off) and because of human
activities (furniture moved around, objects being taken out of drawers, and so
on). Thus, the solutions must be highly robust, provide good generalization
abilities and in general be adaptive. Additionally, the application puts strong

⋆ A preliminary version of the experimental evaluation reported in this work was
presented in [49]: A. Pronobis, B. Caputo, P. Jensfelt, and H. I. Christensen. A dis-
criminative approach to robust visual place recognition. In Proceedings of IROS’06.∗ Corresponding author.

Email addresses: pronobis@csc.kth.se (A. Pronobis), bcaputo@idiap.ch
(B. Caputo), patric@csc.kth.se (P. Jensfelt), hic@cc.gatech.edu
(H.I. Christensen).
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constraints on the computational complexity, and the increased resolution and
dimensionality of the visual data still constitutes a problem.

The fact that so many different parameters influence the accuracy of a vision-
based localization system is another challenge itself, especially burdensome
at the design stage. As the results depend greatly on the choice of training
and test input data, which are unstable over time, it is hard to measure the
influence of the different parameters on the overall performance of the system.
For the same reason, it becomes nearly impossible to compare fairly solu-
tions which are usually evaluated in different environments, under different
conditions, and with different assumptions. This is a major obstacle slowing
down progress in the field. There is a need for standardized benchmarks and
databases which would allow for fair comparisons, simplify the experimental
process and boost development of new solutions.

Databases are heavily exploited in the computer vision community, especially
for object recognition and categorization [25,4,3]. As the community acknowl-
edges the need for benchmarking, a lot of attention is directed towards design-
ing new datasets, reflecting the increasing capabilities of visual algorithms [45].
Also in robotics, research on Simultaneous Localization and Mapping (SLAM)
makes use of several publicly available datasets [26,40]. Still, no database
emerged as a standard benchmark for visual place recognition applied to robot
localization.

This paper aims at filling this gap, and presents a benchmark consisting of
two different image databases gathered in the same indoor environment. The
databases are augmented with an experimental procedure as well as extensive
baseline evaluation. The datasets were carefully designed and later annotated.
Three different imaging devices were used for acquisition (two mobile robot
platforms and a standard camera), resulting in data of different characteristics
and quality. In order to create a realistic and challenging test bed, the acqui-
sition process was performed in an uncontrolled typical office environment,
under various illumination and weather conditions (sunny, cloudy, night), and
over a significant span of time. All of this makes the databases very well suited
for evaluating robustness of visual place recognition algorithms, applied to the
problem of robot topological localization, in presence of different types of vari-
ations often occurring in real-world indoor settings.

An important component when providing the community with a new col-
lection of data is to provide a baseline evaluation that illustrates the na-
ture of the dataset (see Section 5.1 for explanation). We thoroughly assessed
the databases with a purely appearance-based place recognition method. The
method uses two types of image descriptors, local and global, in order to
extract rich visual information. Both descriptors have shown remarkable per-
formances, coupled with computational efficiency on challenging object recog-
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nition scenarios [31,30]. The classification step is performed using Support
Vector Machines [16] and specialized kernels are used for each descriptor. Re-
sults show that the method is able to recognize places with high precision
and robustness under varying illumination conditions, even when training on
images from one camera device and testing on another.

The rest of the paper is organized as follows: after a review of related literature
(Section 2), we discuss the problem and challenges we addressed with the
benchmark (Section 3). Then, Section 4 gives a detailed description of the data
acquisition process and scenario and presents the acquisition results. Finally,
the algorithm used for the baseline evaluation as well as the experimental
procedure are described in Section 5, and the experimental results are given
in Section 6. The paper concludes with a summary (Section 7).

2 Related work

Place recognition and topological localization are vastly researched topics in
the robotic community, where vision and laser range sensors are usually the
privileged modalities. Although laser-based solutions have proven to be suc-
cessful for certain tasks [38], their limitations inspired many researchers to turn
towards vision which nowadays becomes tractable in real-time applications.
The available methods employ either perspective [56,52,20] or omnidirectional
cameras [23,9,59,35,6,39,60]. The main differences between the approaches re-
late to the way the scene is perceived, and thus the method used to extract
characteristic features from the scene. Landmark-based techniques make use
of either artificial or natural landmarks in order to extract information about
a place. Mata et al. [34] proposed a system able to interpret information signs
through its ability to read text and recognize icons. Visually distinctive image
regions were also used as landmarks [51]. Other solutions employed mainly
local image features such as SIFT [31,6,48], SURF [8,39,60], also using the
bag-of-words approach [20,22,17], or representation based on information ex-
tracted from local patches using Kernel PCA [52]. Global features are also
commonly used for place recognition. Torralba et al. [57,56,55] suggested to
use a representation called the “gist” of the scene, which is a vector of principal
components of outputs of a bank of spatially organized filters applied to the
image. Other approaches use color histograms [59,9], gradient orientation his-
tograms [11], eigenspace representation of images [23], or Fourier coefficients
of low frequency image components [35]. Recently, several authors observed
that robustness and efficiency of the recognition system can be improved by
combining information provided by both types of visual cues (global and lo-
cal) [48,51,62]. Although vision-based localization methods are now commonly
applied, it remains extremely difficult to compare the different approaches, as
the evaluations presented by the authors usually follow different procedures
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and are performed on different sets of visual data.

There are a number of heavily used standard databases in robotics and com-
puter vision. In robotics, these databases are used mainly for testing algo-
rithms for simultaneous localization and mapping (SLAM) [26,40] and mostly
contain odometry and range sensor data. In case of the computer vision com-
munity, the effort concentrated on creating standard benchmarks for such
problems as object [25,4,45], action [33], scene [3], or texture recognition and
categorization [2]. The MIT-CSAIL Database of Objects and Scenes [3] is a
notable exception as it provides several image sequences acquired in both in-
door and outdoor environments and was used to evaluate performance of a
visual place recognition system.

This paper makes an important contribution by providing annotated data
from visual and laser range sensors together with an experimental procedure
that can be followed in order to evaluate place recognition and localization
systems. In contrast to the previously available benchmarking solutions, the
databases contain several sets of images and image sequences acquired in the
same environment under various conditions and over a significant span of time.
This makes them perfect for evaluating robustness of the algorithms under
dynamic variations that often occur in realistic settings. The introduction of
standard benchmark databases has made an impact on the research on such
problems as object categorization or simultaneous localization and mapping
(SLAM), allowing different methods to be more fairly compared in the same
scenario. The authors hope that the benchmark proposed in this paper will
similarly influence the research on visual place recognition in the context of
mobile robot localization.

3 Design strategy

This section defines and characterizes the problem that we address with the
benchmark (Section 3.1) and analyzes the difficulties and open challenges in
visual place recognition that have to be considered in a realistic scenario (Sec-
tion 3.2).

3.1 Problem Statement

Let us begin with a brief definition of a place and the place recognition problem
that we will use throughout this paper. A place can be regarded as a usually
nameable segment of a real-world environment distinguished due to different
functionality, appearance or artificial boundary. In view of this definition, the
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place recognition or identification problem can be characterized as follows.
Given a set of training sensory data, captured in each of the considered places,
build models of the places reflecting their inherent properties. Next, when
presented with new test data, unavailable during training, acquired in one
of the same places, identify the place where the acquisition was performed
(e.g. Barbara’s office) based on the knowledge encoded in the models. This is
different from the problem of place categorization where the task is to classify
test data captured in a novel place as belonging to one of the place categories
(e.g. an office). As the partition of space into different places can be based on
several criteria, here we consider a supervised scenario where the algorithm
has to distinguish between five areas of different functionality, selected by a
teacher.

This benchmark is designed to test the performance of a visual place recogni-
tion system on images acquired within an indoor office environment. As the
primary scenario, we consider the case where a place recognition system is used
to provide a mobile robot with information about its location. For this reason,
part of the data presented in this paper was acquired using cameras mounted
on mobile robot platforms. While designing the benchmark, we concentrated
on testing the ability of a visual recognition system to identify a place based
on one image only. This makes the problem harder, but also makes it possible
to perform global localization where no prior knowledge about the position
is available (e.g. in case of the kidnapped robot problem). Spatial or tem-
poral filtering can be used together with the presented methods to enhance
performance.

We concentrate on indoor environments, since in the considered scenario, they
play a crucial role, being typical spaces for the interaction between humans and
service robots or robotic assistants [64]. At the same time, office environments,
just like home environments, constitute an important class of indoor spaces
for robotic companions. In this benchmark, our aim is to provide datasets
and experimental procedures that will allow for evaluating robustness of place
recognition systems based on different types of visual cues to typical variations
that occur in an indoor environment for the considered scenario. These include
illumination changes, variations introduced by human activity and viewpoint
changes. As a consequence, instead of providing datasets spanning over a very
large portion of space, we provide image sequences acquired over a time span
of several months, under various illumination conditions and using different
devices. The proposed evaluation framework should allow for concluding that
an algorithm robust to the variations captured in the benchmark data will be
robust to similar types of variations within other indoor office environments.

The benchmark is designed for evaluating vision-based methods. We choose
vision as sensory modality for several reasons. First, the visual sensor is very
rich and, although also very noisy, provides great descriptive capabilities. This
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is crucial in indoor environments where other sensors, such as a laser range
finder, suffer from the problem of perceptual aliasing (different places look the
same [29]). Furthermore, the visual appearance of places encodes information
about their semantics, which plays a major role in enabling systems to interact
with the environment. Finally, in the era of cheap portable devices equipped
with digital cameras, it is also one of the most affordable and commonly
available solutions.

3.2 Challenges

Recognizing indoor places based on their visual appearance is a particularly
challenging task. First of all, in case of indoor environments, there is no obvious
spatial layout that once observed could be used to distinguish between differ-
ent places. Moreover, viewpoint variations cause the visual sensor to capture
different aspects of the same place, which often can only be learned if enough
training data are provided. At the same time, real-world environments are usu-
ally dynamic and their appearance changes over time. The visual recognition
system must be robust to variations introduced by changing illumination as
well as human activity. For a visual sensor, the same room might look different
during the day, during sunny weather, under direct natural illumination, and
at night with only artificial light turned on. Moreover, if the environment is
being used, the fact that people appear in the images, objects are being moved
or furniture relocated may greatly influence the performance of the system.
All these issues were taken into consideration while designing this benchmark
in order to create a realistic test bed.

4 Data Acquisition

Based on the analysis of the problem presented in the previous section, we
carefully designed and acquired two databases comprising images captured in
the same indoor environment, but using different devices: the INDECS (IN-
Door Environment under Changing conditionS) database [47] and the IDOL
(Image Database for rObot Localization) database [32]. This section describes
the resulting data acquisition procedure. In case of INDECS, we acquired im-
ages of the environment from a fixed set of points using a standard camera
mounted on a tripod. The resolution of the images is high; this makes this
database suitable for context-based object recognition. The IDOL database,
instead, consists of image sequences recorded using two mobile robot plat-
forms equipped with perspective cameras, and thus is well suited for exper-
iments with robot localization. All three devices are shown in Fig. 1. The
databases represent a different approach to the problem and can be used to
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(a) Minnie (b) Camera (c) Dumbo

Fig. 1. Devices employed in the acquisition: the two mobile robot platforms “Minnie”
(a) and “Dumbo” (c) as well as the standard camera on a tripod (b).

analyze different properties of a place recognition system. The acquisition was
performed under several different illumination settings and over a significant
span of time. Both databases are publicly available and can be downloaded
from http://www.csc.kth.se/~pronobis.

The rest of the section is organized as follows: Section 4.1 presents the acquisi-
tion scenario, as to say the environment where both databases were acquired.
Then, Section 4.2 provides a description of the INDECS database, and Sec-
tion 4.3 gives detailed information on the robot platforms and IDOL. Finally,
we perform an analysis of the obtained data in Section 4.4.

4.1 Acquisition Scenario

The acquisition was conducted within a five room subsection of a larger office
environment of the Computer Vision and Active Perception Laboratory at the
Royal Institute of Technology in Stockholm, Sweden. Each of the five rooms
represents a different type of functional area: a one-person office, a two-persons
office, a kitchen, a corridor, and a printer area (in fact a continuation of the
corridor). The function that a room fulfills determines the furniture, objects,
and activity that is likely to be found there. Places like the corridor, the printer
area and the kitchen can be regarded as public which implies that various
people may be present. On the other hand, offices were imaged usually empty
or with their owners at work. In the corridor and the printer area, furniture

8



Fig. 2. A general map of the part of the office environment that was imaged during
acquisition of the INDECS and IDOL databases. Boundaries between the five rooms
were marked with dashed lines. Dotted lines were used to draw an approximate
outline of furniture. Moreover, the location of points at which the tripod was placed
while recording the INDECS database were marked. The pictures are taken from
the database and show the interiors of the five rooms. The small arrows were used
to indicate the viewpoints at which the presented pictures were taken.

is mostly fixed and objects are less moveable. As a result, these areas were
less susceptible to variations caused by human activity in comparison to the
kitchen or the offices, where furniture (e.g. chairs) is relocated more often and
objects (e.g. cups, laptops etc.) are frequently moved.

The rooms are physically separated by sliding glass doors. The printer area
is an exception and was treated as a separate place only due to its different
functionality (the border between the corridor and the printer area was ar-
bitrarily defined). The laboratory contains additional rooms which were not
taken into consideration while creating the database. However, because of the
glass door, other parts of the environment can still be visible in the images.
Examples of pictures showing the interior of each room as well as a general
map of the environment are presented in Fig. 2.

As already mentioned, the visual data were acquired with three different de-
vices. In each case, the appearance of the rooms was captured under three
different illumination and weather conditions: in cloudy weather (natural and
artificial light), in sunny weather (direct natural light dominates), and at night
(only artificial light). Since all the rooms have windows, the influence of natural
illumination was significant. The image acquisition was spread over a period
of time of three months, for the INDECS database, and over two weeks for the
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Fig. 3. Example pictures taken from the INDECS and IDOL databases acquired with
the camera and the two robot platforms under various illumination conditions. The
pictures show the influence of illumination (especially (a) and (c)) and illustrate
the differences between images acquired in a cluttered environment using different
devices (b). Additional variability caused by natural activities in the rooms is also
apparent (presence of people, relocated objects and furniture).

IDOL database. Additionally, the INDECS database was acquired ten months
before the experiments with the robots. In this way, we captured the visual
variability that occurs in realistic environments due to varying illumination
and natural activities in the rooms. Fig. 3 presents a comparison of images
taken under different illumination conditions and using various devices.
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Fig. 4. Pictures from the INDECS database taken from several angles at the same
location in the two-persons office.

4.2 The INDECS database

The INDECS database consists of pictures of the environment described above,
gathered from different viewpoints using a standard camera mounted on a tri-
pod. We marked several points in each room (approximately one meter apart)
where we positioned the camera for each acquisition. The rough positions of
all points are shown on the map in Fig. 2. The number of points changed
with the dimension of the room, from a minimum of 9 for the one-person
office to a maximum of 32 for the corridor. At each location we acquired 12
images, one every 30◦, even when the tripod was located very close to a wall
or furniture. Examples of images taken at the same location and from sev-
eral angles are presented in Fig. 4. Images were acquired using an Olympus
C-3030ZOOM digital camera and the height of the tripod was constant and
equal to 76 cm. All images in the INDECS database were acquired with a reso-
lution of 1024x768 pixels, the auto-exposure mode enabled, flash disabled, the
zoom set to wide-angle mode, and the auto-focus enabled. In this paper, the
INDECS images were subsampled to 512x386 before being used in the exper-
iments. The images were labeled according to the position of the point where
the acquisition happened. As a consequence, images taken, for example, from
the corridor but looking into a room are labeled as the corridor. The images
were acquired across a time span of three months and under varying illumi-
nation conditions (sunny, cloudy and night). For each illumination setting, we
captured one full set of images. In total, there are 3264 images (324 for the
one-person office, 492 for the two-persons office, 648 each for the kitchen and
the printer area, and 1152 for the corridor) in the INDECS database.

4.3 The IDOL database

The IDOL database was acquired using cameras on two mobile robot plat-
forms. Both robots, the PeopleBot Minnie and the PowerBot Dumbo, were
equipped with a pan-tilt-zoom Canon VC-C4 camera, a SICK laser range
finder, and wheel encoders. However, as it can be seen from Fig. 1, the cam-
eras were mounted at different height. On Minnie, the camera was 98cm above
the floor, whereas on Dumbo it was 36cm. Furthermore, the camera on Dumbo
was tilted up approximately 13◦, to reduce the amount of floor captured in the
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images. The selected positions of the cameras result in different characteristics
of the environment being captured in the images. Due to the low placement of
the camera on Dumbo, the captured images are less susceptible to variations
introduced by human activity in the environment and direct sunlight coming
through the windows. At the same time, the camera on Minnie was able to
capture the appearance of objects located on the desks and provide more in-
formation about the semantics of a place. All images were acquired with a
resolution of 320x240 pixels, with the zoom fixed to wide-angle (roughly 45◦

horizontal and 35◦ vertical field of view), the auto-exposure and the auto-focus
modes enabled.

We followed the same procedure during image acquisition with both robot
platforms. Each robot was manually driven (average speed around 0.3-0.35m/s)
through each of the five rooms while continuously acquiring images at the rate
of five frames per second. The path was roughly planned so that the robots
could capture the visual appearance of all the rooms. For the different il-
lumination conditions (sunny, cloudy, night), the acquisition procedure was
performed twice, resulting in two image sequences acquired one after another
giving a total of six sequences for each robot platform across a span of over two
weeks. Each of the image sequences in the database is accompanied by laser
scans and odometry data. Due to the manual control, the path of the robot
was slightly different for every sequence. Examples of paths are presented in
Fig. 7, 8, and 9. Each image sequence consists of 1000-1300 frames. To au-
tomate the process of labeling the images for the supervision, the robot pose
was estimated during the acquisition process using a laser based localization
method [21]. Again, each image was labeled as belonging to one of the five
rooms based on the position from where it was taken.

4.4 Acquisition Results

Examples illustrating the properties of images that can be found in both
databases are given in Fig. 3. First of all, we can observe a significant influ-
ence of illumination. The appearance of the rooms is affected by highlights,
shadows and reflections, especially in case of strong direct sunlight. Moreover,
the fact that the auto-exposure mode was on, resulted in a lower contrast in the
informative parts of images, when the camera was directed towards a bright
window in sunny weather. At the same time, the conditions observed during
cloudy weather were much more stable and could be seen as intermediate be-
tween those during sunny weather and at night. A second important type of
variability was introduced by human presence and activities. In some cases,
people partially occluded the view. Furthermore, the fact that the environ-
ment was observed for some time, allowed to capture different configurations
of furniture or objects placed on the desks or kitchen tables. The fact that ob-
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jects could be observed in the images makes it possible to use the database in
more complex scenarios where place recognition and object recognition com-
plement each other e.g. by contextual priming [56,55] (especially in case of the
high resolution images in the INDECS database). Finally, we can compare the
images acquired using the three different devices. We see that each device cap-
tures different aspects of the same environment, mainly due to the variations
in viewpoint caused by the different heights of the cameras. The influence of
viewpoint is substantial, especially for cluttered scenes, when the camera was
close to the furniture.

For both databases, the environment was observed from multiple viewpoints.
For INDECS, the viewpoints are stable over different weather conditions, but
the appearance of the rooms is almost fully captured as the images were taken
in 12 directions. In case of IDOL, we observe changes in viewpoint due to
manual control of the robot, but since the robot was driven in a particular
direction, parts of the environment might not be observed. As previously men-
tioned, labelling was based on the position of the camera rather than contents
of the images, and acquisition was performed even close to walls or furniture.
As a result, both databases contain difficult cases, where the contents of the
image is either non-informative or is weakly associated with the label.

To summarize, despite the fact that the acquisition was performed in a rel-
atively small environment (consisting of 5 different rooms), there are several
types of variability captured which pose a challenge to a recognition system.
These range from different acquisition conditions to large viewpoint variations
across the devices. Moreover, the acquisition procedure was carefully designed,
and each single dataset offers different, but usually well specified, type of vari-
ability. As a result, the influence of different factors on the accuracy of the
system can be isolated and precisely measured. The relatively small environ-
ment does not allow for concluding that a system evaluated on the data will
offer similar absolute performance in a different environment. However, since
the data capture the influence of a large amount of variations on the appear-
ance of a standard office environment, we can expect that an algorithm robust
to those variations will be robust to similar types of variations within other
indoor office environments.

5 Baseline Evaluation

This section presents the visual place recognition system with which we as-
sessed the INDECS and IDOL databases. We applied a fully supervised,
appearance-based method. It assumes that each room is represented, dur-
ing training, by a collection of images capturing its visual appearance under
different viewpoints, at a given time and illumination. During testing, the al-
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gorithm is shown images of the same rooms, acquired under roughly similar
viewpoints but possibly under different illumination conditions and after some
time (where the time range goes from some minutes to several months). The
goal is to recognize correctly each single image seen by the system. The method
is based on a large-margin discriminative classifier, namely the Support Vector
Machines (SVMs) [16] and two different image representations. We use global
and local image features, and we combine them with SVMs through special-
ized kernels. As a result, the recognition process always consists of two steps:
feature extraction and classification.

In the rest of this section, we first motivate the decision to provide a baseline
evaluation with the presented datasets (Section 5.1). Then, we describe the
employed image representations (Section 5.2) and the classifier (Section 5.3).
Finally, we explain the procedure followed in our experiments (Section 5.4).

5.1 Motivation

An important component when providing the community with a new collec-
tion of data is to give a quantitative measure of how hard the database is.
Benchmark databases have become a very popular tool in several research
communities during the last years [25,33], because they provide at the same
time an instrument to develop new state of the art algorithms, and a way
to call attention on a research topic. When a database is used for developing
a new algorithm, it is extremely useful to be able to compare the obtained
results with those obtained by some other established technique: this permits
to understand what are the advantages of the new method over existing ap-
proaches. At the same time, presenting a new corpus together with a baseline
evaluation helps the community to quickly identify the open challenges of the
problem and therefore concentrate there their research efforts. While often the
baseline evaluation consists of a newly developed method, very often it is a
well known, off the shelf solution: again, the goal of a baseline evaluation is
not that of presenting new theory, but to provide a quantitative evaluation of
how challenging the new dataset is, coupled with a well defined experimental
protocol.

The computer vision community has been traditionally very open to the in-
troduction of publicly available databases [25,33] and associated benchmark
challenges [4]. These two tools, combined together, have heavily contributed
to set the research agenda of the last years. The robotics community has re-
cently started to acknowledge the value and power of such collections, as it is
witnessed by several successful benchmark evaluations [5,1].
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Fig. 5. The process of generating multi-dimensional receptive field histograms shown
on the example of the first-order derivatives computed at the same scale t = 4 from
the illumination channel.

5.2 Feature Extraction

The feature extraction step aims at providing a representation of the input
data that minimizes the within-class variability while at the same time max-
imizing the between-class variability. Additionally, this representation is usu-
ally more compact than raw input data and therefore allows to reduce the
computational load imposed by the classification process. Features can be de-
rived from the whole image (global features) or can be computed locally, based
on its salient parts (local features).

As environments can be described differently, depending on the considered
scale, scale-space theory appears as a suitable framework for deriving effective
representations here. Following this intuition, we chose to use two scale-space
theory based features, one global (Composed Receptive Field Histograms,
CRFH [30]) and one local (Scale Invariant Feature Transform, SIFT [31]).
The rest of the section describes briefly the two approaches.

5.2.1 Global Features: Compose Receptive Field Histograms

CRFH is a multi-dimensional statistical representation of the occurrence of
responses of several image descriptors applied to the image. This idea is illus-
trated in Fig. 5. Each dimension corresponds to one descriptor and the cells
of the histogram count the pixels sharing similar responses of all descriptors.
This approach allows to capture various properties of the image as well as
relations that occur between them.
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Multi-dimensional histograms can be extremely memory consuming and com-
putationally expensive if the number of dimensions grows. For example, a
9-dimensional histogram with 16 quantization levels per dimension contains
approximately 7 · 1010 cells. In [30], Linde and Lindeberg suggest to exploit
the fact that most of the cells are usually empty, and to store only those
that are non-zero. The histogram can be stored in a sparse form as an ar-
ray [(c1, v1), (c2, v2), . . . , (cn, vn)], where ci denotes the index of the cell con-
taining the non-zero value vi. This representation allows not only to reduce
the amount of memory required, but also to perform operations such as his-
togram accumulation and comparison efficiently. For our experiments, we built
multi-dimensional histograms using combinations of several image descriptors,
applied to the scale-space representation at various scales, namely: first- and
second-order Gaussian derivatives, gradient magnitude, Laplacian and Hessian
determinant applied to both intensity and color channels.

5.2.2 Local Features: Scale Invariant Feature Transform

The idea behind local features is to represent the appearance of an image
only around a set of characteristic points known as the interest points. The
similarity between two images is then measured by solving the correspondence
problem. Local features are known to be robust to occlusions, as the absence
of some interest points does not affect the features extracted from other local
patches.

The process of local feature extraction consists of two stages: interest point
detection and description. The interest point detector identifies a set of char-
acteristic points in the image that could be re-detected even in spite of various
transformations (e.g. rotation and scaling) and variations in illumination con-
ditions. The role of the descriptor is to extract robust features from the local
patches located at the detected points.

In this paper, we used the scale, rotation, and translation invariant Harris-
Laplace detector [36] and the commonly used SIFT descriptor [31]. Compar-
isons of local descriptors and interest point detectors, presented in [37], show
that both algorithms are highly reliable. Moreover, the SIFT descriptor has
shown to perform well for object classification ([19]) and mobile robot local-
ization ([6,20]).

5.3 Classification: Support Vector Machines

The choice of the classifier is the second key ingredient for an effective visual
place recognition system. In this paper, we chose Support Vector Machines
(SVMs) based on their state-of-the-art performances in several visual recog-
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nition domains [41,13,7]. The rest of this section reviews briefly the theory
behind the algorithm, and describes our choices for the kernel function. We
refer the readers to [16] for a thorough introduction to the subject.

5.3.1 Linear SVM

Consider the problem of separating a set of training data (x1, y1), ...(xm, ym)
into two classes, where xi ∈ ℜN is a feature vector and yi ∈ {−1, +1} its
class label. Assuming that the two classes can be separated by a hyperplane
w · x + b = 0, then the optimal hyperplane will be the one with maximum
distance to the closest points in the training set. The optimal values for w and
b can be found by solving a constrained minimization problem via Lagrange
multipliers, resulting in a classification function

f(x) = sgn

(
m∑

i=1

αiyixi · x + b

)
, (1)

where αi and b can be found efficiently using the Sequential Minimal Opti-
mization (SMO, [43]) algorithm. The xi with αi 6= 0 are called support vectors.

5.3.2 Non-linear SVM and Kernel Functions

To obtain a nonlinear classifier, one maps the data from the input space ℜN to
a higher dimensional feature space H by x → Φ(x) ∈ H, such that the mapped
data points of the two classes are linearly separable in the feature space.
Assuming there exists a kernel function K such that K(x, y) = Φ(x) · Φ(y),
a nonlinear SVM can be constructed by replacing the inner product xi · x by
the kernel function K(xi, x) in Eqn. (1). This corresponds to constructing an
optimal separating hyperplane in the feature space.

The choice of the kernel function is a key ingredient for the good performance
of SVMs; based on results reported in the literature, we chose in this paper the
χ2 kernel [15] for global features and the match kernel [61] for local features.

The χ2 kernel belongs to the family of exponential kernels, and is given by

K(x, y) = exp
{
−γχ2(x, y)

}
, χ2(x, y) =

∑
i

||xi − yi||2
||xi + yi|| . (2)

The match kernel is given by [61]
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K(Lh, Lk) =
1

nh

nh∑
jh=1

max
jk=1,...,nk

{
Kl(L

jh
h , Ljk

k )
}

, (3)

where Lh, Lk are local feature sets and Ljh
h , Ljk

k are two single local features.
The sum is always calculated over the smaller set of local features and only
some fixed amount of best matches is considered in order to exclude outliers.
The local feature similarity kernel Kl can be any Mercer kernel. We used the
RBF kernel based on the Euclidean distance for the SIFT features:

Kl(L
jh
h , Ljk

k ) = exp
{
−γ||Ljh

h −Ljk
k ||2

}
. (4)

The match kernel was introduced in [61], and despite the claim in the paper,
it is not a Mercer kernel [10]. Still, it can be shown that it statistically ap-
proximates a Mercer kernel in a way that makes it a suitable kernel for visual
applications [10]. On the basis of this finding, and of its reported effectiveness
for object categorization [41], we will use it here.

5.3.3 Multi-class SVM

The extension of SVM to multi class problems can be done mainly in two
ways:

• One-vs-all strategy. If M is the number of classes, M SVMs are trained,
each separating a single class from all remaining classes. The decision is
then based on the distance of the classified sample to each hyperplane and
the final output is the class corresponding to the hyperplane for which the
distance is largest.

• One-vs-one strategy. In this case, M(M−1)/2 two-class machines are trained
for each pair of classes. The final decision can then be taken in different
ways, based on the M(M −1)/2 outputs. A popular choice is to consider as
output of each classifier the class label and count votes for each class; the
test image is then assigned to the class that received more votes. Another
alternative is to use signed distance from the hyperplane and sum distances
for each class. Other solutions based on the idea to arrange the pairwise
classifiers in trees, where each tree node represents an SVM, have also been
proposed [44,16].

In this paper, for efficiency reasons, we will use the pairwise approach and
the voting-based method, which we found to constantly outperform the sec-
ond variant in preliminary experiments (the complexity of the SVM training
algorithm is approximately O(n2) and smaller training subsets of the binary
classifiers make the training procedure faster).
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5.4 Experimental Setup

We conducted four series of experiments in order to assess thoroughly the
INDECS and IDOL databases. For each series of experiments, we evaluated
the performance of both local and global image representations. We divided
the databases into several subsets with respect to the illumination conditions
that prevailed during acquisition and the device employed. For the INDECS
database, we considered three image sets, one for each illumination setting
(cloudy, night, sunny). Since the IDOL database consists of 12 image se-
quences, we used each full sequence as a separate set. The system was al-
ways trained in a supervised fashion on one, two or three data sets and tested
on a fourth different set. In order to test the limits of the underlying visual
recognition algorithm, we considered each image in the test set separately,
and as a final measure of performance, we used the percentage of properly
recognized images. As the number of acquired images varied across rooms,
the performance obtained for each place was considered separately during the
experiments. The final classification rate was then computed as the average
between all the rooms results. This procedure ensures that performance on
each place contributes equally to the overall result, thus avoiding the biases
towards areas with many acquired images, such as the corridor.

We started with a set of reference experiments, assessing the data acquired
under stable illumination. To achieve this, for training and testing we used
data sets acquired with the same device and under similar conditions. Next,
we increased the difficulty of the problem and tested the robustness of the
system to changing illumination conditions as well as to other variations that
may occur in real-world environments. Training and recognition were in this
case performed on data sets consisting of images captured under different illu-
mination settings and usually on different days. The third set of experiments
aimed to reveal whether a model trained on an image set acquired with one
device can be useful for solving localization problem with a different device
(and usually after some time). Finally, we checked whether the robustness of
the recognition algorithm can be increased by providing additional training
data capturing a wider spectrum of visual variability. For that, we trained
the system on two or three image sets gathered under different illumination
conditions. Additionally, before carrying out the benchmarks described above,
we conducted a set of preliminary experiments in order to select proper kernel
functions and feature extractor parameters. All the results obtained on these
experiments are reported in Section 6.

For all experiments, we used our extended implementation of Support Vector
Machines based on the libsvm software [14]. We set the value of the error
penalty C to be equal to 100 and we determined the kernel parameters via
cross-validation.
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6 Experimental Results

This section reports the results of the baseline evaluation of the INDECS
and IDOL databases, according to the procedure described in Section 5.4. We
present the results in consecutive subsections, and we give a brief summary in
Section 6.5.

As described in Section 5.4, before performing the actual benchmark, we
ran a set of preliminary experiments on the INDECS database, mainly us-
ing the global features (CRFH). We evaluated the performance of the multi-
dimensional histograms built from a wide variety of combinations of global
image descriptors listed in Section 5.2 for several scale levels and numbers of
histogram bins per dimension. A comprehensive report on the obtained results
can be found in [46]. The experiments revealed that the most valuable global
features can be extracted using non-isotropic, derivative-based descriptors,
and that chromatic cues are more susceptible to illumination variations. As
a result, here we used composed receptive field histograms of six dimensions
with 28 bins per dimension, computed from second order normalized Gaussian
derivative filters, applied to the illumination channel at two scales. The scale
levels were different for the experiments with IDOL (σ = 1 and 4) and with
INDECS (σ = 2 and 8). This was motivated by the fact that the cameras
mounted on the robots obtained images of lower quality, and their movement
introduced additional distortions.

6.1 Stable Illumination Conditions

In order to evaluate our method under stable illumination conditions, we
trained and tested the system on pairs of image sequences taken from the
IDOL database acquired one after the other using the same robot. As men-
tioned previously, we analyzed performance of both global (CRFH) and local
(SIFT) image descriptors. We did not use the INDECS database for these ex-
periments since only one set of data for each illumination setting was available.
Although the illumination conditions for both training and test images were
in this case very similar, the algorithm had to tackle other kinds of variability
such as viewpoint changes (caused mainly by the manual control of the robot)
and presence/absence of people. The results of the performed experiments are
presented in Fig. 6a,c for CRFH and in Fig. 6b,d for SIFT. For each platform
and type of illumination conditions used for training, the first bar presents
an average classification rate over the two possible permutations of the image
sequences in the training and test sets 1 . On average, the system classified

1 Training on the first sequence, testing on the second sequence, and vice versa.
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(a) Training on global features (CRFH ) extracted
from images acquired with Minnie.
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(b) Training on local features (SIFT ) extracted
from images acquired with Minnie.
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(c) Training on global features (CRFH ) extracted
from images acquired with Dumbo.
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(d) Training on local features (SIFT ) extracted
from images acquired with Dumbo.
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(e) Training on global features (CRFH ) extracted
from images acquired with the standard camera.
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(f) Training on local features (SIFT ) extracted
from images acquired with the standard camera.

Fig. 6. Average results of the first three experiments on the IDOL and INDECS
databases with both image representations. In each figure, the results are grouped
according to the type of illumination conditions under which the training images
were acquired. The bottom axes indicate the platform and illumination conditions
used for testing. The uncertainties are given as one standard deviation.
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properly 95.5% of the images acquired with Minnie and 97.3% of images ac-
quired with Dumbo when global features were used. When local features were
applied, the average recognition rates were slightly lower and equal to 94.4%
and 94.9% respectively.

Detailed results for two experiments conducted on data captured with each of
the platforms are shown in Fig. 7. The figure presents maps of the environment
with plotted paths of the robot during acquisition of the training and test
sequences used during each of the experiments. Moreover, the symbols used
to draw the test path indicate the results of recognition performed using image
acquired at each location. Each experiment started at the point marked with
the label “Start” and the arrows show the direction of driving. The position of
the furniture (plotted with gray line) is approximate and sometimes slightly
varied between the experiments. It can be observed that the errors are usually
not a result of viewpoint variations (compare the training and test paths in
the kitchen, especially in Fig. 7c,d) and mostly occur near the borders of the
rooms. This can be explained by the relatively narrow field of view of the
cameras as well as the fact that the images were not labeled according to
their content but to the position of the robot at the time of acquisition. Since
these experiments were conducted with the sequences captured under similar
conditions, we treat them as a reference for other results.

6.2 Varying Illumination Conditions

We also conducted a series of experiments aiming to test the robustness of
our method to changing illumination conditions as well as to other variations
caused by normal activities in the rooms. The experiments were conducted
on both INDECS and IDOL databases. As with the previous experiments,
the same device was used for both training and testing. This time, however,
the selected training and testing data sets consisted of images acquired under
different illumination conditions and usually on different days. Fig. 6a-d show
average results of the experiments with the image sequences from the IDOL
database acquired with both robots for each permutation of the illumination
conditions used for training and testing and both image representations (the
two middle bars for each figure and type of training conditions). The presented
classification rates obtained on the IDOL database were always averaged over
two experiments with different image sequences. Fig. 6e,f gives corresponding
results obtained on the INDECS database.

We see that, in general, the system performs best when trained on the images
acquired in cloudy weather. The explanation for this is straightforward: the
illumination conditions on a cloudy day can be seen as intermediate between
those at night (only artificial light) and on a sunny day (direct natural light
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Fig. 7. Maps of the environment with plotted paths of the robot during acquisition of
the training (black line) and test (points) sequences taken from the IDOL database
and used during the experiments with stable illumination conditions. The shape of
each point on the test path indicates the result of recognition.
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dominates). In such case, the average classification rate computed over two
testing illumination conditions (sunny and night) for both CRFH and SIFT
was equal to 84.6% and 87.3% for Dumbo, 74.5% and 75.1% for Minnie, and
81.3% and 76.4% for the INDECS database. In general, local features per-
formed slightly better than the global features (in average 71.9% vs. 72.6% for
Minnie and 80.5% vs. 83.2% for Dumbo), although it was usually not the case
for the INDECS database (in average 75.9% vs. 72.5%). Fig. 8 presents de-
tailed results for two example runs and both feature types. The errors occurred
mainly for the same reasons as in the previous experiments and additionally in
places heavily affected by the natural light e.g. when the camera was directed
towards a bright window or, in particular, large glass door in the printer area.
In such cases, the automatic exposure system with which all the cameras were
equipped caused the pictures to darken. Minnie was more susceptible to this
phenomenon due to the higher position of its camera.

6.3 Recognition Across Platforms

The third set of experiments was designed to test the portability of the ac-
quired model across different platforms. For that purpose we trained and tested
the system on image sets acquired under similar illumination conditions using
different devices. We started with the experiments on image sequences from
the IDOL database. We trained the system on the images acquired using either
Minnie or Dumbo and tested with the images captured with the other robot.
We conducted the experiments for all illumination conditions and both image
representations. The main difference between the platforms from the point of
view of our experiments lies in the height at which the cameras are mounted
(98cm for Minnie and 36cm for Dumbo). The results presented in Fig. 6a-d
indicate that our method was still able to classify correctly up to about 70%
of images for CRFH and 65% of images for SIFT. There was no clear advan-
tage of using one particular feature type. The system performed better when
trained on the images captured with Minnie. This can be explained by the
fact that the lower mounted camera on Dumbo provided less diagnostic in-
formation. It can also be observed from Fig. 9 that, in general, the additional
errors occurred when the robot was positioned close to the walls or furniture.
In such cases the height of the camera influenced the content of the images
the most.

We followed a similar procedure using the INDECS database as a source of
training data and different image sequences taken from the IDOL database
for testing. It is important to note that the acquisition procedure differed in
case of both databases, and the INDECS database was gathered ten months
before the acquisition of IDOL. The points at which the pictures were taken
were positioned approximately 1m from each other and, in case of the kitchen,
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Fig. 8. Maps of the environment with plotted paths of the robot during acquisition of
the training (black line) and test (points) sequences taken from the IDOL database
and used during the experiments with varying illumination conditions. The shape
of each point on the test path indicates the result of recognition.
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Fig. 9. Maps of the environment with plotted paths of the robot during acquisition of
the training (black line) and test (points) sequences taken from the IDOL database
and used during the experiments with recognition across platforms. The shape of
each point on the test path indicates the result of recognition.
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(a) Training on global features (CRFH ) extracted
from images acquired with Minnie.
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(b) Training on local features (SIFT ) extracted
from images acquired with Minnie.
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(c) Training on global features (CRFH ) extracted
from images acquired with Dumbo.
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(d) Training on local features (SIFT ) extracted
from images acquired with Dumbo.

Fig. 10. Performance of the system trained on two or three image sequences acquired
under different illumination conditions for both mobile platforms and image repre-
sentations. The classification rates were averaged over all possible combinations of
training and test sequences. The uncertainties are given as one standard deviation.

covered different area of the room due to reorganization of the furniture. Con-
sequently, the problem required that the algorithm was invariant not only
to various acquisition techniques but also offered great robustness to large
changes in viewpoint and the appearance of the rooms introduced by long-
time human activity. The experimental results are presented in Fig. 6e,f. We
see that the algorithm obtains a recognition performance of about 50%. While
this result is surely disappointing if compared to the 70% reported above, ob-
tained for the two robot platforms, it is still quite remarkable considering the
very high degree of variability between training and test data, and that re-
sults are significantly above chance (which in this case would be 20% as the
datasets contain images acquired in 5 rooms).

6.4 Training-based Robustness

The final series of experiments aimed at revealing whether the robustness
of the recognition algorithm can be boosted by providing additional train-
ing data capturing a wider spectrum of visual variability that might occur
in a real-world environment. In particular, we concentrated on invariance to
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changing illumination conditions as this is the kind of variability that a con-
tinuously running visual recognition system has to deal with every day. To
achieve that, we trained the system on two or three image sequences from
the IDOL database gathered under different illumination conditions, and we
evaluated the recognition performance on another, fourth, image set. The ob-
tained results for both platforms, all combinations of image sequences used
for training as well as both CRFH and SIFT are presented in Fig. 10a-d. The
darker bars indicate the results of experiments corresponding to those dis-
cussed in Section 6.1, when training was done on an image sequence acquired
under conditions similar to those used for testing. The results shown using the
brighter bars can be compared with those of the experiments under varying
illumination conditions analyzed in Section 6.2.

It is apparent that including images acquired under different conditions into
the training set improves recognition accuracy. Although the algorithm has to
incorporate much more information about each of the places into the model,
the recognition accuracy for test sets acquired under similar conditions as
those used for training is even greater than this obtained when each training
sequence was used separately (as for the experiments discussed in Section 6.1).
For example, the average recognition rate over all test sets and illumination
settings for models trained on three sequences acquired using Dumbo was
equal to 98.1% for CRFH and 97.1% for SIFT. At the same time, for the
experiments with stable illumination conditions reported in Section 6.1 (see
Fig. 6), we got only 97.3% and 94.9%. The same trend can be observed for
sequences captured using Minnie. Concluding, the ability of the algorithm
to handle large within-class variability is clearly not a limiting factor. It is
important to note, that the recognition rate for conditions which were not
used during training is also greatly improved when more training data are
provided. For example, if the system was trained using the images captured
during sunny weather and at night using Minnie, the average classification
rate for testing image sequence acquired with cloudy weather was equal to
86.95% for CRFH and 89.59% for SIFT. Consequently, the classification rate
improved by 9.9% in case of CRFH and 11.2% in case of SIFT for testing
conditions not known during training, at the same time slightly improving the
rates for testing conditions used also for training.

It has to be pointed out that due to the larger number of training images
capturing different types of variability, the number of support vectors stored
in the final model grows as well. In such case, the user pays the price of the
recognition time and the memory requirements, which in case of SVMs grow
linearly with the number of support vectors.
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6.5 Discussion

The results of the extensive experimental evaluation presented in this section
indicate that our method is able to perform place recognition using standard
visual sensors with high precision. It offers good robustness to changes in
the illumination conditions as well as to additional variations introduced by
the natural variability that occurs in real-world environments. At the same
time, there is a difference in performance of the system between the experi-
ments under stable and varying conditions, indicating that there is room for
improvement in this matter.

As the system is to be used on a robot platform, it must not only be accurate
but also efficient. For this reason we tried to provide the highest possible ro-
bustness using relatively small amount of training data acquired during only
one run. We managed to achieve a recognition time of less than 200ms per
frame on a Pentium IV 2.6 GHz using the global image representation. The
results reported in Section 6.4 indicate that it is possible to significantly im-
prove the robustness by incorporating images acquired during two or three
runs under different illumination conditions into one training set. However,
the higher performance does not come without a price. Since the number of
support vectors in such case even doubles, the recognition time increased by
about 50ms.

In all the experiments, we evaluated both global (CRFH) and local (SIFT)
image descriptors. In general, we did not find any clear advantage of using
one feature type over the other, and each representation has its strengths and
weaknesses. The global features, however, clearly outperform SIFT in terms of
efficiency, since the matching process required in order to compare two sets of
local patches is computationally expensive. The efficiency of the solution based
on local features could be improved by applying a more efficient matching
algorithm (e.g. by using a pyramid match SVM kernel [24]) or faster interest
point detector and more compact descriptor (e.g. SURF [8,39]). Since global
and local representations capture different aspects of a scene, the robustness of
the final solution can be further improved by integrating both cues as proposed
in [48,50].

7 Summary

This paper discussed the need for standard benchmarking solutions for vision-
based topological localization, with particular emphasis on visual place recog-
nition. We defined and analyzed carefully the problem, and we specified the
open challenges that need to be addressed by a realistic benchmark. We pre-
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sented two new databases, acquired on the basis of this analysis. The first,
the INDECS database, contains pictures captured with a standard camera
mounted on a tripod. The second, the IDOL database, contains image se-
quences acquired using cameras mounted on two mobile robot platforms. The
two databases were recorded within the same indoor office environment. They
capture a wide spectrum of natural variations introduced by both changing
illumination and human activity. Each database can be seen as a different ap-
proach to the problem; thus, they can be used to analyze different properties
of a place recognition system.

We assessed both databases with a large set of baseline experiments, using
a fully supervised visual place recognition system. The method employs a
large-margin discriminative classifier and two different image representations:
a local representation, based on SIFT features, and a global representation,
consisting of multidimensional histograms of receptive fields. We conducted
the experiments according to an experimental procedure designed to contain
problems of varying complexity and exploit most of the variability captured
in the datasets. The experimental procedure can be seen as a part of the
benchmark proposed in this paper. We started from experiments performed
under stable illumination settings. We then performed experiments testing the
robustness of the algorithms to changing illumination and human activity. Fi-
nally, we conducted experiments with large viewpoint variations and different
acquisition methods.

The reported results show that the method is able to recognize places with
high precision when training and testing is performed within a relatively stable
environment, or when enough training data is provided. At the same time,
there is space for improvement in the robustness to illumination and large
viewpoint variations. The database still poses a challenge to the system which
should provide stable performance in presence of variability usually observed
in real-world environments.

Finally, the dependency between the overall performance of the system and
the particular set of data becomes visible as the complexity of the problem
grows. Moreover, different methods (in this case different image descriptors)
perform differently for different types of variations. This emphasizes the need
for an extensive experimental evaluation, on a common benchmark dataset,
for comparison of different approaches. When realistic datasets are available,
more extensive evaluation can be conducted as the data can be reused, fully
exploited, and less effort is required for acquisition and annotation. The au-
thors believe that benchmarking solutions, such as the one presented in this
paper, will make an impact on the research on visual place recognition and
topological localization as was the case for other localization and visual recog-
nition problems.
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[19] G. Dorkó and C. Schmid. Object class recognition using discriminative local
features. 2005.

[20] D. Filliat. A visual bag of words method for interactive qualitative localization
and mapping. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA’07), Roma, Italy, April 2007.

[21] J. Folkesson, P. Jensfelt, and H. Christensen. Vision SLAM in the measurement
subspace. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA’05), pages 30–35, Barcelona, Spain, 2005.

[22] F. Fraundorfer, C. Engels, and D. Nistér. Topological mapping, localization
and navigation using image collections. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’07), San
Diego, CA, USA, October 2007.

[23] J. Gaspar, N. Winters, and J. Santos-Victor. Vision-based navigation
and environmental representations with an omni-directional camera. IEEE
Transactions on Robotics and Automation, 16(6), 2000.

[24] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative
classification with sets of image features. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV’05), Beijing, China,
October 2005.

32



[25] G. Griffin, A. Holub, and P. Perona. Caltech-256 Object Category Dataset.
Technical Report 7694, Caltech, 2007. Available at:
http://authors.library.caltech.edu/7694/.

[26] A. Howard and N. Roy. The Robotics Data Set Repository (Radish), 2003.
Available at: http://radish.sourceforge.net/.

[27] M. Jogan and A. Leonardis. Robust localization using an omnidirectional
appearance-based subspace model of environment. Robotics and Autonomous
Systems, 45(1):51–72, October 2003.

[28] D. Kortenkamp and T. Weymouth. Topological mapping for mobile robots
using a combination of sonar and vision sensing. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI’94), Seattle, Washington,
USA, 1994.

[29] B. Kuipers and P. Beeson. Bootstrap learning for place recognition.
In Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI’02), 2002.

[30] O. Linde and T. Lindeberg. Object recognition using composed receptive field
histograms of higher dimensionality. In Proceedings of the 17th International
Conference on Pattern Recognition (ICPR’04), Cambridge, UK, 2004.

[31] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[32] J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt. The KTH-IDOL2 database.
Technical Report CVAP304, Kungliga Tekniska Högskolan, CVAP/CAS,
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Multi-modal Semantic
Place Classification

Abstract

The ability to represent knowledge about space and its position
therein is crucial for a mobile robot. To this end, topological and
semantic descriptions are gaining popularity for augmenting purely
metric space representations. In this paper we present a multi-modal
place classification system that allows a mobile robot to identify
places and recognize semantic categories in an indoor environment.
The system effectively utilizes information from different robotic sen-
sors by fusing multiple visual cues and laser range data. This is
achieved using a high-level cue integration scheme based on a Sup-
port Vector Machine (SVM) that learns how to optimally combine and
weight each cue. Our multi-modal place classification approach can
be used to obtain a real-time semantic space labeling system which
integrates information over time and space. We perform an extensive
experimental evaluation of the method for two different platforms and
environments, on a realistic off-line database and in a live experiment
on an autonomous robot. The results clearly demonstrate the effec-
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tiveness of our cue integration scheme and its value for robust place
classification under varying conditions.

KEY WORDS—recognition, sensor fusion, localization,
multi-modal place classification, sensor and cue integration,
semantic annotation of space

1. Introduction

The most fundamental competence for an autonomous mobile
agent is to know its position in the world. This can be rep-
resented in terms of raw metric coordinates, topological loca-
tion, or even semantic description. Recently, there has been a
growing interest in augmenting (or even replacing) purely met-
ric space representations with topological and semantic place
information. Several attempts have been made to build au-
tonomous cognitive agents able to perform human-like tasks1.
Enhancing the space representation to be more meaningful
from the point of view of spatial reasoning and human–robot
interaction have been at the forefront of the issues being ad-
dressed (Kuipers 2006� Topp and Christensen 2006� Zender et

1. See, e.g., CoSy (Cognitive Systems for Cognitive Assistants) http://www.
cognitivesystems.org/ or COGNIRON (the cognitive robot companion) http://
www.cogniron.org.
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al. 2008). Indeed, in the concrete case of indoor environments,
the ability to understand the existing topological relations and
associate semantic terms such as “corridor” or “office” with
places, gives a much more intuitive idea of the position of the
robot than global metric coordinates. In addition, the semantic
information about places can extend the capabilities of a robot
in other tasks such as localization (Rottmann et al. 2005), ex-
ploration (Stachniss et al. 2006), or navigation (Galindo et al.
2005).

Nowadays, robots are usually equipped with several sen-
sors providing both geometrical and visual information about
the environment. Previous work on place classification relied
on sonar and/or laser range data as robust sensory modalities
(Mozos et al. 2005). However, the advantages of geometric so-
lutions, such as invariance to visual variations and low dimen-
sionality of the processed information, quickly became their
weaknesses. The inability to capture many aspects of com-
plex environments leads to the problem of perceptual alias-
ing (Kuipers and Beeson 2002) and can limit the usefulness
of such methods for topological and semantic mapping. Re-
cent advances in vision have made this modality emerge as
a natural and viable alternative. Vision provides richer sen-
sory input allowing for better discrimination. Moreover, a large
share of the semantic description of a place is encoded in its vi-
sual appearance. However, visual information tends to be noisy
and difficult to interpret as the appearance of places varies
over time due to changing illumination and human activity.
At the same time, the visual variability within place classes is
huge, making the semantic place classification a challenging
problem. Clearly, each modality has its own characteristics.
Interestingly, the weaknesses of one often correspond to the
strengths of the other.

In this paper, we propose an approach to semantic place
classification which combines the stability of geometrical so-
lutions with the versatility of vision. First, we present a recog-
nition system implemented on a mobile robot platform inte-
grating multiple cues and modalities. The system is able to per-
form robust place classification under different types of vari-
ations that occur in indoor environments over a span of time
of several months. This comprises variations in illumination
conditions and in configuration of furniture and small objects.
The system relies on different types of visual information pro-
vided by global and local descriptors and on geometric cues
derived from laser range scans. For the vision channel we ap-
ply the Scale-Invariant Feature Transform (SIFT) (Lowe 2004)
and Composed Receptive Field Histograms (CRFH) (Linde
and Lindeberg 2004). For the laser channel we use the features
proposed in Mozos et al. (2005, 2007).

We combine the cues using a new high-level accumulation
scheme, which builds on our previous work (Nilsback and Ca-
puto 2004� Pronobis and Caputo 2007). We train for each cue
a large margin classifier which outputs a set of scores encod-
ing confidence of the decision. Integration is then achieved by
feeding the scores to a Support Vector Machine (SVM) (Cris-

tianini and Shawe-Taylor 2000). Such an approach allows to
optimally combine cues, even obtained using different types
of models, with a complex, possibly non-linear function. We
call this algorithm the SVM-based Discriminative Accumula-
tion Scheme (SVM-DAS).

Finally, we show how to build a self-contained semantic
space labeling system, which relies on multi-modal place clas-
sification as one of its components. The system is implemented
as a part of an integrated cognitive robotic architecture2 and
runs on-line on a mobile robot platform. While the robot ex-
plores the environment, the system acquires evidence about the
semantic category of the current area produced by the place
classification component and accumulates them both over time
and space. As soon as the system is confident about its deci-
sion, the area is assigned a semantic label. We integrate the sys-
tem with a Simultaneous Localization and Mapping (SLAM)
algorithm and show how a metric and topological space repre-
sentation can be augmented with a semantic description.

We evaluated the robustness of the presented methods in
several sets of extensive experiments. We conducted experi-
ments on two different robot platforms, in two different en-
vironments and for two different scenarios. First, we run a
series of off-line experiments of increasing difficulty on the
IDOL2 database (Luo et al. 2006) to precisely measure the
performance of the place classification algorithm in presence
of different types of variations. These ranged from short-term
visual variations caused by changing illumination to long-term
changes which occurred in the office environment over sev-
eral months. Second, we run a live experiment where a robot
performs SLAM and semantic labeling in a new environment
using prebuilt models of place categories. Results show that
integrating different visual cues, as well as different modali-
ties, allows to greatly increase the robustness of the recognition
system, achieving high accuracy under severe dynamic varia-
tions. Moreover, the place classification system, when used in
the framework of semantic space labeling, can yield a fully
correct semantic representation even for a new, unknown envi-
ronment.

The rest of the paper is organized as follows. After a re-
view of the related literature (Section 2), Section 3 presents
the main principle behind our multi-modal place classification
algorithm and describes the methods used to extract each cue.
Then, Section 4 gives details about the new cue integration
scheme and Section 5 describes the architecture of the seman-
tic labeling system. Finally, Section 6 presents detailed exper-
imental evaluation of the place classification system and Sec-
tion 7 reports results of the live experiment with semantic la-
beling of space. The paper concludes with a summary and pos-
sible avenues for future research.

2. See CoSy (Cognitive Systems for Cognitive Assistants) http://www.
cognitivesystems.org/ and CAST (The CoSy Architecture Schema Toolkit)
http://www.cs.bham.ac.uk/research/projects/cosy/cast/.
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2. Related Work

Place classification is a vastly researched topic in the robotic
community. Purely geometric solutions based on laser range
data have proven to be successful for certain tasks and sev-
eral approaches were proposed using laser scanners as the only
sensors. Koenig and Simmons (1998) used a pre-programmed
routine to detect doorways from range data. In addition, Al-
thaus and Christensen (2003) used line features to detect corri-
dors and doorways. In their work, Buschka and Saffiotti (2002)
partitioned grid maps of indoor environments into two dif-
ferent classes of open spaces, i.e. rooms and corridors. The
division of the open spaces was done incrementally on local
submaps. Finally, Mozos et al. (2005) applied boosting to cre-
ate a classifier based on a set of geometrical features extracted
from range data to classify different places in indoor envi-
ronments. A similar idea was used by Topp and Christensen
(2006) to describe regions from laser readings.

The limitations of geometric solutions inspired many re-
searchers to turn towards vision which nowadays becomes
tractable in real-time applications. The proposed methods em-
ployed either perspective (Torralba et al. 2003� Tamimi and
Zell 2004� Filliat 2007) or omnidirectional cameras (Gaspar
et al. 2000� Ulrich and Nourbakhsh 2000� Blaer and Allen
2002� Menegatti et al. 2004� Andreasson et al. 2005� Murillo
et al. 2007� Valgren and Lilienthal 2008). The main differ-
ences between the approaches relate to the way the scene is
perceived, and thus the method used to extract characteristic
features from the scene. Landmark-based techniques make use
of either artificial or natural landmarks in order to extract in-
formation about a place. Siagian and Itti (2007) relied on vi-
sually distinctive image regions as landmarks. Many other so-
lutions employed local image features, with SIFT being the
most frequently applied (Se et al. 2001� Lowe 2004� Andreas-
son et al. 2005� Pronobis and Caputo 2007). Zivkovic et al.
(2005) used the SIFT descriptor to build a topological repre-
sentation by clustering a graph representing relations between
images. Other approaches used the bag-of-words technique
(Filliat 2007� Fraundorfer et al. 2007), the SURF features (Bay
et al. 2006� Murillo et al. 2007� Valgren and Lilienthal 2008),
or representation based on information extracted from local
patches using Kernel PCA (Tamimi and Zell 2004). Global
features are also commonly used for place recognition. Tor-
ralba et al. (Torralba and Sinha 2001� Torralba et al. 2003�
Torralba 2003) suggested to use a representation called the
“gist” of a scene, which is a vector of principal components
of outputs of a bank of spatially organized filters applied to
the image. Other approaches use color histograms (Ulrich and
Nourbakhsh 2000� Blaer and Allen 2002), gradient orientation
histograms (Bradley et al. 2005), eigenspace representation of
images (Gaspar et al. 2000), or Fourier coefficients of low-
frequency image components (Menegatti et al. 2004).

In all of the previous approaches only one modality is used
for the recognition of places. Recently, several authors ob-

served that robustness and efficiency of the recognition sys-
tem can be improved by combining information provided by
different visual cues. Siagian and Itti (2007) and Weiss et al.
(2007) used a global representation of the images together with
local visual landmarks to localize a robot in outdoor environ-
ments. Pronobis and Caputo (2007) used two cues composed
of global and local image features to recognize places in in-
door environments. The cues were combined using discrimi-
native accumulation. Here, we extend this approach by inte-
grating information provided by a laser range sensor using a
more sophisticated algorithm.

Other approaches also employed a combination of different
sensors, mainly laser and vision. Tapus and Siegwart (2005)
used an omnidirectional camera and two lasers covering 360�
field of view to extract fingerprints of places for topological
mapping. This approach was not used for extracting seman-
tic information about the environment. Posner et al. (2007)
and Douillard et al. (2007) relied on range data and vision
for recognition of objects in outdoor environments (e.g. grass,
walls, or cars). Finally, Rottmann et al. (2005) used a combina-
tion of both modalities to categorize places in indoor environ-
ments. Each observation was composed of a set of geometrical
features and a set of objects found in the scene. The geomet-
rical features were calculated from laser scans and the objects
were detected using Haar-like features from images. The ex-
tracted information was integrated at the feature level. In con-
trast, the method presented in this work learns how to combine
and weigh outputs of several classifiers, keeping features and
therefore the information from different modalities separate.

Various cue integration methods have been proposed in the
robotics and machine learning community (Poggio et al. 1985�
Matas et al. 1995� Triesch and Eckes 1998� Nilsback and Ca-
puto 2004� Tapus and Siegwart 2005� Pronobis and Caputo
2007). These approaches can be described according to vari-
ous criteria. For instance, Clark and Yuille (1990) suggest to
classify them into two main groups, weak coupling and strong
coupling. Assuming that each cue is used as input of a dif-
ferent classifier, weak coupling is when the output of two or
more independent classifiers are combined. Strong coupling
is when the output of one classifier is affected by the output
of another classifier, so that their outputs are no longer inde-
pendent. Another possible classification is into low-level and
high-level integration methods, where the emphasis is on the
level at which integration happens. We call low-level integra-
tion methods those algorithms where cues are combined to-
gether at the feature level, and then used as input to a single
classifier. This approach has been used successfully for object
recognition using multiple visual cues (Matas et al. 1995), and
for topological mapping using multiple sensor modalities (Ta-
pus and Siegwart 2005). In spite of remarkable performances
for specific tasks, there are several drawbacks of the low-level
methods. First, if one of the cues gives misleading information,
it is quite probable that the new feature vector will be adversely
affected influencing the whole performance. Second, we can
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Fig. 1. Architecture of the multi-modal place classification system.

expect the dimension of such a feature vector to increase as
the number of cues grow, and each of the cues needs to be
used even if one would allow for correct classification. This
implies longer learning and recognition times, greater mem-
ory requirements, and possible curse of dimensionality effects.
Another strategy is to keep the cues separated and to integrate
the outputs of individual classifiers, each trained on a different
cue (Poggio et al. 1985� Nilsback and Caputo 2004� Pronobis
and Caputo 2007). We call such algorithms high-level integra-
tion methods, of which voting is the most popular (Duda et al.
2001). These techniques are more robust with respect to noisy
cues or sensory channels, allow the use of different classifiers
adapted to the characteristics of each single cue and decide on
the number of cues that should be extracted and used for each
particular classification task (Pronobis and Caputo 2007). In
this paper, we focus on a weak coupling, high-level integration
method called accumulation. The underlying idea is that infor-
mation from different cues can be summed together, thus ac-
cumulated. The idea was first proposed in probabilistic frame-
work by Poggio et al. (1985) and further explored by Aloi-
monos and Shulman (1989). The method was then extended
to discriminative methods in Nilsback and Caputo (2004) and
Pronobis and Caputo (2007).

3. Multi-modal Place Classification

The ability to integrate multiple cues, possibly extracted from
different sensors, is an important skill for a mobile robot. Dif-
ferent sensors usually capture different aspects of the environ-
ment. Therefore using multiple cues leads to obtaining a more
descriptive representation. The visual sensor is an irreplace-
able source of distinctive information about a place. How-
ever, this information tends to be noisy and difficult to analyze

due to the susceptibility to variations introduced by chang-
ing illumination and everyday activities in the environment.
At the same time, most recent robotic platforms are equipped
with a laser range scanner which provides much more stable
and robust geometric cues. These cues however, are unable
to uniquely represent the properties of different places (per-
ceptual aliasing) (Kuipers and Beeson 2002). Clearly perfor-
mance could increase if different cues were combined effec-
tively. Note that even alternative interpretations of the infor-
mation obtained by the same sensor can be valuable, as we
will show experimentally in Section 6.

This section describes our approach to multi-modal place
classification. Our method is fully supervised and assumes that
during training, each place (room) is represented by a collec-
tion of labeled data which captures its intrinsic visual and geo-
metric properties under various viewpoints, at a fixed time and
illumination setting. During testing, the algorithm is presented
with data samples acquired in the same places, under roughly
similar viewpoints but possibly under different conditions (e.g.
illumination), and after some time (where the time range goes
from some minutes to several months). The goal is to recog-
nize correctly each single data sample provided to the system.

The architecture of the system is illustrated in Figure 1. We
see that there is a separate path for each cue. We use two dif-
ferent visual cues corresponding to two types of image fea-
tures (local and global) as well as simple geometrical fea-
tures extracted from laser range scans. Each path consists of
two main building blocks: a feature extractor and a classifier.
Thus, separate decisions can be obtained for each of the cues
in case only one cue is available. Alternatively, our method
could decide when to acquire additional information (e.g. only
in difficult cases) (Pronobis and Caputo 2007). In cases when
several cues are available, the outputs encoding the confidence
of the single-cue classifiers are combined using an efficient
discriminative accumulation scheme.
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The rest of this section gives details about the algorithms
used to extract and classify each of the cues for the vision-
based paths (Section 3.1) and laser-based path (Section 3.2).
A comprehensive description of the algorithms used for cue
integration is given in Section 4.

3.1. Vision-based Place Classification

As a basis for the vision-based channel, we used the place
recognition system presented in Pronobis et al. (2006) and
Pronobis and Caputo (2007), which is built around a SVM
classifier (Cristianini and Shawe-Taylor 2000) and two types
of visual features, global and local, extracted from the same
image frame. We used CRFH (Linde and Lindeberg 2004) as
global features, and SIFT (Lowe 2004) as local features. Both
have already been proved successful in the domain of vision-
based place recognition (Pronobis et al. 2006� Pronobis and
Caputo 2007) and localization and mapping (Se et al. 2001�
Andreasson et al. 2005).

CRFHs are a sparse multi-dimensional statistical represen-
tation of responses of several image filters applied to the input
image. Following Pronobis et al. (2006), we used histograms
of six dimensions, with 28 bins per dimension, computed from
second-order normalized Gaussian derivative filters applied to
the illumination channel at two scales. The SIFT descriptor
instead represents local image patches around interest points
characterized by coordinates in the scalespace in the form of
histograms of gradient directions. To find the coordinates of
the interest points, we used a scale and affine invariant region
detector based on the difference-of-Gaussians (DoG) operator
(Rothganger et al. 2006).

We used SVMs for creating models from both visual cues.
A review of the theory behind SVMs can be found in Sec-
tion 4.1. In case of SVMs, special care must be taken in choos-
ing an appropriate kernel function. Here we used the �2 kernel
(Chapelle et al. 1999) for CRFH, and the match kernel pro-
posed by Wallraven et al. (2003) for SIFT. Both have been
used in our previous work on SVM-based place recognition,
obtaining good performances.

3.2. Laser-based Place Classification

In addition to the visual channel, we used a laser range sensor.
A single two-dimensional (2D) laser scan covered a field of
view of 180� in front of the robot. A laser observation z �
�b0� � � � � bM�1� contains a set of beams bi , in which each beam
bi consists of a tuple ��i � di �, where �i is the angle of the beam
relative to the robot and di is the length of the beam.

For each laser observation, we calculated a set of simple
geometric features represented by single real values. The fea-
tures were introduced for place classification by Mozos et al.
(2005) where laser observations covering a 360� field of view

were used. The complete set of features consists of two sub-
sets. The first subset contains geometrical features calculated
directly from the laser beams. The second subset comprises
geometrical features extracted from a polygon approximation
of the laser observation. This polygon is created by connecting
the end points of the beams. The selection of features is based
on the results presented in Mozos et al. (2005, 2007).

As classifiers for the laser-based channel, we tried both
AdaBoost (Freund and Schapire 1995), following the work in
Mozos et al. (2007), and SVMs. In the rest of the paper, we will
refer to the two laser-based models as L-AB and L-SVM, re-
spectively. For the geometric features, we used a Radial Basis
Function (RBF) kernel (Cristianini and Shawe-Taylor 2000)
with SVMs, chosen through a set of reference experiments3.
Both classifiers were benchmarked on the laser-based place
classification task. Results presented in Section 6.2 show an
advantage of the more complex SVM classifier.

4. Discriminative Cue Integration

This section describes our approach to cue integration from
one or multiple modalities. We propose an SVM-DAS, a tech-
nique performing non-linear cue integration by discriminative
accumulation. For each cue, we train a separate large mar-
gin classifier which outputs a set of scores (outputs), encod-
ing the confidence of the decision. We achieve integration
by feeding the scores to an SVM. Compared to previous ac-
cumulation methods (Poggio et al. 1985� Caputo and Dorko
2002� Nilsback and Caputo 2004� Pronobis and Caputo 2007),
SVM-DAS gives several advantages: (a) discriminative ac-
cumulation schemes achieve consistently better performances
than probabilistic ones (Poggio et al. 1985� Caputo and Dorko
2002), as shown in Nilsback and Caputo (2004)� (b) compared
with previous discriminative accumulation schemes (Nilsback
and Caputo 2004� Pronobis and Caputo 2007), our approach
accumulates cues with a more complex, possibly non-linear
function, by using the SVM framework and kernels (Cristian-
ini and Shawe-Taylor 2000). Such an approach makes it pos-
sible to integrate outputs of different classifiers such as SVM
and AdaBoost. At the same time, it learns the weight for each
cue very efficiently, therefore making it possible to accumulate
large numbers of cues without computational problems.

In the rest of the section we first sketch the theory behind
SVMs (Section 4.1), a crucial component in our approach. We
then describe the Generalized Discriminative Accumulation
Scheme (G-DAS� see Pronobis and Caputo (2007) and Sec-
tion 4.2) on which to a large extent we build. Finally, we in-
troduce the new algorithm and discuss its advantages in Sec-
tion 4.3.

3. In the case of AdaBoost, we constructed a multi-class classifier by arrang-
ing several binary classifiers into a decision list in which each element corre-
sponded to one specific class.
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4.1. Support Vector Machines

Consider the problem of separating the set of labeled train-
ing data ��1� y1�� � � � � ��n� yn�� � � � � ��N � yN � into two classes,
where �n � 	L is a feature vector and yn � ��1�
1� its class
label. Assuming that the two classes can be separated by a hy-
perplane in some Hilbert space�, then the optimal separating
hyperplane is the one which has maximum distance to the clos-
est points in the training set resulting in a discriminant function

f ��� �
N�

n�1

�n yn���n���
 ��

The classification result is then given by the sign of f ���. The
values of �n and � are found by solving a constrained min-
imization problem, which can be done efficiently using the
SMO algorithm (Platt 1999). Most of the �n’s take the value
of zero� those �n with non-zero �n are the “support vectors”.
In case where the two classes are non-separable, the optimiza-
tion is formulated in such a way that the classification error is
minimized and the final solution remains identical. The map-
ping between the input space and the usually high-dimensional
feature space� is done using kernels ���n���.

The extension of SVM to multi-class problems can be
done in several ways. Here we mention three approaches used
throughout the paper:

1. Standard one-against-all (OaA) strategy. If M is the
number of classes, M SVMs are trained, each separat-
ing a single class from all other classes. The decision
is then based on the distance of the classified sample to
each hyperplane, and the sample is assigned to the class
corresponding to the hyperplane for which the distance
is largest.

2. Modified OoA strategy. In Pronobis and Caputo (2007),
a modified version of the OaA principle was proposed.
The authors suggested to use distances to precomputed
average distances of training samples to the hyperplanes
(separately for each of the classes), instead of the dis-
tances to the hyperplanes directly. In this case, the sam-
ple is assigned to the class corresponding to the hyper-
plane for which the distance is smallest. Experiments
presented in this paper and in Pronobis and Caputo
(2007) show that in many applications this approach out-
performs the standard OaA technique.

3. One-against-one (OaO) strategy. In this case, M�M �
1�	2 two-class SVMs are trained for each pair of classes.
The final decision can then be taken in different ways,
based on the M�M � 1�	2 outputs. A popular choice is
to consider as output of each classifier the class label
and count votes for each class� the test image is then
assigned to the class that received more votes.

SVMs do not provide any out-of-the-box solution for esti-
mating confidence of the decision� however, it is possible to
derive confidence information and hypotheses ranking from
the distances between the samples and the hyperplanes. In the
work presented in this paper, we applied the distance-based
methods proposed by Pronobis and Caputo (2007), which
define confidence as a measure of unambiguity of the final
decision related to the differences between the distances cal-
culated for each of the binary classifiers.

4.2. Generalized Discriminative Accumulation Scheme

G-DAS was first proposed by Pronobis and Caputo (2007),
as a more effective generalization of the algorithm presented
in Nilsback and Caputo (2004). It accumulates multiple cues,
possibly from different modalities, by turning classifiers into
experts. The basic idea is to consider real-valued outputs of a
multi-class discriminative classifier (e.g. SVM) as an indica-
tion of a soft decision for each class. Then, all of the outputs
obtained from the various cues are summed together, there-
fore linearly accumulated. Specifically, suppose we are given
M classes and, for each class, a set of Nm training samples
���m�n�Nm

n�1�M
m�1. Suppose also that, from each sample, we ex-

tract a set of T different cues ��t��m�n��Tt�1. The goal is to per-
form recognition using all of them. The G-DAS algorithm con-
sists of two steps:

1. Single-cue Models. From the original training set
���m�n�Nm

n�1�M
m�1, containing samples belonging to all M

classes, define T new training sets ���t��m�n��Nm
n�1�M

m�1,
t � 1� � � � � T , each relative to a single cue. For each new
training set train a multi-class classifier. Then, given a
test sample �, for each of the T single-cue classifiers
estimate a set of outputs ��t�
 ��t�����V
�1 reflecting the
relation of the sample to the model. In the case of the
SVMs with standard OaO and OaA multi-class exten-
sions, the outputs would be values of the discriminant
functions learned by the SVM algorithm during train-
ing, i.e. �t�
 ��t���� � ft�
 ��t����, 
 � 1� � � � � V , and
V � M�M � 1�	2 for OaO or V � M for OaA.

2. Discriminative Accumulation. After all the outputs are
computed for all the cues, combine them with different
weights by a linear function:

�
 ��� �
T�

t�1

� t�t�
 ��t����� � t � 	
� 
 � 1� � � � � V �

The final decision can be estimated with any method
commonly used for multi-class, single-cue SVM.

An important property of accumulation is the ability to per-
form correct classification even when each of the single cues
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Fig. 2. A real example of test image misclassified by each of the single cues, but classified correctly using G-DAS.

gives misleading information. This behavior is illustrated on a
real example in Figure 2. Despite these advantages, G-DAS
presents some potential limitations: First, it uses only one
weight for all outputs of each cue. This simplifies the para-
meter estimation process (usually, an extensive search is per-
formed to find the coefficients �� t�Tt�1), but also constrains the
ability of the algorithm to adapt to the properties of each single
cue. Second, accumulation is obtained via a linear function,
which might not be sufficient in case of complex problems.
The next section shows how our new accumulation scheme,
SVM-DAS, addresses these issues.

4.3. SVM-based Discriminative Accumulation Scheme

The SVM-DAS accumulates the outputs generated by single-
cue classifiers by using a more complex, possibly non-linear
function. The outputs are used as an input to an SVM, and the
parameters of the integration function are learned during the
optimization process, for instance using the SMO algorithm
(Platt 1999). These characteristics address the potential draw-
backs of G-DAS discussed in the previous section.

More specifically, the new SVM-DAS accumulation func-
tion is given by

�u��� �
N�

n�1

�u�n yn���n���
 �u� u � 1� � � � �U�

where � is a vector containing all the outputs for all T cues:

� �
�
��1�
 ��1�����V1


�1� � � � � ��T�
 ��T �����VT

�1

�
�

The parameters �u�n , yn, �u , and the support vectors �n are in-
ferred from the training data either directly or efficiently dur-
ing the optimization process. The number of the final outputs
U and the way of obtaining the final decision depends on the
multi-class extension used with SVM-DAS. We use the OaO
extension throughout the paper for which U � M�M � 1�	2.

The non-linearity is given by the choice of the kernel func-
tion �, thus in the case of the linear kernel the method is still

linear. In this sense, SVM-DAS is more general than G-DAS,
while it preserves all of its important properties (e.g. the ability
to give correct results for two misleading cues, see Figure 2).
Also, for SVM-DAS each of the integrated outputs depend on
all the outputs from single-cue classifiers, and the coefficients
are learned optimally. Note that the outputs �t�
 ��t���� can
be derived from a combination of different large margin clas-
sifiers, and not only from SVM4.

5. Place Classification for Semantic Space
Labeling

One of the applications of a place classification system is
semantic labeling of space. This section provides a brief
overview of the problem and describes how we employed our
multi-modal place classification method to build a semantic
labeling system. We evaluated the system in a live experiment
described in Section 7.

5.1. Semantic Labeling of Space

The problem of semantic labeling can be described as as-
signing meaningful semantic descriptions (e.g. “corridor” or
“kitchen”) to areas in the environment. Typically, semantic la-
beling is used as a way of augmenting the internal space repre-
sentation with additional information. This can be used by the
agent to reason about space and to enhance communication
with a human user. In case of most typical environments, it
is sufficient to distinguish between semantic categories which
are usually associated with rooms (Zender et al. 2007), such
as “office”, “meeting room” or “corridor”. It is labeling at this
level that we will discuss in this paper.

4. SVM-DAS can be seen as a variation of ensemble learning methods that em-
ploy multiple models to improve the recognition performance. The key reason
why ensemble algorithms obtain better results is because the individual clas-
sifiers make errors on different data points. Typically, different training data is
used for each classifier (Polikar 2006). In our experiments, we use data repre-
senting different types of information, e.g. obtained using different sensors.
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Fig. 3. Architecture of the semantic space labeling system based on place classification (LTM: Long-Term Memory� STM:
Short-Term Memory).

As will be shown through experiments in Sections 6 and 7,
the place classification system described in this paper can yield
a place class with high accuracy given a single sample of multi-
modal data (e.g. one image and a laser scan). However, when
used for semantic labeling, the algorithm is requested to pro-
vide a label for the whole area under exploration. At the same
time, the system must be resilient and able to deal with such
problems as temporary lack of informative cues, continuous
stream of similar information or long-term occlusions. Given
that the system is operating on a mobile robot, crude infor-
mation about its movement is available from wheel encoders.
This information can be used to ensure robustness to the typ-
ical variations that occur in the environment but also to the
problems mentioned above. Finally, the system should be able
to measure its own confidence and restrain from making a
decision until some confidence level is reached. All of these
assumptions and requirements have been taken into consider-
ation while designing the system described in the following
section.

5.2. Architecture of the System

The architecture of our system is presented in Figure 3. The
system relies on three sensor modalities typically found on a
mobile robot platform: a monocular camera, a single 2D laser
scanner, and wheel encoders. The images from the camera, to-
gether with the laser scans are used as an input for the multi-
modal place classification component. For each pair of data
samples, place classification provides its beliefs about the se-
mantic category to which the samples belong. These beliefs

are encoded in the integrated outputs as discussed in Section 4.
Moreover, the confidence of the decision is also measured and
provided by the classification component.

A labeling system should provide a robust and stable out-
put over the whole area. Since the sensors employed are not
omni-directional, it is necessary to accumulate and fuse infor-
mation over time. Moreover, the data that the robot gathers are
not evenly spread over different viewpoints. As a possible so-
lution, we propose to use a confidence-based spatio-temporal
accumulation method. The principle behind the method is il-
lustrated in Figure 4. As the robot explores the environment, it
moves with a varying speed. The robot has information about
its own movement (odometry) provided by the wheel encoders.
As errors accumulate over time, this information can only be
used to estimate relative movement rather than absolute posi-
tion. This is sufficient for our application. The spatio-temporal
accumulation process creates a sparse histogram along the ro-
bot pose trajectory given by the odometry and described by the
metric position (x , y) and heading (� ) as shown in Figure 4.
The size of the histogram bins are adjusted so that each bin
roughly corresponds to a single viewpoint. Then, as the robot
moves, the beliefs about the current semantic category accu-
mulate within the bins as in the case of G-DAS (with equal
weights). This is what we call the temporal accumulation. It
prevents a single viewpoint from becoming dominant due to
long-term observation. Since each viewpoint observed by the
robot will correspond to a different bin, performing accumula-
tion across the bins (this time spatially) allows to generate the
final outputs to which each viewpoint contributes equally. In
order to exclude most of the misclassifications before they get
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Fig. 4. Illustration of the spatio-temporal accumulation
process. As the robot explores the environment, the beliefs col-
lected on the way accumulate over time within the bin corre-
sponding to the current pose (x , y, � ) and over space in differ-
ent bins.

accumulated, we filter the decisions based on the confidence
value provided by the place classification component. More-
over, as the odometry information is unreliable in the long
term, the contents of bins visited a certain amount of view-
points ago, are invalidated. Note that semantic labeling is an
application of the method presented in this paper and not the
main focus of the paper. The accumulation scheme we present
here builds on the ideas of discriminative accumulation and
confidence estimation to further illustrate their usefulness. If
the emphasis was on labeling, more advanced methods based
on Hidden Markov Models (Rottmann et al. 2005), probabilis-
tic relaxation (Stachniss et al. 2007) or Conditional Random
Fields (Douillard et al. 2007) should be taken into consid-
eration. The advantages of our method are seamless integra-
tion with other components of the system and simplicity (the
method does not require training or making assumptions on
the transition probabilities between locations or areas).

The accumulation process ensures robustness and stabil-
ity of the generated label for a single area. However, another
mechanism is required to provide the system with information
about area boundaries. This is required for the accumulation
process not to fuse the beliefs across different areas. Here, we
propose two solutions to that problem. As described in the pre-
vious sections, we can assume that each room of the environ-
ment should be assigned one semantic label. In the case of
indoor environments, rooms are usually separated by a door
or other narrow openings. Thus, as one solution, we propose
to use a simple laser-based door detector which generates hy-
potheses about doors based on the width of the opening which
the robot passes. Such a simple algorithm will surely gener-
ate a lot of false positives. However, this does not cause prob-
lems in the presented architecture as false positives only lead
to oversegmentation. This is a problem mainly for other com-
ponents relying on precise segmentation rather than for the la-
beling process itself. In fact, the labeling system could be used

to identify false doors and improve the segmentation by look-
ing for directly connected areas classified as being of the same
category.

As a second solution, we propose to use another localiza-
tion and mapping system in order to generate the space repre-
sentation which will then be augmented with semantic labels.
Here we take the multi-layered approach proposed in Zender
et al. (2008). The method presented by Zender et al. (2008)
builds a global metric map as the first layer and a navigation
graph as the second. As the robot navigates through the envi-
ronment, a marker or navigation node is dropped whenever the
robot has traveled a certain distance from the closest existing
node. Nodes are connected following the order in which they
were generated. If information about the current node is pro-
vided to the spatio-temporal accumulation process, labels can
be generated for each of the nodes separately. Moreover, as it is
possible to detect whether the robot revisited an existing node,
the accumulated information can be saved and used as a prior
the next time the node is visited. For the live experiment de-
scribed in this paper, we used the detected doors to bound the
areas and navigation graph nodes to keep the priors. We then
propagated the current area label to all the nodes in the area.

6. Experiments with Place Classification

We conducted several series of experiments to evaluate the
performance of our place classification system. We tested its
robustness to different types of variations, such as those in-
troduced by changing illumination or human activity over a
long period of time. The evaluation was performed on data ac-
quired using a mobile robot platform over a time span of six
months, taken from the IDOL2 database (Image Database for
rObot Localization 2, see Luo et al. (2007)). Details about the
database and experimental setup are given in Section 6.1. The
experiments were performed for single-cue models and mod-
els based on different combinations of cues and modalities. We
present the results in Sections 6.2 and 6.3 respectively. In ad-
dition, we analyze performance and properties of different cue
integration schemes in Section 6.4.

6.1. Experimental Setup

The IDOL2 database was introduced in Luo et al. (2007). It
comprises of 24 image sequences accompanied by laser scans
and odometry data acquired using two mobile robot platforms
(PeopleBot and PowerBot). The images were captured with
a Canon VC-C4 perspective camera using the resolution of
320 � 240 pixels. In this paper, we will use only the 12 data
sequences acquired with the PowerBot, shown in Figure 5(a).

The acquisition was performed in a five room subsection
of a larger office environment, selected in such a way that
each of the five rooms represented a different functional area: a
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Fig. 5. (a) The mobile robot platform used in the experiments. (b) Map of the environment used during data acquisition and an
example laser scan simulated in the corridor. The rooms used during the experiments are annotated.

one-person office (1pO), a two-persons office (2pO), a kitchen
(KT), a corridor (CR), and a printer area (PR). The map of
the environment and an example laser scan are shown in Fig-
ure 5(b). Example pictures showing interiors of the rooms are
presented in Figure 6. The appearance of the rooms was cap-
tured under three different illumination conditions: in cloudy
weather, in sunny weather, and at night. The robot was manu-
ally driven through each of the five rooms while continuously
acquiring images and laser range scans at a rate of 5 fps. Each
data sample was then labelled as belonging to one of the rooms
according to the position of the robot during acquisition. Ex-
tension 1 contains a video illustrating the acquisition process
of a typical data sequence in the database. The acquisition
was conducted in two phases. Two sequences were acquired
for each type of illumination conditions over the time span of
more than two weeks, and another two sequences for each set-
ting were recorded six months later (12 sequences in total).
Thus, the sequences captured variability introduced not only
by illumination but also natural activities in the environment
(presence/absence of people, furniture/objects relocated etc.).
Example images illustrating the captured variability are shown
in Figure 6.

We conducted four sets of experiments, first for each cue
separately and then for cues combined. In order to simplify
the experiments with multiple cues, we matched images with
closest laser scans on the basis of the acquisition timestamp. In
case of each single experiment, both training and testing were
performed on one data sequence. The first set consisted of 12
experiments, performed on different combinations of training
and test data acquired closely in time and under similar illu-
mination conditions. In this case, the variability comes from
human activity and viewpoint differences. For the second set
of experiments, we used 24 pairs of sequences captured still at
relatively close times, but under different illumination condi-
tions. In this way, we increased the complexity of the problem
(Pronobis et al. 2006� Pronobis and Caputo 2007). In the third
set of experiments, we tested the robustness of the system to
long-term variations in the environment. Therefore, we con-
ducted 12 experiments, where we tested on data acquired six
months later, or earlier, than the training data, again under sim-

ilar illumination conditions. Finally, we combined both types
of variations and performed experiments on 24 pairs of train-
ing and test sets, obtained six months from each other and un-
der different illumination settings. Note that in the last two sets
of experiments described, the task becomes more and more
challenging as the difference between training and test set in-
creases. By doing this, we aim at testing the gain in robustness
expected from cue integration in very difficult, but still realis-
tic, scenarios.

For all experiments, model parameters were determined via
cross validation. Since the datasets in the IDOL2 database are
unbalanced (on average 443 samples for CR, 114 for 1pO, 129
for 2pO, 133 for KT and 135 for PR), as a measure of per-
formance for the reported results and parameter selection, we
used the average of classification rates obtained separately for
each actual class (average per-class recall). For each single ex-
periment, the percentage of properly classified samples was
first calculated separately for each room and then averaged
with equal weights independently of the number of samples
acquired in the room. This allowed to eliminate the influence
that large classes could have on the performance score. Sta-
tistical significance of the presented results was verified us-
ing the Wilcoxon signed-ranks test (when performance of two
methods was compared) or Friedman and post hoc Nemenyi
test (when multiple methods were compared) at a confidence
level of � � 0�05 as suggested in Demšar (2006). The results
of the post hoc tests were visualized using critical difference
diagrams. The diagrams show average ranks of the compared
methods and the groups of methods that are not significantly
different are connected (the difference is smaller than the crit-
ical difference presented above the main axis of the diagram).
The reader is referred to Demšar (2006) for details on the ap-
plied tests and the critical difference diagrams presented be-
low.

6.2. Experiments with Separate Cues

We first evaluated the performance of all four types of single-
cue models: the two SVM models based on visual features
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Fig. 6. Examples of pictures taken from the IDOL2 database showing the interiors of the rooms, variations observed over time
and caused by activity in the environment as well as introduced by changing illumination.

(CRFH, SIFT), the AdaBoost and the SVM models trained
on the laser range cues (referred to as L-AB and L-SVM).
For SVM, we tried the three multi-class extensions described
in Section 4.1. The results of all four sets of experiments for

these models are presented in Figures 7–10 (the first four bar
groups). Moreover, the results of statistical significance tests
comparing the models based on the combined results of all
four experiments are illustrated in Figure 11. We first note that,
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Fig. 7. Classification results for Experiment 1: stable illumination conditions, close in time.

as expected, CRFH and SIFT suffer from changes in illumina-
tion (�15�3% and �11�0% respectively), while the geomet-
rical features do not (�1�9% for L-AB and �0�64% for L-
SVM). Long-term variations pose a challenge for both modal-
ities (from �7�0 to �10�2% for vision and �3�7 to �7�9%
for laser). We also see differences in performance between the
two visual cues: CRFH suffers more from changes in illumina-
tion, while SIFT is less robust to variations induced by human
activities. It is also interesting to note that under stable condi-
tions, the vision-based methods outperform the systems based
on laser range cues (95.1% for CRFH and 92.5% for L-SVM�
the difference is statistically significant). This illustrates the
potential of visual cues, but also stresses the need for more
robust solutions.

These experiments are also a comparison between two
recognition algorithms using laser-range features, namely the
boosting-based implementation (L-AB) presented in Mozos
et al. (2005) and the current SVM-based implementation (L-
SVM). Figures 7–10 and Figure 11 show the results. We can
see that the difference in performance is statistically significant
in favor of the SVM-based method for all three multi-class ex-
tensions (from 6.1% for Experiment 1 to 10.3% for Experi-
ment 4 in average). The classification results for the L-AB are
worse than the results of the original paper by Mozos et al.
(2005). There are two main reasons for that. First, the number
of classes is increased to five, while in Mozos et al. (2005) was
of a maximum of four. Second, in these experiments, we used
a restricted field of view of 180�, whilst in Mozos et al. (2005)
the field of view was of 360�. This decreases the classification
rate, as has been shown in previous work (Mozos et al. 2007).

As already mentioned, all the experiments with SVMs were
repeated for three different multi-class extensions: standard
OaO and OaA as well as modified OaA algorithm. The ob-
tained results are in agreement with those of Pronobis and Ca-
puto (2007): in the case of single cue and G-DAS experiments,
the modified version gives the best performance with a statis-
tically significant difference independently of the modality on
which the classifier was trained.

Figure 12 shows the distribution of errors for each actual
class (room) made by the four models. It is apparent that each
of the cues makes errors according to a different pattern. At the
same time, similarities occur between the same modalities. We
see that visual models are biased towards the corridor, while
the geometrical models tend to misclassify places as the printer
area. A possible explanation is that the vision-based models
were trained on images acquired with perspective camera with
constrained viewing angle. As a result, similar visual stimuli
coming from the corridor are present in the images captured
by the robot leaving each of the rooms. The same area close
to a doorway, from the geometrical point of view, is similar
to the narrow passage in the printer area. This analysis is a
strong motivation to integrate these various cues with a stack
of classifiers, as theory indicates that this is the ideal condition
for exploiting the different informative content (Polikar 2006).

6.3. Experiments with Cue Integration

For the final experiments, we selected four different cue ac-
cumulation methods: G-DAS and SVM-DAS with three ker-
nel types (linear, RBF, and histogram intersection (HI) kernel
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Fig. 8. Classification results for Experiment 2: varying illumination conditions, close in time.

Fig. 9. Classification results for Experiment 3: stable illumination conditions, distant in time.

(Barla et al. 2003)). The parameters of the algorithms (weights
in case of G-DAS and SVM model in case of SVM-DAS) were
always adjusted on the basis of outputs generated during all
experiments with single-cue models trained on one particular
data sequence. Then, during testing, the previously obtained

integration scheme was applied to all experiments with models
trained on a different sequence, acquired under similar illumi-
nation and closely in time. This way, the generalization abili-
ties of each of the methods were tested in a realistic scenario.
In all experiments, we found that SVM-DAS with an RBF ker-
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Fig. 10. Classification results for Experiment 4: varying illumination conditions, distant in time.

Fig. 11. Critical difference diagrams comparing four single-cue models and solutions based on multiple cues integrated using
SVM-DAS with the Nemenyi test for a confidence level of � � 0�05. The comparison is based on the combined results of
Experiments 1–4 and presented separately for each multi-class extension. The average ranks of the methods are plotted on the
axis and the groups of methods that are not significantly different are connected.

nel outperforms the other methods and the difference in perfor-
mance with respect to G-DAS was statistically significant for
all combinations of cues and multi-class extensions (Wilcoxon
test). For space reasons, we report results of each of the ex-
periments only using SVM-DAS based on the RBF kernel and
G-DAS for comparison (Figures 7–10, last nine bar groups). A
detailed comparison of all variants of SVM-DAS for the most
complex problem (Experiment 4) is given in Figure 13. Results
of statistical significance tests comparing the multi-cue solu-
tions with single-cue models based on the combined results of
all experiments are illustrated in Figure 11.

We tested the methods with several combinations of dif-
ferent cues and modalities. First, we combined the two visual

cues. We see that the generalization of a purely visual recogni-
tion system can be significantly improved by integrating differ-
ent types of cues, in this case local and global. This can be ob-
served especially for Experiment 4, where the algorithms had
to tackle the largest variability. Despite that, according to the
error distributions in Figure 12, we should expect the largest
gain when different modalities are combined. As we can see
from Figures 7–10 this is indeed the case. By combining one
visual cue and one laser range cue (e.g. CRFH 
 L-SVM),
we exploit the descriptive power of vision in the case of stable
illumination conditions and the invariance of geometrical fea-
tures to the visual noise. Moreover, if the computational cost
is not an issue, the performance can be further improved by
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Fig. 12. Distribution of errors made by the four models for each actual class (bright colors indicate errors). The diagonal elements
were removed.

Fig. 13. Comparison of performance of SVM-DAS based on different kernel functions for the most complex problem (Experi-
ment 4).

using both visual cues instead of just one. As can be seen from
Figure 11, by integrating single-cue models or adding another
cue to a multi-cue system, we always get an improvement sta-
tistically significant.

We performed a more detailed analysis of the best results.
Table 1 contains the confusion matrix for the multi-cue sys-
tem based on CRFH, SIFT and L-SVM integrated using SVM-
DAS with an RBF kernel. We see that even if the corridor class
contained on average four times more samples than each of the
room classes and was visually and geometrically distinctive,
the results are balanced and the recognition rates for each ac-
tual class are similar. In general, during our experiments, more
balanced solutions were preferred due to the performance met-
ric used (average of the diagonal values in brackets in Table 1).

As it was mentioned in Section 4.3, SVM-DAS can be
applied for problems where outputs of different classifiers
need to be integrated. To test this in practice, we com-
bined the SVM models trained on visual cues with Ad-
aBoost model based on geometrical features (L-AB)5. We
present the results in Figures 7–10 (last bar group) and
Figure 11. The method obtained large and statistically sig-
nificant improvements compared to each of the individual
cues. For instance for Experiment 4, the recognition rate in-

5. As usual, for SVM we used several multi-class extensions that in most cases
produced outputs having different interpretation than those generated by the
multi-class algorithm used for AdaBoost. In those cases G-DAS could not be
applied.
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Table 1. Confusion Matrix for the Multi-cue System Based on CRFH, SIFT and L-SVM Integrated Using SVM-DAS

Predicted class

Actual class 1pO CR 2pO KT PR

1pO 11.20 (93.71) 0.36 (3.06) 0.16 (1.33) 0.11 (0.96) 0.11 (0.94)

CR 0.25 (0.53) 45.36 (97.73) 0.19 (0.42) 0.33 (0.70) 0.29 (0.62)

2pO 0.17 (1.22) 0.11 (0.8) 13.26 (96.92) 0.06 (0.46) 0.08 (0.60)

KT 0.17 (1.18) 0.35 (2.45) 0.08 (0.57) 13.42 (95.12) 0.09 (0.67)

PR 0.09 (0.65) 0.77 (5.59) 0.03 (0.19) 0.05 (0.33) 12.90 (93.24)

Normalized average values in percentage over all experiments are reported. The values in brackets were normalized separately for each actual class (row). The

presented results are only for the standard OaO multi-class extension since the results for the remaining extensions were comparable.

creased by 12.2% in average. This proves the versatility of our
approach.

6.4. Analysis of Cue Integration Schemes

Results presented so far clearly show that SVM-DAS performs
significantly better than G-DAS and, by using more sophis-
ticated kernel types for SVM-DAS, it is possible to perform
non-linear cue accumulation. Moreover, the experiments (see
Figure 13) show that we can expect better results with the
RBF kernel (especially for the OaO multi-class extension), al-
though there is no drastic improvement. We therefore suggest
to choose the kernel according to constraints on the computa-
tional cost of the solution. Since there are fast implementations
of linear SVMs, it might be beneficial to use a linear kernel in
cases when the integration scheme must be trained on a very
large number of samples. In applications where only the num-
ber of training parameters is an issue, the non-parametric HI
kernel can be used instead of RBF.

We now further discuss differences between high-level
(e.g. SVM-DAS) and low-level (feature-level) cue integration.
There are several advantages in integrating multiple cues with
a high-level strategy. First, different learning algorithms can
be used for each single cue. In our experiments, this allowed
to combine SVM-based models employing different kernel
functions (e.g. the �2 kernel for CRFH and the match kernel
for SIFT) or even different classifiers (AdaBoost and SVM).
Moreover, parameters can be tuned separately for each of the
cues. Second, both the training and recognition tasks can be di-
vided into smaller subproblems that can be easily parallelized.
Finally, it is possible to decide on the number of cues that
should be extracted and used for each particular classification
task. This is an important feature, since, in most cases, deci-
sions based on a subset of cues are correct while extraction
and classification of additional features introduces additional
cost. For example, a solution based on global visual features,
laser range cues and SVM-DAS runs in real-time at a rate of
approximately 5 fps, which would not be possible if an addi-
tional visual cue like SIFT was used. The computational cost

Table 2. Average Percentages (with Standard Deviations)
of Test Samples for which all Cues had to be Used in Order
to Obtain the Maximal Recognition Rate

Cue integration method

Cues G-DAS SVM-DAS
(Primary cue) RBF Kernel

CRFH 
 SIFT 25�971� 18�503 29�453� 22�139

CRFH 
 L-SVM 21�230� 20�199 32�736� 20�256

SIFT 
 L-SVM 28�820� 20�982 33�344� 22�425

SIFT 
 CRFH 31�858� 20�474 40�833� 21�916

 L-SVM

can be significantly reduced by taking the approach presented
in Pronobis and Caputo (2007). By combining confidence es-
timation methods with cue integration, we can use additional
sources of information only when necessary – when the de-
cision based on one cue only is not confident enough. This
scheme is referred to as Confidence-based Cue Integration. Ta-
ble 2 presents the results of applying the scheme to the experi-
ments presented in this section. We see that, in general, we can
base our decision on the fastest model (marked with bold font
in Table 2), such as the efficient and low-dimensional model
based on simple laser-range features, and we can retain the
maximal performance by using additional cues only in approx-
imately 30% of cases. This greatly reduces the computational
time required on average e.g. approximately three times for
CRFH, L-SVM and SVM-DAS. Additional cues will be used
more often when the variability is large, and rarely for less
difficult cases. This is not possible in the case of low-level in-
tegration where all the cues must be extracted and classified in
order to obtain a decision.

Another important factor is performance. During our exper-
iments, we compared the performance of G-DAS and SVM-
DAS (with an RBF kernel) with models built on cues com-
bined on the feature level. We performed three different sets
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Fig. 14. Comparison of performance of two single-cue models and solutions based on the cues integrated on both low and high
level for the most complex problem (Experiment 4).

of comparisons. In the first comparison, we built single-cue
models and models based on features combined on the low
level using SVM and the non-parametric linear kernel, using
the same values of the SVM training parameters for all mod-
els. Then, we integrated the outputs of the single-cue models
using G-DAS and SVM-DAS. In the case when G-DAS was
used, the solution remained linear. In the second comparison,
for building the models we used the non-linear, non-parametric
HI kernel. In the final comparison, we used an RBF kernel
and performed parameter selection for each of the models. All
comparisons were based on CRFH and laser-range cues, since
the dedicated kernel function required by SIFT could not be
used with any of the other features for low-level integration.

The results for the most complex problem (Experiment 4)
are given in Figure 14 and statistical significance tests compar-
ing the solutions are illustrated in Figure 15. It can be observed
that, in every case, the high-level integration significantly out-
performed solutions based on features combined on the low
level. In only one case there was no significant difference be-
tween G-DAS and low-level integration� however, SVM-DAS
still performed better than the other solutions. This is in agree-
ment with the results reported by Tommasi et al. (2008) and
Nilsback and Caputo (2004) and can be explained by greater
robustness of the high-level methods to noisy cues or sensory
channels and the ability of different classifiers to adapt to the
characteristics of each single cue.

7. Experiments with Semantic Space Labeling

We performed an independent live experiment to test our
multi-modal semantic space labeling system running in real-
time on a mobile robot platform. The experiment was per-
formed during working hours in a typical office environment.
Both the environment and the robot platform were different
than in the case of the off-line evaluation described in Sec-
tion 6. The whole experiment was videotaped and a video pre-
senting the setup, experimental procedure, and visualization of
the results can be found in Extension 2.

7.1. Experimental Setup

The experiment was performed between the 7th and 10th of
September 2008 in the building of the School of Computer
Science at the University of Birmingham, Birmingham, UK.
The interior of the building consists of several office environ-
ments located on three floors. For our experiments, we selected
three semantic categories of rooms that could be found in the
building: a corridor, an office and a meeting room. To build
the model of an office, we acquired data in three different
offices: Aaron’s office (first floor), Robert’s office (first floor)
and Richard’s office (ground floor). To create a representation
of the corridor class, we recorded data in two corridors, one
on the ground floor and one on the first floor. The acquisition
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Fig. 15. Critical difference diagrams comparing two single-cue models and solutions based on the cues integrated at both the
low and high level with the Nemenyi test for a confidence level of � � 0�05. The comparison is based on the combined results
of Experiments 1–4 and presented separately for three kernel functions and multi-class extensions used with SVM. The average
ranks of the methods are plotted on the axis and the groups of methods that are not significantly different are connected.

was performed at night. Finally, to train the model of a meet-
ing room, we used an instance on the second floor. All train-
ing data except the one from the meeting room was acquired
in another part of the building than the one used for testing.
The data for this class were recorded during the day. A video
illustrating the whole data acquisition process is available as
Extension 3. The interiors of the rooms are presented in Fig-
ure 16(a), as seen by vision and laser. The robot was manually
driven around each room and data samples were recorded at
the rate of 5 fps. All the collected training data are available
as Extension 4. In the case of the meeting room, the corridor
on the first floor as well as Aaron’s and Richard’s offices, the
acquisition was repeated twice.

For the real-time experiment, we built the system as de-
scribed in Section 5. Following the findings of the off-line ex-
periments, we used SVM-DAS with the RBF kernel to inte-
grate the classifier outputs for vision and laser range data. For
efficiency reasons, we used only global features (CRFH) for
the vision channel. We used the OaA multi-class SVM exten-
sion for the place models. Other parameters were set as de-
scribed in Section 6.

We trained the place models separately for each modality
on a dataset created from one data sequence recorded in each
of the rooms. One of the advantages of SVM-DAS is the abil-
ity to infer the integration function from the training data, after
training the models. We used the additional data sequences ac-
quired in some of the rooms and trained SVM-DAS on the
outputs of the uni-modal models tested on these data.

The PeopleBot robot platform shown in Figure 3 was used
for data acquisition and the final experiment. The robot was
equipped with a SICK laser range finder and Videre STH-
MDCS2 stereo head (only one of the cameras was used). The

images were acquired at the resolution of 320�240 pixels. The
whole system was implemented in the CAST (The CoSy Ar-
chitecture Schema Toolkit)6 framework and run on a standard
2.5 GHz dual-core laptop. The processing for both modalities
was executed in parallel using both of the CPU cores.

7.2. Experimental Procedure and Results

Three days after the training data were collected, we per-
formed a live experiment in the lab on the second floor in the
same building. The experiment was conducted during the day
with sunny weather. The part of the environment that was ex-
plored by the robot consisted of two offices (Nick’s office and
Jeremy’s office), a corridor and a meeting room. The interiors
of the rooms and the influence of illumination can be seen in
the images in Figure 16(b).

The SLAM system of the robot constructs a metric map
and navigation graph. In this experiment, the task is to se-
mantically label the navigation graph nodes and areas as the
map is being built. The only knowledge given to the robot be-
fore the experiment consisted of the models of the three place
classes: “office”, “corridor” and “meeting room”. As stated in
Section 5, every time the robot created or revisited a node, the
accumulated beliefs about the semantic category of the area
were used to label the node and saved as a future prior. The
label was also propagated to the whole area. We used detected
doors to assign nodes to areas.

The whole experiment was videotaped and a video present-
ing the experimental setup, the test run and visualization of

6. See http://www.cs.bham.ac.uk/research/projects/cosy/cast/
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Fig. 16. Examples of images and laser scans (synchronized) taken from the data sequences used for training the models of place
classes (a) and acquired during the test run (b) in each of the rooms considered during the experiment. The within-category
variations for corridors and offices are illustrated as well as other types of variability observed for each place class (e.g. different
illumination conditions, activity in the environment).
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Fig. 17. Final map obtained after the test run. The navigation
graph is overlaid on the metric map and the color of the circles
around the graph nodes indicate the place class assigned to
each area bounded by detected doors. The system correctly
labeled all of the areas in the environment.

the obtained results can be found in Extension 2. The robot
started in Nick’s office, and was manually driven through the
corridor to Jeremy’s office. Then, it was taken to the meeting
room where the autonomous exploration mode was turned on.
The robot used a frontier-based algorithm based on Yamauchi
(1997). Laser data was limited to 2 m distance in the explo-
ration to make sure that the robot not just perceived how the
environment looked but also covered it to build the navigation
graph. After the meeting room was explored, the robot was
manually driven back to Nick’s office where the experiment
finished. A video presenting visualization of the full test run is
available in Extension 5. The labeling process was running on-
line and the place classification was performed approximately
at the rate of 5 times per second. The final semantic map build
during the run is shown in Figure 17. We can see that the sys-
tem correctly labeled all the areas in the environment.

The sensory data acquired during the test run are available
as Extension 4. Moreover, a video presenting the sequence of
images and laser scans is presented in Extension 6. The fact
that the data were stored allowed for additional performance
analysis of the multi-modal place classification system, simi-
lar to the one presented in Section 6. The results are displayed
in Figure 18. When we look at the overall classification rate
for all the data samples in the test sequence, we see that vi-
sion significantly outperformed laser in this experiment (66%
versus 84%). Still, the performance of the system was boosted
by an additional 8% compared with vision alone when the two
modalities were integrated. The gain is even more apparent
if we look at the detailed results for each of the classes (the
first three charts in Figure 18). We see that the modalities
achieved different performance, but also different error pat-
terns, for each class. Clearly, the system based on laser range
data is a very good corridor detector. On the other hand, vision
was able to distinguish between the offices and the meeting
room almost perfectly. Finally, the integrated system always

achieved the performance of the more reliable modality and
for two out of three classes outperformed the uni-modal sys-
tems. As can be seen in the video in Extensions 2 and 5, this
provided stable performance for each of the classes and a ro-
bust base for the semantic labeling system.

8. Conclusions

In this paper we have addressed the problem of place clas-
sification and showed how it can be applied to semantic knowl-
edge extraction in robotic systems. This is an important and
challenging task, where multiple sensor modalities are neces-
sary in order to achieve generality and robustness, and enable
systems to work in realistic settings. To this end, we presented
a new cue integration method able to combine multiple cues
derived by a single modality, as well as cues obtained by mul-
tiple sensors. The method was thoroughly tested in off-line ex-
periments on realistic data collected under varying conditions
and as part of a real-time system running on a robotic plat-
form. The results obtained using multiple visual cues alone,
and combined with laser range features, clearly show the value
of our approach. Finally, we showed that the system can suc-
cessfully be applied for the space labeling problem where it
can be used to augment the internal space representation with
semantic place information. All of the data used in the paper
are available as extensions to the paper and from the IDOL2
database (Luo et al. 2006).

In the future, we plan to extend this method and attack the
scalability issue, with particular attention to indoor office en-
vironments. These are usually characterized by a large num-
ber of rooms with very similar characteristics� we expect that
in such a domain our approach will be particularly effective.
Another important aspect of place classification is the intrin-
sic dynamics in the sensory information: as rooms are used
daily, furniture is moved around, objects are taken in and out
of drawers and people appear. All of this affects the sensor in-
puts of places in time. We plan to combine our approach with
incremental extensions of the SVM algorithm (Luo et al. 2007�
Orabona et al. 2007) and to extend these methods from fully
supervised to semi-supervised learning, so to obtain a system
able to learn continuously from multiple sensors.
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Fig. 18. Place classification results obtained on the dataset recorded during the test run. The first three bar charts show the results
separately for each place class: “corridor”, “meeting room” and “office”. The charts show the percentage of the samples that
were properly classified (most left bars marked with thick lines), but also how the misclassifications were distributed. The chart
on the right presents the percentage of properly classified samples during the whole run. The two top rows give results for single
modalities, while the bottom row shows results for the multi-modal system.

A preliminary version of part of the experimental evalu-
ation reported in this work was presented in Pronobis et al.
(2008).

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video The acquisition procedure of a typical
data sequence in the IDOL2 database.

2 Video The setup, procedure and visualiza-
tion of the experiment with semantic
space labeling based on multi-modal
place classification.

3 Video The process of acquiring data for
training the models of places for the
experiment with semantic space la-
beling.

4 Data The dataset (sequences of images and
laser scans) collected during the ex-
periment with semantic labeling of
space.

5 Video Visualization of the complete test run
and results obtained during the exper-
iment with semantic space labeling.

6 Video The complete sequence of images and
laser scans acquired during the test
run of the experiment with semantic
space labeling.
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1 Introduction

Many recent advances in fields such as computer vision and robotics have
been driven by the ultimate goal of creating artificial cognitive systems able
to perform human-like tasks. Several attempts have been made to create in-
tegrated cognitive architectures and implement them, for instance, on mobile
robots [2,23,1,3]. The ability to learn and interpret complex sensory informa-
tion based on the previous experience, inherently connected with cognition,
has been recognized as crucial and vastly researched [43,41,34]. In most cases,
the recognition systems used are trained offline, i.e. they are based on batch
learning algorithms. However, in the real, dynamic world, learning cannot be
a single act. It is simply not possible to create a static model which could
explain all the variability observed over time. Continuous information acqui-
sition and exchange, coupled with an ongoing learning process, is necessary to
provide a cognitive system with a valid world representation.

In artificial autonomous agents constrained by limited resources (such as mo-
bile robots), continuous learning must be performed in an incremental fashion.
It is obviously not feasible to rebuild the internal model from scratch every
time new information arrives, neither it is possible to store all the previously
acquired data for that purpose. The model must be updated and the updating
process must have certain properties. First, the knowledge representation must
remain compact and free from redundancy to fit into the limited memory and
maintain a fixed computational complexity. We call this property controlled
memory growth. Second, in the continuous learning scenario, a model cannot
grow forever even though new information is constantly arriving. Thus, the up-
dating process should be able to gradually filter out unnecessary information.
We call this property forgetting capability.

Discriminative methods have become widely popular for visual recognition,
achieving impressive results on several applications [49,20,14]. Within discrim-
inative classifiers, SVM techniques provide powerful tools for learning models
with good generalization capabilities; in some domains like object and material
categorization, SVM-based algorithms are state of the art [7,17]. This makes
it worth it to investigate whether it is possible to perform continuous learn-
ing with this type of methods. Several incremental extensions of SVMs have
been proposed in the machine learning community [13,8,45,36]. Between these
methods, the approximate techniques [13,45] seem better suited for visual
recognition because, at each incremental step, they discard non-informative
training vectors, thus reducing the memory requirements. Other methods,
such as [8,36], instead require to store in memory all the training data, even-
tually leading to a memory explosion; this makes them unfit for real-time
autonomous systems.
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This paper presents an SVM-based incremental method which performs like
the batch algorithm while reducing the memory requirements. We combine an
approximate technique for incremental SVM [45] with an exact method that
reduces the number of support vectors needed to build the decision function
without any loss in performance [15]. This results in an algorithm performing
as the original incremental method with a reduction in the memory require-
ments. We then present an extension of the method for the exact simplification
of the support vector solution [15]. We introduce a parameter that links the
performance of an SVM to the amount of vectors that is possible to discard.
This allows a user-set trade-off between performance and memory reduction.

We evaluate the suitability of our method for autonomous cognitive systems
in two challenging scenarios: adaptation in presence of dynamic changes and
transfer of knowledge between autonomous agents. In both cases, we con-
centrate on the problem of visual place recognition applied to mobile robot
topological localization. The problem is important from the point of view of
engineering cognitive systems, as it allows to tie semantics with space repre-
sentations and provides solutions for typical problems with purely metric lo-
calization. However, it is also a challenging recognition problem as it requires
processing of large amounts of high-dimensional visual information which is
noisy and dynamic in nature. In this context, the memory and computational
efficiency become one of the most important properties of the learning algo-
rithm determining the design choice.

In our considerations, we first focus on the scenario in which the incremental
learning is used to provide adaptability to different types of variations observed
in real-world environments. In our previous work [40,38], we presented a purely
appearance-based model able to cope with illumination and pose changes,
and we showed experimentally that it could achieve satisfactory performances
when considering short time intervals between the acquisition of the training
and testing data. Nevertheless, a room’s appearance is doomed to change
dramatically over time because it is used: chairs are pushed around, objects
are taken in/out of drawers, furniture and paintings are added, or changed, or
re-arranged; and so forth. As it is not possible to predict a priori how a room
is going to change, the only possible strategy is to update the representation
over time, learning incrementally from the new data recorded during use.

As a second scenario, we consider the case when a robot, proficient in solving
the place recognition task within a known environment, transfers its visual
knowledge to another robotic platform with different characteristics, which is
a tabula rasa. The ability to transfer knowledge between different domains
enables humans to learn efficiently from small number of examples. This ob-
servation inspired robotics and machine learning researchers to search for algo-
rithms able to exploit prior knowledge so to improve performance of artificial
learners and speed up the learning process. To tackle this problem, it is neces-
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sary an efficient way of exploiting the knowledge transferred from a different
platform as well as updating the internal representation when new training
data are available. The knowledge transfer scheme should be adaptive and
privilege newest data so to prevent from accumulating outdated information.
Finally, the solution obtained starting from a transferred model should gradu-
ally converge to the one learned from scratch, not only in terms of performance
on a task but also of required resources (e.g. memory).

To achieve these goals, we used our memory-controlled incremental SVM and
we evaluated its performance in terms of accuracy, memory growth, complex-
ity and forgetting capability. We compare the results obtained by our method
with those achieved by the batch algorithm and by two other incremental
extensions of SVMs, one approximate (the fixed-partition incremental SVM,
[45]) and one exact (online independent SVM, [36]). We evaluated the algo-
rithms on a visual place recognition database acquired using two mobile robot
platforms [40], which we extended with new data acquired 6 months later us-
ing the same hardware. Then, we confirmed the results on another database
acquired in a different environment and using different hardware [39]. To test
the adaptability of the recognition system, we performed topological localiza-
tion experiments under realistic long-term variations. To test the knowledge
transfer capabilities, we performed experiments in case of which visual knowl-
edge captured in the SVM model was gradually exchanged between the two
mobile robot platforms. The experiments clearly show the power of our ap-
proach in both scenarios, while illustrating the need for incremental solutions
in artificial cognitive systems.

The rest of the paper is organized as follows: after a review of related work
(Section 2), Section 3 gives our working definition of visual place recognition
for robot localization. Section 4 reviews SVMs, it introduces the memory-
controlled incremental SVM algorithm, which will constitute a building block
of the adaptive place recognition system and a base for our knowledge transfer
technique, and it briefly describes two other incremental extensions of SVMs
against which we will benchmark our approach. Section 5 describes our exper-
imental setup; Section 7 concentrates on the adaptation problem and presents
experimental evaluation of the algorithms in this context. Finally, Section 8
gives details of our approach to the transfer of knowledge and shows its effec-
tiveness with a set of experiments. The paper concludes with a summary and
possible directions for future work.

2 Related Work

In the last years, the need for solutions to such problems as robustness to
long-term dynamic variations or transfer of knowledge is more and more ac-
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knowledged. In [41], the authors tried to deal with long-term visual variations
in indoor environments by combining information acquired using two sensors of
different characteristics. In [51], the problem of invariance to seasonal changes
in appearance of an outdoor environment is addressed. Clearly, adaptability
is a desirable property of a recognition system. At the same time, Thrun and
Mitchell [48,33] studied the issue of exchanging knowledge related to different
tasks in the context of artificial neural networks and argued for the importance
of knowledge-transfer schemes for lifelong robot learning. Several attempts to
solve the problem have also been made from the perspective of Reinforcement
Learning, including the case of transferring learned skills between different RL
agents [30,21].

The work conducted in the fields of cognitive robotics and vision stimulated
the research in the machine learning community directed towards develop-
ing extensions for algorithms that were commonly used due to their superior
performance but were missing the ability to be trained incrementally. As a
result, methods such as Incremental PCA have been invented and successfully
applied e.g. for mobile robot localization [4,11]. As it was already mentioned,
several incremental extensions have been introduced also for Support Vector
Machines [13,8,45]. Between these methods, the approximate techniques[13,45]
seem better suited for visual recognition because, at each incremental step,
they discard non-informative training vectors, thus reducing the memory re-
quirements. Other methods, such as [8,36], or simple KNN-based solutions,
instead require to store in memory all the training data, eventually leading
to a memory explosion. This limits their usefulness for complex real-world
problems involving continuous learning of visual patterns.

Despite the fact that the approximate incremental SVM extensions allow to
reduce the amount of data stored during the learning process, there is no guar-
antee that the continuously updated model will not grow forever. Additionally,
the results of experiments that can be found in the literature do not give a
clear answer if it is possible to apply such methods for complex problems such
as visual place recognition or transfer of visual knowledge.

3 Visual Place Recognition for Robot Localization

In this section, we give our working definition of visual place recognition, ex-
plaining how it can be applied to mobile robot topological localization. We
define a place as a nameable segment of a real-world environment, uniquely
identifiable because of its specific functionality and/or appearance. Examples
of places, according to this definition, are a kitchen, an office, a corridor, and
so forth. We adopt the appearance-based paradigm, and we assume that a re-
alistic scene can be represented by a visual descriptor without any loss of dis-
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Fig. 1. A schematic representation of our visual place recognition system for robot
localization.

criminative information. We consider a fully supervised, incremental learning
scenario: we assume that, at each incremental step, every room is represented
by a collection of images which capture its visual appearance under different
viewpoints, at a fixed time and illumination setting. During testing, the al-
gorithm is presented with images of the same rooms, acquired under similar
viewpoints but possibly under different illumination conditions and after some
time, with a time range going from some minutes to several months. The goal
is to recognize correctly each single image seen by the system. Fig. 1 illustrates
the approach.

A typical application for an indoor place recognition system is topological
robot localization. The localization problem is vastly researched. This resulted,
over the years, in a broad range of approaches spanning from purely metric
[19,12,54,16], to topological [50,31,41], and hybrid [47,6]. Traditionally, sonar
and/or laser have been the sensory modalities of choice [35,31]. Yet, the in-
ability to capture many aspects of complex realistic environments leads to
the problem of perceptual aliasing [24], and greatly limits the usefulness of
such methods for semantic mapping. Recent advances in vision have made
this modality emerge as a natural and viable solution for localization prob-
lems. Vision provides richer sensory input allowing for better discrimination.
It opens new possibilities for building cognitive systems, actively relying on
semantic context. Not unimportant is the cost effectiveness, portability and
popularity of visual sensors. As a result, despite the complexity of the problem,
this research line is attracting more and more attention, and several methods
have been proposed using vision alone [42,50,49,38,44], or combined with more
traditional range sensors [22,46,41].

Our visual place recognition system uses SVM-based discriminative place mod-
els trained on global and local image features. These features are described in
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details in Section 5. The classification algorithm is introduced in Section 4. In
our experiments, we always used only a single image as input for the recog-
nition system. This makes the recognition problem harder, but also it makes
it possible to perform global localization where no prior knowledge about the
position is available (e.g. in case of the kidnapped robot problem). Spatial or
temporal filtering can be used together with the presented method to enhance
performance.

4 Memory-controlled Incremental SVM

This section describes our algorithmic approach to incremental learning of
visual place models. We propose a fully supervised, SVM-based method with
controlled memory growth that tends to privilege newest information over
older data. This leads to a system able to adapt over time to the natural
changes of a real-world setting, while maintaining a limited memory size and
computational complexity.

The rest of this section describes the basic principles of Support Vector Ma-
chines (Section 4.1), a popular incremental extension of the basic algorithm
(Section 4.2), our memory-controlled version of incremental SVM (Section 4.3)
and an exact method based on a similar intuition (Section 4.4), with which
we will compare our approach.

4.1 SVM: the batch algorithm

Consider the problem of separating the set of training data (x1, y1), . . . (xm, ym)
into two classes, where xi ∈ ℜN is a feature vector and yi ∈ {−1, +1} its class
label (for multi-class extensions, we refer the reader to [10,52]). If we assume
that the two classes can be linearly separated when mapped to some higher
dimensional Hilbert space H by x → Φ(x) ∈ H (see [10,52] for solutions to
non-separable cases), the optimal hyperplane is the one which has maximum
distance to the closest points in the training set, resulting in a classification
function:

f(x) = sgn

(
m∑

i=1

αiyiK(xi, x) + b

)
, (1)

where K(x, y) = Φ(x) ·Φ(y) is the kernel function. Most of the αi’s take the
value of zero; xi with nonzero αi are the Support Vectors (SV). Different ker-
nel functions correspond to different similarity measures. Choosing a suitable
kernel can therefore have a strong impact on the performance of the classifier.
Based on results reported in the literature [40], here we used the two following
kernels:
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• The χ2 kernel [5] for histogram-like global descriptors:

K(x, y) = exp{−γχ2(x, y)}, χ2(x, y) =
N∑

i=1

(xi − yi)
2

xi + yi

;

• The matching kernel [53] for local features:

K(Lh, Lk) =
1

nh

nh∑
jh=1

max
jk=1,...,nk

{
Kl(L

jh
h , Ljk

k )
}

,

where Lh, Lk are local feature sets and Ljh
h , Ljk

k are two single local features.
The sum is always calculated over the smaller set of local features and only
some fixed amount of best matches is considered in order to exclude outliers.
The local feature similarity kernel Kl can be any Mercer kernel. We used
the RBF kernel based on the Euclidean distance for the SIFT [27] features:

Kl(L
jh
h , Ljk

k ) = exp
{
−γ||Ljh

h −Ljk
k ||2

}
.

4.2 SVM: an Incremental Extension

Among the incremental SVM extensions proposed so far [45,13,8], approximate
methods seem to be the most suitable for visual recognition, because they
discard a significant amount of the training data at each incremental step.
Exact methods instead need to retain all training samples in order to preserve
the convexity of the solution at each incremental step. As a consequence,
they require huge amounts of memory when employed in realistic, continuous
learning scenario as the one we consider here. Approximate methods avoid
this problem by sacrificing the guaranteed optimality of the solution. Still,
several studies showed that they generally achieve performances very similar
to those obtained by an SVM trained on the complete data set (see [13] and
references therein), because at each incremental step the algorithm remembers
the essential class boundary information regarding the data seen so far (in
form of support vectors). This information contributes properly to generate
the classifier at the next iteration.

Once a new batch of data is loaded into memory, there are different possibilities
for performing the update of the current model, which might discard a part of
the new data according to some fixed criteria [13,45]. For all the techniques,
at each step only the learned model from the data previously seen (preserved
in form of SV) is kept in memory. In this paper we will consider the fixed-
partition method [45]. Here the training data set is partitioned in batches of
some size k:

T = {T 1, T 2, . . . T n},
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Fig. 2. The fixed-partition incremental SVM algorithm.

with T i = {(xi
j, y

i
j)}k

j=1. At the first step, the model is trained on the first
batch of data T 1, obtaining a classification function

f1(x) = sgn

(
m1∑
i=1

α1
i y

1
i K(x1

i , x) + b1

)
. (2)

At the second step, a new batch of data is loaded into memory and added to
the current set of support vectors; then, the new training set becomes

T inc
2 = {T 2 ∪ SV 1}, SV 1 = {(x1

i , y
1
i )}m1

i=1,

where SV 1 are the support vectors learned at the first step. The new classi-
fication function will be:

f2(x) = sgn

(
m2∑
i=1

α2
i y

2
i K(x2

i , x) + b2

)
.

Thus, as new batches of data points are loaded into memory, the existing
support vector model is updated, so to generate the classifier at that incre-
mental step. The method is illustrated in Fig. 2. Note that this incremental
method can be seen as an approximation of the chunking technique used for
training SVM [10,52]. Indeed, the chunking algorithm is an exact decompo-
sition which iterates through the training set to select the support vectors.
The fixed-partition incremental method instead scan through the training
data just once, and once discarded, does not consider them anymore. The
fixed-partition incremental algorithm has been tested on several benchmark
databases commonly used in the machine learning community [13], obtaining
good performances comparable to the batch algorithm and other approxi-
mate methods. An open issue is that in principle there is no limitation to the
memory growth. Indeed, several experimental evaluations show that, while
approximate methods generally achieve classification performances equivalent
to those of batch SVM, the number of SV tends to grow proportionally to the
number of incremental steps (see [13] and references therein).

9



4.3 Memory-controlled Incremental SVM

The core idea of the memory-controlled incremental SVM is that the set of
support vectors X = {xi}m

i=1 in Eq. (1) is not guaranteed to be linearly
independent. Based on this observation, it is possible to reduce the number of
support vectors of a trained classifier, eliminating those which can be expressed
as a linear combination of the others in the feature space, as proposed in [15]
for reducing the complexity of the SVM solution. By updating the weights
accordingly, it is ensured that the decision function is exactly the same as the
original one. More specifically, let us suppose that the first r support vectors
are linearly independent, and the remaining m − r depend linearly on those
in the feature space: ∀j = r + 1, . . . m, xj ∈ span{xi}r

i=1. Then it holds

K(x, xj) =
r∑

i=1

cijK(x, xi), (3)

and the classification function (1) can be rewritten as

f(x) = sgn

 r∑
i=1

αiyiK(x, xi) +
m∑

j=r+1

αjyj

r∑
i=1

cijK(x, xi) + b

 . (4)

If we define the coefficients γij such that αjyjcij = αiyiγij and γi =
∑m

j=r+1 γij,
then Eq. (4) can be written as

f(x) = sgn

 r∑
i=1

αiyiK(x, xi) +
r∑

i=1

αiyi

m∑
j=r+1

γijK(x, xi) + b



= sgn

(
r∑

i=1

αi(1 + γi)yiK(x, xi) + b

)
= sgn

(
r∑

i=1

α̂iyiK(x, xi) + b

)
, (5)

where

α̂i = αi(1 + γi) = αi

1 +
m∑

j=r+1

αjyjcij

αiyi

 .

The αi coefficients can be pre-multiplied by the class labels α′
i = αiyi which

results in a simple equation that can be used to obtain the weights of the
reduced classifier:

α̂′
i =

α′
i +

∑m
j=r+1 α′

jcij for i = 1, 2, . . . , r

0 for i = r + 1, r + 2, . . . ,m.
(6)

Thus, the resulting classification function (Eq. (5)) requires now m − r less
kernel evaluations than the original one.

The linearly independent subset of the support vectors as well as the coeffi-
cients cij can be found by applying methods from linear algebra to the support
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vector matrix given by

K =


K(x1, x1) · · · K(x1, xm)

...
. . .

...

K(xm, x1) · · · K(xm, xm)

 , (7)

We employ the QR factorization with column pivoting [18] for this purpose.
The QR factorization with column pivoting algorithm is a widely used method
for selecting the independent columns of a matrix. The algorithm allows to
reveal the numerical rank of the matrix with respect to a parameter τ , which
acts as a threshold in defining the condition of linear dependence. Additionally,
it performs a permutation of the columns of the matrix so that they are ordered
according to the degree of their relative linear independence. Consequently, if
for a given value of τ the rank of the matrix is r, then the linearly independent
columns will occupy the first r positions.

The QR factorization with column pivoting of the matrix K ∈ ℜm×m is given
by

KΠ = QR, (8)

where Π ∈ ℜm×m is a permutation matrix, Q ∈ ℜm×m is orthogonal, and
R ∈ ℜm×m is upper triangular. If we assume that the rank of the matrix K
with respect to the parameter τ equals r, then the matrices can be decomposed
as follows: [

K1 K2

]
=
[
Q1 Q2

] R11 R12

0 R22

 , (9)

where the columns of K1 ∈ ℜm×r create a linearly independent set, the
columns of K2 ∈ ℜm×m−r may be expressed as a linear combination of the
columns of K1, Q1 ∈ ℜm×r, Q2 ∈ ℜm×m−r, R11 ∈ ℜr×r, R12 ∈ ℜr×m−r,
R22 ∈ ℜm−r×m−r.

The products of the QR factorization can be used to obtain the coefficients cij

as follows

C =


c1,r+1 . . . c1,m

...
. . .

...

cr,r+1 . . . cr,m

 = R−1
11 QT

1 K2. (10)

The coefficients together with the permutation matrix Π ∈ ℜm×m and the
number of the linearly independent support vectors r are sufficient to obtain
the reduced solution. Using matrix notation, Eq. (6) can be expressed as fol-
lows  α̂′

1 = α′
1 + R−1

11 QT
1 K2α

′
2

α̂′
2 = 0

(11)
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The rank r of the matrix K can be estimated by thresholding ‖R22‖2 with
the value of the parameter τ . This means that, in practice, the choice of the τ
value determines the number of linearly independent support vectors retained
by the algorithm. For instance, by choosing a value of τ of 0.1 one will select
a number of linearly independent support vectors smaller than by choosing a
τ value of 0.01. This has two concrete effects on the algorithm:

(1) As the value of τ increases, the number of support vectors decreases. This
means that, by tuning τ , it is possible to reduce the memory requirements
and to increase speed during classification;

(2) At the same time, as τ increases, Eq. (5) will become more and more
an approximation of the exact solution, because we are considering as
linearly dependent vectors that are not. Therefore, we are not able to
preserve fully their informative content. Still, we don’t lose all the infor-
mation carried by the discarded support vector xj, as its weight αj is
used to compute the updated value of the weights α̂i for the remaining
support vectors. This should result in a graceful decrease of classification
performance compared to the optimal solution.

We propose to combine this model simplification with the fixed-partition in-
cremental algorithm, adding the reduction process at each incremental step.
We call the new algorithm memory-controlled incremental SVM. It can be
illustrated as follows:

(1) Train. The algorithm receives the first batch of data T 1. It trains an
SVM and obtains a set of support vectors SV 1.

(2) Find linearly dependent SVs. The algorithm finds permutation of
SV 1 that orders the SVs according to the degree of their linear indepen-
dence.

(3) Find τ . The algorithm searches for the value of τ , τ ⋆, that satisfies cer-
tain requirements regarding the number of support vectors or estimated
performance of the classifier.

(4) Reduce. The algorithm computes the reduced solution determined by
the chosen τ ⋆. After this step, the reduced model contains a subset of the
original SVs, ŜV 1 = red(SV 1), and can be used to classify test data.

(5) Retrain. As the new batch of data T 2 arrives, step (1) is repeated using

as training vectors T̂
inc

2 = {T 2 ∪ ŜV 1}.

For applications that require speed and/or have limited memory requirements,
at step (3) of the algorithm, one can tune τ so to obtain at each incremental
step a predefined maximum number of stored SV. For applications where
accuracy is more relevant, one can estimate at each incremental step the τ
corresponding to a pre-defined maximum decrease in performance. This can
be done on the batch of data T i at each step, dividing T i in two subsets
and training on one and testing on the other or by applying the leave-one-
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out strategy. We denote with the symbol Θ the percentage of the original
classification rate that is guaranteed to be preserved after the reduction in
this case.

In order to apply the method to multi-class problems, we used the one-vs-
one multi-class extension. In a set of preliminary experiments comparing the
one-vs-one and one-vs-all algorithms, we did not observe significant differ-
ences in the behavior of both methods (for further details, we refer the reader
to [37]). The one-vs-one algorithm, given M classes, trains M(M − 1)/2 two-
class SVMs, one for each pair of classes. In case of the place recognition ex-
periments, this method obtained smaller training times due to large number
of training samples and relatively small number of classes.

4.4 Online Independent Incremental SVM

The idea to exploit the linear independence in the feature space has also
been implemented in an online extension of SVMs, called Online Indepen-
dent Support Vector Machine (OISVM, [36]). OISVM selects incrementally
basis vectors that are used to build the solution of the SVM training problem,
based upon linear independence in the feature space. Vectors that are linearly
dependent on already stored ones are rejected. An incremental minimization
algorithm is employed to find the new minimum of the cost function. This
approach reduces considerably the complexity of the solution and therefore
the testing time. As OISVM is an exact method, it requires to store all data
acquired by the system during its whole life span for the update of the cost
function. In many cases (e.g. in case of place recognition), the data samples
are multi-dimensional and require a substantial amount of storage. Addition-
ally, the learning algorithm needs to build a gram matrix the size of which is
quadratic in the number of training samples. This leads inevitably to a mem-
ory explosion when the number of incremental steps grows, as we will show
experimentally. Through its heuristics, the memory-controlled algorithm al-
lows to decrease the number of training data samples at each incremental step
and thus reduce the memory consumption.

5 Experimental Setup

This section describes our experimental setup. We first describe the IDOL2
and COLD-Freiburg databases, on which we will run all the experiments re-
ported in this paper (Sections 5.1 and 5.2), then we briefly describe the fea-
ture representations used in the experiments (Section 5.3). Finally, we discuss
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Fig. 3. Robot platforms employed in the experiments with the IDOL2 database and
images illustrating the appearance of the five rooms from the robots’ the point of
view.

Fig. 4. Sample images illustrating the variations captured in the IDOL2 database.
Images in the top row show the variability introduced by changes in illumination for
two rooms. The second and third rows show people appearing in the environment
(first three images, second row) as well as the influence of people’s activity including
some larger variations which happened over a time span of 6 months. Finally, the
bottom row illustrates the changes in viewpoint observed for a series of images
acquired one after another in 1.2 second.

the performance evaluation measure and parameter selection method (Sec-
tion 5.4).

5.1 The IDOL2 Database

The IDOL2 (Image Database for rObot Localization 2, [29]) database con-
tains 24 image sequences acquired by a perspective camera, mounted on two
mobile robot platforms. Both mobile robot platforms, the PeopleBot Minnie
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and the PowerBot Dumbo, are equipped with cameras. On Minnie the cam-
era is located 98cm above the floor, whereas on Dumbo its height is 36cm.
Fig. 3 shows both robots and some sample images from the database acquired
by the robots from very close viewpoints, illustrating the difference in visual
content. These images were acquired under the same illumination conditions
and within short time spans.

The robots were manually driven through an indoor laboratory environment
and the images were acquired at a rate of 5fps. Each image sequence consists of
800-1100 frames automatically labeled with one of five different classes (Printer
Area [PA], CoRridor [CR], KiTchen [KT], Two-persons Office [TO], and One-
person Office [OO]). The labeling is based on the camera’s position given by
the laser-based localization system proposed in [16]. The acquisition procedure
was repeated several times to capture the changes in illumination and varying
weather conditions (sunny, cloudy, and night). Also, special care was taken to
capture people’s activities, change of location for objects and for furniture; for
part of the environment (two-persons office) we were able to record a significant
change in decoration which occurred over a time span of 6 months. Fig. 4
shows some sample images from the database, illustrating these variations. It
is important to note that each single sequence captures the appearance of the
considered experimental environment under stable illumination settings and
during the short span of time that is required to drive the robot manually
around the environment.

The 24 image sequences are divided as follows: for each robot platform and
for each type of illumination conditions (cloudy, sunny, night), there are four
sequences recorded. Of these four sequences, the first two were acquired six
months before the last two. This means that, for every robot we always have
subsets of sequences acquired under similar conditions and close in time, as
well as subsets acquired under different conditions and distant in time. This
makes the database useful for several types of experiments. It is important to
note that, even for the sequences acquired within a short time span, variations
still exist from everyday activities and viewpoint differences during acquisition.
For further details, we refer the reader to [29].

5.2 The COLD-Freiburg Database

The COLD-Freiburg database is a collection of image sequences acquired at
the Autonomous Intelligent System Laboratory at the University of Freiburg
and constitutes a part of the COsy Localization Database (COLD, [39]). The
acquisition procedure of the COLD-Freiburg database was similar to that of
the IDOL2 database. Image sequences were acquired using a mobile robot plat-
form, under several illumination conditions (sunny, cloudy, night) and across
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Fig. 5. Sample images from the COLD-Freiburg database illustrating the rooms in
which acquisition was performed and different types of captured variability intro-
duced by human activity and changes in illumination.

several days. As in case of IDOL2, special care was taken to capture people’s
activities and change of location of objects and furniture. However, the ac-
quisition was performed using both perspective and omnidirectional cameras,
in several parts of a different environment and using different hardware. For
further details, we refer the reader to [39].

For our experiments, we employed only the perspective images and we selected
6 different extended sequences from the database. The extended sequences
were acquired in a larger section of the environment consisting of 9 rooms
of different functionality: a corridor, a printer area, a kitchen, a large office,
2 two-persons offices, a one-person office, a bathroom and a stairs area. The
sequences contained on average 2547 frames. The 6 sequences were selected to
mimic the organization of the IDOL2 database. For each illumination setting,
we chose 2 sequences acquired under similar conditions and close in time.

5.3 Image Descriptors

Two visual descriptors, global and local, were employed during our experi-
ments. We used Composed Receptive Field Histograms (CRFH, [26]) as global
features. CRFHs are a multi-dimensional statistical representation of the oc-
currence of responses of several image descriptors applied to the image. This
idea is illustrated in Fig. 6. Each dimension corresponds to one descriptor and
the cells of the histogram count the pixels sharing similar responses of all de-
scriptors. This approach allows to capture various properties of the image as
well as relations that occur between them. Multi-dimensional histograms can
be extremely memory consuming and computationally expensive if the num-
ber of dimensions grows. In [26], Linde and Lindeberg suggest to exploit the
fact that most of the cells are usually empty, and to store only those that are
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Fig. 6. The process of generating multi-dimensional receptive field histograms using
the first-order derivatives computed at the scale t = 4 and the number of bins per
dimension set to 16.

Fig. 7. Examples of images marked with interest points detected using the Har-
ris-Laplace detector. The radius of the circles illustrate the scale at which the points
were detected.

non-zero. This representation allows not only to reduce the amount of memory
required, but also to perform operations such as histogram accumulation and
comparison efficiently.

The idea behind local features is to represent the appearance of an image only
around a set of characteristic points known as the interest points. The sim-
ilarity between two images is then measured by solving the correspondence
problem. Local features are known to be robust to occlusions and viewpoint
changes, as the absence of some interest points does not affect the features
extracted from other local patches. The process of local feature extraction
consists of two stages: interest point detection and description. The interest
point detector identifies a set of characteristic points in the image that could
be re-detected even in spite of various transformations (e.g. rotation and scal-
ing) and variations in illumination conditions. The role of the descriptor is to
extract robust features from the local patches located at the detected points.
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In this paper, we used the scale, rotation, and translation invariant Harris-
Laplace detector [32] and the SIFT descriptor [28]. Fig. 7 shows two examples
of interest point detected on images of indoor environments.

5.4 Parameter Selection and Performance Evaluation

For all experiments, the kernel parameter and the SVM cost parameter C
were determined via cross validation, separately for each database. Then, the
obtained values were used as constants for all the incremental learning exper-
iments. For all experiments, we used the implementation of SVM provided by
the libsvm library [9].

Since the employed datasets are unbalanced (e.g. in case of the IDOL2 database
there are on average 443 samples for CR, 114 for 1pO, 129 for 2pO, 133 for
KT and 135 for PR), as a measure of performance for the reported results
and parameter selection, we used the average of classification rates obtained
separately for each actual class. For each single experiment, the percentage of
properly classified samples was first calculated separately for each room and
then averaged with equal weights independently of the number of samples ac-
quired in the room. This allowed to eliminate the influence that large classes
could have on the performance score.

In our experiments, we observed a few percent improvement of the final results
when a performance measure that is not invariant to unbalanced classes was
used. This was caused by very good performance of the system for the corridor
class. The was visually distinct from the other classes and was represented by
the largest number of samples. As a result, in our experiments, the measure
was used mainly to compensate for the influence of the corridor class.

6 Experiments on Support Vector Reduction

To begin with, we run some experiments to evaluate the behavior of the sup-
port vector reduction algorithm described in Section 4.3. We used two se-
quences from the IDOL2 database [29], one as train set and the other as test
set. We chose CRFH as an image descriptor, and trained SVMs with four
different types of kernels: linear kernel, RBF kernel, χ2 kernel and histogram
intersection (Hist.-Inte.) kernel. First, the SVM classifier was trained using the
SMO algorithm. Then, starting from the obtained discriminative function, the
reduction algorithm was tested, for different values of the reduction threshold
τ . After each experiment (for each value of τ), the original model was reduced
and the number of kept support vectors and the performance of the reduced
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Fig. 8. Percentage of the reduced number of Support Vectors (SV) compared to
the initial model (left), and the percentage of the original classification rate that
is preserved after the reduction (right), both as a function of different value of τ
for various kernel types. The initial number of Support vectors (SV) and initial
classification rate (Acc.) were reported for each kernel.

model were tested on the same test set. If the classification rate dropped below
80% of the initial classification rate, i.e. Θ < 80%, the process was stopped.
Fig. 8 reports the percentage of the reduced number of Support Vectors (SV)
compared to the initial model (left), and the percentage of the initial classifica-
tion rate that is preserved after the reduction (right), as a function of different
value of τ . We see that, apart for the linear kernel, the algorithm behaves as
expected, obtaining a gentle decrease in performance as the number of stored
support vectors is being reduced. It is worth noting that the linear kernel is
known for being not a good metric for histogram-like features, as instead all
the other three kernels are. This might explain its different behavior.

7 Experiments on Adaptation

As a first application of our method, we present experiments on visual place
recognition in highly dynamic indoor environments. We consider a realistic
scenario, where places change their visual appearance because of varying illu-
mination conditions or human activity. Specifically, we focus on the ability of
the recognition algorithm to adapt to these changes over long periods of time.
As it is not possible to predict in advance the type of changes that will occur,
adaptation must be performed incrementally.

We conducted two series of experiments to evaluate the effectiveness of the
memory-controlled incremental SVM for this task. In the first, we considered
a case in which the variability observed by the recognition system was con-
strained to changes introduced by long-term human activity under stable il-
lumination conditions. Such experimental procedure allowed us to thoroughly

19



examine the properties of each of the incremental methods in a more controlled
setting. The corresponding experiments are reported in Section 7.1. In the sec-
ond, we considered a real-world, unconstrained scenario where the algorithms
had to incrementally gain robustness to variations introduced by changing il-
lumination and short-term human activity, and then, to use their adaptation
abilities to handle long-time environment changes. The corresponding exper-
iments are reported in Section 7.2. In both experiments, we compared our
approach with the fixed-partition incremental SVM, OISVM and the batch
method. This last algorithm is used here purely as a reference, as it is not
incremental. We used CRFH global image features. We tested a wide variety
of combinations of image descriptors, with several scale levels [37]. On the
basis of an evaluation of performance and computational cost, we built the
histograms from normalized Gaussian derivative filters applied to the images
at two different scales, and we used χ2 as a kernel for SVM. We also performed
experiments using SIFT local features combined with the matching kernel for
SVM. Both types of features previously proved effective for the place recogni-
tion task [41,40].

7.1 Experiments with Constrained Variability

In the first series of experiments, we evaluated the properties of the memory-
controlled incremental SVM in a simplified scenario. We therefore trained
the system on three sequences acquired under similar illumination conditions,
with the same robot platform. The fourth sequence was used for testing. Train-
ing on each sequence was performed in 5 steps, using one subsequence at a
time, resulting in 15 steps in total. We considered 36 different permutations of
training and test sequences. Here we report average results obtained on both
global and local features by the three incremental algorithms (fixed-partition,
OISVM, and memory-controlled) as well as the batch method. We tested the
memory-controlled algorithm using two different values of the parameter Θ,
i.e. Θ = 99%, 95%. This corresponds to the maximum accepted reduction of
the recognition rate of 1% and 5% respectively, as explained in Section 4.3.
Similarly for OISVM, we used three different values of the parameter η that
determines how sparse the final solution is going to be (as in [36]).

Fig. 9, left, shows the recognition rates obtained at each incremental step
by all methods and for both feature types. Fig. 9, right, reports the num-
ber of training samples that had to be stored in the memory at each step
of the incremental procedure. First, we see that OISVM achieves very good
performance similar to the batch method. However, both methods suffer from
the same problem: they require all the training samples to be kept in the
memory during the whole learning process. This makes them unsuitable for
realistic scenarios, particularly in cases when the algorithm should be used
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(a) Classification rate and number of training samples stored for global features.
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(b) Classification rate and number of training samples stored for local features.

Fig. 9. Average results obtained for the experiments with constrained variability for
three incremental methods and the batch algorithm.

on a robotic platform with intrinsically limited resources. The fixed-partition
algorithm achieves identical performance as the batch method, while greatly
reducing the number of training samples that need to be stored in the mem-
ory at each incremental step. However, despite that all the algorithms show
plateaus in the classification rate whenever the model is trained on similar
data (coming from consecutive subsequences), the number of support vectors
grows roughly linearly with the number of training steps.

We see that for the memory-controlled incremental SVM, both the classifica-
tion rate and the number of stored support vectors show plateaus every five
incremental steps (as opposed to the classification rate only in case of the other
methods). The method controls the memory growth much more successfully
than the original fixed-partition incremental technique. For instance, when we
accept only one percent reduction in classification (i.e. Θ = 99%), the num-
ber of support vectors stored after the 15 steps is 39.6% (CRFH) and 43.7%
(SIFT) lower than for the fixed-partition incremental method. For Θ = 95%,
the gain in memory compression is much greater than the overall decrease
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in performance. This feature, i.e. the possibility to trade memory for a con-
trolled reduction in performance, can be potentially very useful for systems
operating in realistic, open-ended learning scenarios and with limited memory
resources. This approach would be even more appealing for systems which can
compensate the loss in performance by doing information fusion over time or
from multiple sensors. It is worth underlying that the growth in the number of
support vectors decreases over time (Fig. 9, bottom). For example, for CRFH
and Θ = 99%, the model trained on the second sequence (step 6 to 10) grows
by 115 vectors on average, but trained on the third sequence (step 11 to 15)
grows only by 74 vectors. This may indicate that the number of SVs eventually
tends to reach a plateau.

In order to gain a better understanding of the methods’ behavior, we per-
formed an additional analysis of the results. Fig. 11b shows, for the two ap-
proximate incremental techniques, the average amounts of vectors (originat-
ing from each of the three training sequences) that remained in the model
after the final incremental step (note that, in our case, this analysis would be
pointless for OISVM, as it requires storing all the training data). The figure
illustrates how the methods weigh instances, learned at different time, when
constructing the internal representation. We see that both fixed-partition and
memory-controlled algorithms privilege new data, as the SVs from the last
training sequence are more represented in the model. This phenomenon is
stronger for the memory-controlled algorithm.

To get a feeling for how the forgetting capability works in case of the memory-
controlled method, we plotted the positions where the SVs were acquired, for
Θ = 99% and the CRFH features. Fig. 10 reports results obtained for a model
built after the final incremental step. The positions were marked on three
maps presented in Fig. 10a,b,c so that each of the maps shows the SVs orig-
inating from only one training sequence. These SVs could be considered as
landmarks selected by the visual system for the recognition task. As already
shown in Fig. 11b, most of the vectors in the model come from the last training
sequence. Moreover, the number of SVs from the previous training steps de-
creases monotonically, thus the algorithm gradually forgets the old knowledge.
It is interesting to observe how the vectors from each sequence are distributed
along the path of the robot. On each map, the places crowded with SVs are
mainly transition areas between the rooms, regions of high variability, as well
as places at which the robot rotated (thus providing a lot of different visual
cues without changing position). To illustrate the point, Fig. 11a shows sam-
ple images acquired in the corridor, for which the SVs decay quickly, and one
of the offices, for which they are being preserved much longer. The results
indicate that the forgetting is not performed randomly. On the contrary, the
algorithm tends to preserve those training vectors that are most crucial for
discriminative classification, and first forgets the most redundant ones.
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On the basis of these experimental findings, we can conclude that the memory-
controlled incremental SVM is the best method for vision-based robot local-
ization of those considered here. Therefore, in the rest of the paper we will
use only this algorithm, with Θ = 99%.

7.2 Experiments with Unconstrained Variability

The next step was to test our incremental method in a real-world scenario.
To this purpose, we considered the case where the algorithm needed to in-
crementally gain robustness to variations introduced by changing illumination
and human activities, while at the same time using its adaptation ability to
handle long-time changes in the environment. We performed the experiments
first on the IDOL2 database. Then, to confirm the behavior on a different set
of data, we used the COLD-Freiburg database. We first trained the system
on three IDOL2 sequences acquired at roughly similar time but under differ-
ent illumination conditions. Then, we repeated the same training procedure
on sequences acquired 6 months later. In order to increase the number of in-
cremental steps and differentiate the amount of new information introduced
by each set of data, each sequence was again divided into five subsequences.
In total, for each experiment we performed 30 incremental steps. Since the
IDOL2 database consists of pairs of sequences acquired under roughly similar
conditions, each training sequence has a corresponding one which could be
used for testing. Feature-wise, here we used only the global features (CRFH).
Indeed, the experiments presented in the previous section showed that local
features achieve an accuracy similar to that of CRFH, but at a much higher
computational cost and memory requirement. Also, preliminary experiments
show that this behavior is confirmed in this scenario, hence the choice to use
here only the global descriptor.

We used a very similar system and experimental procedure for the exper-
iments with the COLD-Freiburg dataset. As in case of IDOL2, we divided
each sequence into 5 subsequences and used pairs of sequences acquired under
roughly similar conditions for training and testing. In case of both databases,
the experiment was repeated 12 times for different orderings of training se-
quences. Fig. 12 and 13 report the average results together with standard
deviations. By observing the classification rates for a classifier trained on the
first sequence only, we see that the system achieves best performance on a test
set acquired under similar conditions. The classification rate is significantly
lower for other test sets. In case of IDOL2, this is especially visible for im-
ages acquired 6 months later, even under similar illumination conditions. At
the same time, the performance greatly improves when incremental learning
is performed on new batches of data. The classification rate decreases for the
old test sets; at the same time, the size of the model tends to stabilize.
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(a) 78 Support Vectors from 1st seq. (b) 111 Support Vectors from 2nd seq.

(c) 149 Support Vectors from 3rd seq.

Fig. 10. Maps of the environ-
ment with plotted positions of
the support vectors stored in
the model obtained after the
final incremental step for one
of the experiments conducted
using the memory-controlled
technique with Θ = 99%. The
support vectors were divided
into three maps (a, b, and
c) according to the training
sequence they originate from.
Additionally, each map shows
the path of the robot during
acquisition of the sequence (ar-
rows indicate the direction of
driving). We observe that the
Support Vectors from the old
training sequences were grad-
ually eliminated by the al-
gorithm and this effect was
stronger in regions with lower
variability.
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Fig. 11. Sample images captured in regions of different variability (left). Comparison
of the average amounts of training vectors coming from the three sequences that
were stored in the final incremental model for the two approximate incremental
techniques (right).
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  Testing sequence 1

  Testing sequence 2

  Testing sequence 3

  Testing sequence 4

  Testing sequence 5

  Testing sequence 6

(a) Support vectors (b) Performance of memory-reduced

Fig. 12. Average results of the IDOL2 experiments in the real-world scenario. (a)
compares the amounts of SVs stored in the models at each incremental step for the
batch and the memory-controlled method. (b) reports the classification rate mea-
sured every fifth step (every time the system completes learning a whole sequence)
with all the available test sets. The training and test sets marked with the same
indices were acquired under similar conditions.

7.3 Discussion

The presented results provide a clear evidence of the capability of the dis-
criminative methods to perform incremental learning for vision-based place
recognition, and their adaptability to variations in the environment. Table 1
summarizes the performance obtained by each method in terms of accuracy,
speed, controlled memory growth and forgetting capability. For each algo-
rithm (i.e. for each row), we put a cross corresponding to the property (i.e.
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Fig. 13. Average results of the COLD-Freiburg experiments in the real-world sce-
nario. (a) compares the amounts of SVs stored in the models at each incremental
step for the batch and the memory-controlled method. (b) reports the classification
rate measured every step with all the available test sets. The consecutive training
and testing sequences were acquired under similar conditions.

the column) that the algorithm has shown to possess in our experiments.
The fixed-partition method performs as well as batch SVM, but it is unable
to control the memory growth and requires much more memory space. We
also found that OISVM could get very good accuracy while achieving a low
computational complexity during testing. However, none of the two methods
has shown to possess an effective forgetting capability: for the fixed-partition
method, the old SVs decay slowly, but the decay is neither predictable nor
controllable; for OISVM, every training vector must be stored into memory.
As opposed to this, the memory-controlled algorithm is able to achieve perfor-
mances statistically equivalent to those of batch SVM, while at the same time
providing a principled and effective way to control the memory growth. Exper-
iments showed that this has induced a forgetting capability which privileges
newly acquired data to the expenses of old one and the model growth slows
down whenever new data are similar to those already processed. Furthermore,
since a lot of training images can be discarded during the incremental process,
the training time soon becomes significantly lower than for the batch method.
For instance, in case of the second experiments, training the classifier at the
last step took 25.5s for the batch algorithm and only 5.6s for the memory-
controlled method on a 2.6GHZ Pentium IV machine, and recognition time
was twice as fast for the memory-controlled algorithm than for the batch one.
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Accuracy Forgetting Memory Speed

Fixed-partition x x

OISVM x x

Memory-controlled x x x x
Table 1
Comparing incremental learning techniques for place recognition and robot local-
ization applications.

Knowledge
Transferred

Across Platforms
TrainingTraining TrainingSV

Reduction
TrainingTraining

Traing Set 1 Traing Set 2 Traing Set N

Testing Testing

SVM
Model

SVM
Model

SVsSVsSVs

Fig. 14. A diagram illustrating the data flow in the knowledge-transfer system.

8 Experiments on Knowledge Transfer

As a second application of our method, we considered the problem of trans-
fer of knowledge between robotic platforms with different characteristics, per-
forming vision-based recognition in the same environment. We used the IDOL2
database and the robots Minnie and Dumbo for these experiments. The main
difference between the two platforms lies in the height of the cameras (see
Fig. 15). They both use the memory-controlled incremental SVM as a basis
for their recognition system, thus they share the same knowledge representa-
tion. The aim is to efficiently exploit the knowledge acquired e.g. by one robot
so to boost the recognition performance of another robot. We propose to use
our method to update the internal representation when new training data
are available. Fig. 14 illustrates how our approach can be used for transfer
of knowledge. We would like the knowledge transfer scheme to be adaptive,
and also to privilege newest data so to avoid accumulation of outdated in-
formation. Finally, the solution obtained starting from a transferred model
should gradually converge to the one learned from scratch, not only in terms
of performance but also of required resources (e.g. memory).

The challenges in the transfer of knowledge will come from:

• (a) Differences in the parameters of the two platforms
The cameras are mounted at two different heights, thus the informative
content of the images acquired by the two platforms is different. Because of
this, the knowledge acquired by one platform might not be helpful for the
other one or, in the worst case, it might constitute an obstacle. Preliminary
experiments showed that SIFT is more suitable for the transfer of knowledge
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Fig. 15. Knowledge transfer across robot platforms which only partially share visual
information.

in our scenario than CRFH. For that reason, CRFH will not be used.
• (b) Room by room/frames by frames knowledge update

It is desirable to update the model transferred across platforms as soon as
new data are available. We will investigate the behavior of the algorithm
when the update is performed room-by-room, or frames-by-frames. Both
scenarios are at risk of unbalanced data with respect to the class being
updated.

• (c) Growing memory requirements
Building on top of an already trained classifier might lead to a solution that
will be much more demanding in terms of memory usage and computational
power than the one learned from scratch. Although our memory-controlled
approach is capable of reducing the number of SVs, its reduction process
does not take the sources of the information into consideration. In order to
favor information coming from the platform currently in use, we imposed
to the algorithm to discard only those SVs that were linearly dependent
and came from the previous platform by adding meta-information on the
training examples. This scheme speeds up the turnover of stored SVs, while
preferring newest data and at the same time preserving relevant information.

In the IDOL2 database, for each robot and for every illumination condition,
we always have two sequences acquired under similar conditions. Here, we
always used such pairs of sequences, one as a training set and the other one as
a test set. In all the experiments, we benchmarked against a system not using
any prior knowledge.
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8.1 Experiments with room by room updates

In the first series of experiments, the system was updated incrementally in a
room by room (i.e. class by class) scenario. The system was trained incremen-
tally on one sequence; the corresponding sequence, acquired under roughly
similar conditions, was used for testing. The prior-knowledge model was built
using standard batch SVM from one image sequence, acquired under the same
illumination conditions and at close time as the training one, but using a dif-
ferent platform. As there are five classes in total, training was performed in
5 steps (the algorithm learned incrementally one room at the time). In the
no-transfer case, the system needed to build the model from scratch, and thus
needed to acquire data from at least two classes. In this case, training on each
sequence required only 4 steps since in the first step the algorithm learned to
distinguish between the first two classes.

Building on top of knowledge acquired from another platform implies a growth
in the memory requirements. To evaluate this behavior in relationship to its
effects on performance and compare fairly to the system trained without a
prior model, we incrementally updated the model without transferred knowl-
edge on another sequence acquired under conditions similar to that of the first
training sequence. This experiment makes it possible to evaluate performance
and memory growth when both systems are trained on two sequences. The
main difference is that in one case both sequences were acquired and pro-
cessed by the same platform; in the other case, one sequence was acquired and
processed by a different platform. We considered different permutations in the
rooms order for the updating; for each permutation, we considered 6 different
orderings of the sequences used as training, testing, and prior-knowledge sets.
Due to space reasons, we report only average results for one permutation,
together with standard deviations in Fig. 16.

We can see that, for both approaches, the system gradually adapts to its own
perception of the environment. It is clear that the knowledge-transfer system
has a great advantage in terms of performance over the no-transfer system at
the first steps. For instance, we see that, after the second update (TO1, Fig
16a), the knowledge-transfer system achieves a classification rate of 65.3%,
while the no-transfer knowledge obtains only 37%. The advantage in classi-
fication rate for the knowledge-transfer system remains considerable for the
steps OO1 and KT1. However, it is interesting to note that even when both
systems have been updated on a full sequence (CR1, Fig 16a), the knowledge-
transfer system still maintains an advantage in performance. Considering the
differences between the two platforms, and that the transferred knowledge
model was built on a single sequence, this is a remarkable result. It can also
be observed from Fig. 16d that the memory-controlled algorithm facilitated
the decay of knowledge from the other platform (in the first incremental step,
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(b) Number of support vectors at
each training step.

−1 0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

80

90

100

Training Step

KN. PA1 TO1 OO1 KT1 CR1

No transfer

Knowledge transfer

44

43

45

61

94

95

38

44

55

86

94

97

34

45

83

93

96

96

40

80

93

96

96

98

78

89

94

94

97

97

97

97

97

97

97

95

88

91

97 96
92

99
96

98

A
v
e

ra
g

e
 C

la
s
s
if
ic

a
ti
o

n
 R

a
te

 [
%

]

 

 

PA TO OO KT CR
−1 0 1 2 3 4 5 6

0

100

200

300

400

500

600

700

800

900

1000

1100

Training Step

No transfer

Knowledge transfer

KN. PA1 TO1 OO1 KT1 CR1

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
S

to
re

d
 S

u
p

p
o

rt
 V

e
c
to

rs

 

 

Support vectors from prior−knowledge

Support vectors from own−perception

(c) Comparison of the performance
at each training step.

(d) Comparison of the number of
support vectors at each step.

Fig. 16. Average results obtained for the system incrementally trained with and
without transfer of knowledge in the room by room fashion. Fig. 16a,b compare
the final recognition rates and the total number of support vectors for both cases.
Fig. 16c,d present a detailed analysis: classification rates obtained for each of the
rooms and the amount of support vectors in the final model that originate from
the transferred knowledge. In all the plots, the first step “KN.” corresponds to the
results obtained for the transferred knowledge before any update was performed.

we did not perform the reduction), while the knowledge acquired by its own
sensor gradually becomes the main source for the model. As the no-transfer
system continued to learn one additional sequence incrementally, its mem-
ory growth eventually exceeded the knowledge-transfer case (see Fig 16b).
Although the model was built on two sequences acquired by the same plat-
form, the knowledge-transfer system still obtains a comparable performance.
We conclude that the transfer of knowledge, in a room by room updating
scenario, acts as an effective boosting of performance, without any long-term
growth of the memory requirements.
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(d) Number of stored support vectors of incremental experiment with and without
knowledge-transfer at each step.

Fig. 17. Average results obtained for the system incrementally trained with and
without transfer of knowledge in the frames by frames fashion. The labels below
each bar indicate the batch of data used for the incremental update. Again, the
first step labeled as “KN.” corresponds to the results obtained for the transferred
knowledge before any update was performed.
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8.2 Experiments with frame by frame updates

The second series of experiments explored the behavior of the system in a
frames by frames updating scenario. Here, for each incremental update, we
used a certain number of consecutive frames taken from the training image
sequence. Again, the system was trained incrementally on one sequence, and a
corresponding sequence was used as a test set. We examined the performance
of the system for the case when updating was performed using 30 frames per
step 1 . Thus, for each experiment, it took more than 30 incremental steps
in total to complete a sequence. The prior-knowledge model was built using
two complete sequences acquired by the other platform, under the same illu-
mination conditions and very close in time. This provided a better start-up
performance than in case of the previous experiments. Again, we benchmarked
against the system not using any prior knowledge. In this case, in order to ful-
fill the requirement of training using at least 2 classes, the first training set
consisted of all the images captured in the first room plus the first 30 frames
captured in the second room. As a consequence, the full training process re-
quired five to six less steps than in case of equivalent experiments using the
knowledge-transfer scheme. The experiment was repeated 6 times for different
orderings of training sequences. Since the number of training steps varied (due
to a different number of images in each sequence), we report all the results
separately. Fig. 17a,b report the amount of stored SVs and classification rates
at each step, for all the experiments. This shows the general behavior for both
approaches. Fig. 17c,d present results for one of the 6 experiments, so to allow
a detailed analysis.

By observing the classification rates obtained at each step in both cases, we
see that the advantage of the knowledge-transfer scheme is even more visible
here than for the room by room updating scenario. This might be due to the
fact that some of the training sets used for the no-transfer case are highly
unbalanced. We can observe from Fig. 17c that the performance of the sys-
tem for previously learned rooms can drop considerably when a new batch
of frames is loaded; this is not the case for the knowledge-transfer system.
The twelfth step, when the system was updated with frames from the two-
persons office (TO3, Fig. 17c), is a typical example. Note that this is a general
phenomenon present, although less pronounced, also in the room by room up-
dating scenario. Our interpretation is that the model of the prior-knowledge
contains information about the overall distribution of the data. This helps
to find a balanced solution when dealing with non-separable instances using
soft-margin SVM [10]. As a last remark the knowledge from the transferred
model is gradually removed over time (see Fig. 17d).

1 Experiments conducted for 10 and 50 frames per training step gave analogous
results, and for space reasons are not reported here.
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9 Summary and Conclusions

In this paper we presented a novel extension of SVM to incremental learn-
ing that achieves the same recognition performance of the standard, batch
method while limiting the memory growth over time. This is achieved by dis-
carding, at each incremental step, all the support vectors that are not linearly
independent. The information they carry is not lost, as it is retained into the
algorithm’s decision function in the form of weighting coefficients of the re-
maining support vectors. We call this method memory-controlled incremental
SVM. We applied it to the problem of place recognition for robot topolog-
ical localization, focusing on two distinct scenarios: adaptation in presence
of dynamic changes and transfer of knowledge between two robot platforms
engaged in the same task. Experiments show clearly the effectiveness of our
approach in terms of accuracy, speed, reduced memory and capability to forget
redundant, outdated information.

We plan to extend this work in several ways. First, we want to use the
memory-controlled algorithm in multi-modal learning scenarios, for instance
using laser-based features combined with visual ones, as done in [41], in an
incremental setting. Here we should be able to exploit fully the properties of
the method, and aggressively trade memory for accuracy on single modalities,
while retaining an high overall performance. Second, we would like to investi-
gate further the knowledge transfer scenario, and incorporate in our framework
ways to select the data to be transferred, as proposed in [25]. Future work will
concentrate in these directions.
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Mechanical support as a spatial abstraction for mobile robots

Kristoffer Sjöö, Alper Aydemir, Thomas M̈orwald, Kai Zhou and Patric Jensfelt

Abstract— Motivated by functional interpretations of spatial
language terms, and the need for cognitively plausible and prac-
tical abstractions for mobile service robots, we present a spatial
representation based on the physical support of one object by
another inspired by the preposition “on”. A perceptual model
for evaluating this relation is suggested, and experiments –
simulated as well as using a real robot – are presented. We
indicate how this model can be used for important tasks such
as communication of spatial knowledge, abstract reasoning and
learning, exemplifying this in the context of direct and indirect
visual search. We also demonstrate the model experimentally,
showing that it produces intuitively feasible results from visual
scene analysis as well as synthetic distributions that can be put
to a number of uses.

I. I NTRODUCTION

The field of service robotics is, at its core, directed toward
the creation of systems that are as versatile, adaptive and
powerful in everyday environments as human beings are.
Only when this becomes true will we be able to depend
on robots in the same way as on people around us.

The human machine is superbly adapted to this kind
of environment; not just physically (such as having legs
to negotiate stairs and thresholds, and arms for opening
doors and using appliances), but mentally as well. Human
cognition, language, and civilisation have all evolved, and
are evolving, in inextricable conjunction with each other.Any
cultural or linguistic concept, whether it is the function of
a piece of furniture or the meaning of a word, needs the
support of cognitive mechanisms; individuals are driven to
acquire such mechanisms by reinforcement pressures from
their surroundings [8] – while at the same time, the minds
of individuals, embodied in the real world, shape and bring
forth that same cultural or linguistic concept in turn.

This all suggests the following:
1) Adopting human-like cognitive patterns will help robots

approach human-like performance in the context of
homes, offices or other environments that are the prod-
ucts of human inclinations, activities and thought.

2) Linguistic concepts can provide insights into cognition
that can help understand the nature of those cognitive
patterns.

These are the principles on which this work is based.
Our research addressesspatial concepts specifically. Spatial
concepts are of great importance to robotic agents, especially
mobile ones:

K. Sjöö, A. Aydemir and P. Jensfelt are with the Centre for Autonomous
Systems at the Royal Institute of Technology (KTH), Stockholm, Sweden.
T. Mörwald and K. Zhou are with the Automation and Control Institute,
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• They are a necessary part of linguistic interaction with
human beings, both when interpreting utterances with a
spatial content and when formulating such utterances.

• They allow knowledge transfer between systems,
whether different robots, or databases such as the Open
Mind Indoor Common Sense database (OMICS) [2]
(which contains “commonsense” information about in-
door environments provided by humans, such as where
objects may be found), as long as those concepts are
shared.

• They provide qualitative abstractions that facilitate
learning and reasoning.

• They can be used to guide top-down processes such as
e.g. visual object search.

Drawing inspiration from results in psycholinguistics, in
this paper we examine the functional spatial relation of
mechanical support, which in English corresponds to the
preposition “on”. We contribute a novel and general percep-
tual measure that allows a robot to analyze a scene in terms of
this relation in practice. We implement this perceptual model
showing it to produce results in accord with human intuitions
of “on”; we also perform simulated sampling experiments to
show how it can be used in a top-down fashion to generate
a conditional probability distribution over object poses given
that the relation is known or assumed to hold.

Other work has examined ways to quantify spatial re-
lations. [11], inspired by findings on spatial information
encoding in the hippocampus, suggests a number of geo-
metrical factors, e.g. coordinate inequalities, that playa part
in defining relations such as “below”, “near” or “behind”,
but does not attempt to provide exact formulas.

In [13], theAttention Vector Sumis proposed as a practical
numerical measure of how acceptable a particular spatial
relation is for describing a scene, and this model is compared
to actual human responses. The scenes used in this work are
2-dimensional and the trajector (mobile object) is treatedas
a single point.

[10] presents a system where a user can sketch images
of basic figures, and which learns to distinguish between ex-
amples of “in”, “on”, “above”, “below” and “left”. However,
the domain used in the work is strictly 2-dimensional.

Topological relations specifically are surveyed in [3].Re-
gion connection calculusand its variants provide a language
for expressing qualitative relationships between regions, such
as containment, tangential contact etc. Relations are of anall-
or nothing nature; and they represent objective, geometrical
as opposed to perceptual or functional attributes.

The aforementioned work, because of its emphasis on
pure geometry – typically in 2 dimensions – is not directly



suited for applications in a practical mobile robotic scenario.
This paper, in contrast, takes a novel, functional approach
by basing a relation on a single fundamental, objective
mechanical property. Another contribution lies in treating
all the objects as entire bodies rather than simplifying them
into points, a simplification which ignores the importance
of physical contact in the “on” relation. We also show how
the method can be used to generate probability distributions,
such as might be used for visual search.

This paper is organized in the following way: Section II
introduces the spatial relation we are examining and the
suggested perceptual model for the relation; Section III
presents the implementation of the model that we have
carried out and the experiments performed – on real image
data as well as simulated. Section IV discusses the results
and directions for future research, followed by conclusions
in Section V.

II. T HE ON RELATION

Spatial predicates in language come in different categories.
Projectivespatial relations constrain the trajector’s1 location
within an essentiallydirectedregion relative to the landmark.
Examples in English include “to the left of”, “behind” and
“past”. Topologicalrelations, in contrast, locate the trajector
in some manner that is independent of direction. Typical
examples are “on”, “at” and “inside”. Topological relations
seem to be among the first to be learned in humans [12].
In this work, we are concerned with “on”, an important
English word implying an equally important underlying
spatial concept.

Research suggests that verbal descriptions of space do not,
in general, correspond one-to-one to cognitive representa-
tions [9]. Instead, it seems conceptualization forms around
kernels offunctionalcriteria, such as “physical attachment”,
“superposition” (an object being located in the space ver-
tically above another) or “containment” (an object being
enclosed by another). As has been noted by e.g. Talmy [15]
and Herskovits [6], English’ “on” carries a central meaning
also represented in many other languages: that ofsupport
against gravity; i.e., a trajector is “on” a landmark if it would,
were the landmark to be removed, begin to fall or move under
the influence of gravity. This sense of “on” is anidealized
cognitive modelor ICM [7], around which other, less central
and more idiomatic senses of “on” form in a way specific to
each language.

A. The importance of support in robotics

We observe that the notion of support is highly related
to the functional aspects of space as designed, constructed
and lived in by human beings. Such space is full of entities
specifically made to support others, both statically – such
as tables, shelves, counters, chairs, hooks and desks – and
dynamically – such as trays, trolleys, and dishes. This
functional aspect is emphasized by Coventry and Garrod [4]:

1The trajector is the entity whose location (and/or motion) isbeing
denoted explicitly, in relation to the landmark. Thus, in thesentence “A
is aboveB”, A is the trajector andB the landmark.

Describing where an object is located goes
beyond the description of a geometric position of
objects as a snapshot in time. Understanding spatial
language is also about thepurposethat location
serves for the users of that language.

As for “on”, it is the 14th most common English word [1]
which indicates the importance that humans attach to support
in representing the spatial location of an object2.

Apart from the evidence given by its prominent role in
language (and thus in the minds of people), support is
an intuitively useful abstraction in the following way: If a
support is moved, then supported objects will tend to move
with it, maintaining the relation (Coventry and Garrod refer
to this as “Location control” [4]), and it makes the relation
inherently hierarchical, which is a useful property in spatial
organization.

Secondly, the fact that artifacts in the environment are
explicitly designed to provide support surfaces for objects
means that often, when an object is “on” another, itbelongs
there functionally to some degree and is thus likely to be
replaced on the same surface even after a human picks up,
manipulates, or moves it – even though the exact position
may have changed. For example, a desk may be shifted or
moved, or worked at by its owner, and its set of supported
objects yet be unchanged.

It thus is of interest to robotics to use a spatial representa-
tion that encodes this functional relationship between objects.
Although this work is inspired by linguistic clues, giving a
robot additional linguistic capabilities is only an incidental
outcome. It is also necessary to point out that the word
“on” spans far more meanings than the core physical support
relation: it may entail indirect rather than direct support,
adhesive or suspended support, as well as metaphorical uses.
Here, we are not attempting to cover that complexity.

B. A perceptual model

The “support” relation proposed above constitutes an
idealized model, but is as such not possible to evaluate
directly from perceptual data. Neither robots nor humans can
ascertain degree of mechanical support merely by visually
regarding a scene, and so it becomes necessary to introduce
a perceptual model to estimate the ideal relation.

Humans use context, experience with specific objects and
generalizations, as well as schemata to decide whether an
object is “on” another. For robots, we model this with a
simplified 3-dimensional geometric predicate, termed ON,
such that ON(A,B) corresponds to “A is supported by B”.
The relation is graded and can attain values in the range
[0, 1].

The following are our criteria and their justification.O
denotes the trajector object, andS the support object or
landmark. The criteria are illustrated in Figure 1.

2Though many usages of “on” in English are not about support directly, or
even about literal space, the fact that “on” is the word used still underscores
the cognitive centrality of its core meaning.



1) Separation between objects, d. d can be positive or
negative, negative values meaning that objects seem to
be interpenetrating.
In order for an object to mechanically support another,
they must be in contact. Due to imperfect visual input
and other errors, however, contact may be difficult to
ascertain precisely. Hence, the apparent separation is
used as a penalty.

2) Horizontal distance between COM and contact, l. It
is well known that a bodyO is statically stable if its
center of mass (COM) is above its area of contact with
another objectS; the latter object can then take up the
full weight of the former. Conversely, the greater the
horizontal distance between the COM and the contact,
the less of the weightS can account for, as the torque
gravity imposes onO increases, and this torque must
be countered by contact with some other object.
Thus we impose a penalty on ON(O,S) that increases
with the horizontal distance from the contact to the
COM of O. The contact is taken to be that portion of
S’s surface that is within a threshold,δ, of O, in order
to deal with the uncertainties described above. Ifd > δ,
the point onS closest toO is used instead; otherwise,l
is the positive distance to the outer edge of the contact
area if outside it, and the negative distance if inside.

3) Inclination of normal force, θ – the angle between the
normal of the contact betweenO andS on the one hand,
and the vertical on the other. The reason for including
this is thatmutatis mutandis, the normal force decreases
as the cosine ofθ, meaning the weight ofO must be
either supported by another object or by friction (or
adhesion).

All these values can be computed from visual perception
in principle. Unless otherwise known in advance, the position
of the COM is taken as the geometrical centroid of the object
(since density cannot be determined by vision).

In order to allow a measurable value to be computed, the
agreement with each of the three above criteria is represented
as a continuous function, with a maximum at the point of
best agreement with the criterion. This provides robustness
against error. Criterion 1 is represented by an exponential
distance factor:

ONdistance(O,S) , exp
(
− d

d0(d)
ln 2

)
(1)

whered0 is the falloff distance at which ON drops by half.

d0 =
{ −d−0 , d < 0

d+
0 , d >= 0

The constantsd−0 and d+
0 are both greater than0 and

can have different values (representing the penetrating and
nonpenetrating cases, respectively).

Criteria 2 and 3 make up the sigmoid-shapedcontact
factor:

ONcontact(O,S) , cos θ · 1 + exp(−(1 − b))

1 + exp
(
−

(
−l

lmax
− b

)) (2)

Here, lmax is the maximum possible distance an internal
point can have within the contact area, andb is an offset
parameter.

The values are combined by choosing whichever factor is
smaller, indicating the greater violation of the conditions for
support:

ON(O,S) , min(ONcontact, ONdistance) (3)

Note that the resultant value of ON, although in the range
[0, 1], is not a probability. Rather, it represents the degree of
resemblance of the visual scene to the prototypical ON case.
It can be thresholded to produce a true/false judgement,
which may in turn be utilised in a qualitative reasoning
framework, or for learning – such as learning relationships
between object types in an environment. Alternatively, the
ON measure could be compared with similar measures for
other relations or other objects, to determine which linguistic
description of the scene is the most apt. It can also be used
to weight samples to produce a distribution over poses ofO,
as discussed below.

C. Probability modelling

The conceptualization above does not explicitly make use
of any probabilities. However, it is obvious that the fact of
an object being ON another is not sufficient to recover the
exact pose of the trajector. A probability distribution over
poses can be produced in the following way:

Given the pose and geometry of the landmarkS, and the
geometry (but not the pose) of the trajectorO, each possible
poseπ for the trajector yields a value of ON(Oπ, S) for that
pose.

It is now possible to introduce probabilities in the follow-
ing way. Introduce a true/false eventOn(O,S) signifying
that ON(O,S) > t wheret is a threshold. Then,

p(π|On(Oπ, S)) = p(On(Oπ,S)|π)p(π)
p(On(Oπ,S)) = (4)

= [ON(Oπ,S)>t]p(π)
p(On(Oπ,S))

Here [] denotes the Iverson bracket:

[X] =
{

1, if X is TRUE

0, otherwise

In other words, the probability is simply proportional to
the prior for the poseπ whenever ON(Oπ, S) > t, and 0
elsewhere. Though it may be hard to express this distribution
analytically, by drawing samples randomly fromp(π), dis-
carding those failing to reach the threshold, and normalising
over the remainder, an arbitrarily good approximation can be
found.

D. Example: Visual object search

One use for the above probabilistic formulation is the task
of locating an object by searching for it visually [16], [18],
[19]. Visual object search is typically posed as the problem
of selecting a series of views{Vi}, such that the cost of
acquiring and processing those views is minimized while
detecting the sought object at some set probability.
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Fig. 1. Key features used in computation of ON: Separationd, COM offset l, contact angleθ and contact thresholdδ. The gray area represents the
contact.

Assume that some algorithm exists that produces a se-
quence of views, given a probability distribution for the
sought objectp(πO = x) = fO(x), the views incurring
the total costCO{fO}. The cost may depend on the actual
object, due to size, saliency et cetera.

In this context, the ON relation can be highly useful. In
many scenarios, the exact position of an objectO may be
uncertain or unknown, even while it is known or presumable
that it is ON some other objectS. This information can
have several sources:O may have been seen ON S at an
earlier time, and location control implies the relation will
still hold even if S has moved. The connection may also
be statistical in nature, learned through experience from
many analysed scenes (“this type of object is usually located
ON that type”) or from a commonsense knowledge database.
The information may also come from symbolic reasoning or
linguistical utterances.

Using an object’s location to help search for another is
known asindirect search. Indirect search was first investi-
gated in 1976 by Garvey [5]; there, a system looking for a
phone in a room is first tasked with finding the table that
the phone is resting on. Wixson [17] re-visited the idea of
indirect search in the context of mobile robotics; however,
previous work on exploiting spatial relations to guide the
visual search process on mobile robots is non-existant.

If it is known a-priori thatOn(O,S), and the location of
S is known, then the above distribution may be used as a
prior probability input to a view-selection algorithm, at cost
CO{fO|S}.

If On(O,S) is known to hold butS’ location is not
known, there are two choices: Indirect search can be used,
i.e. locatingS first and then locatingO given the position
of S. The cost of this will be3:

CS{fS} + CO{fO|S}

3Although the second term cannot be known exactly without knowing S’
orientation, one can compute an average over orientations oruse a typical
orientation; either way, the cost will not vary much for most objects.

Alternatively, one may use a distribution overO’s location
obtained through chain inference:

CO{fO} = CO

{∫
S

fO|SfS

}
Either approach can be evaluated using the sampling method
suggested above. By comparing the costs, the most beneficial
option can be selected depending on the situation.

III. E XPERIMENTS

To test the feasibility of the concepts described in the
preceding section, we have implemented them on a robotic
system and tested it in a real-world setting.

We also present a series of simulations that illustrate
the potential of the approach using random sampling to
synthesize a distribution over positions in space.

A. Experimental setup

The robot used in our experiments is a Pioneer III wheeled
robot, equipped with a stereo camera mounted on a pan-tilt
unit at 1.4 m above the ground.

Three different box-shaped objects were used for the tests:
A, B and C, as seen in Figs. 2–5. Objects were detected and
an initial pose estimated using SIFT features, and the pose
refined and tracked using particle filtering based on edge
information acquired from the known geometric model of
each object [14]. Furthermore, horizontal plane patches were
extracted from stereo depth information and assembled into
planar objects (table surfaces).

The resulting object poses, along with their known ge-
ometries, were then processed by the ON computation de-
scribed in Section II, using the parameter settingsδ =3 cm,
d+
0 =2 cm,d−0 =1.4 cm andb = 0.5. The center-of-mass of

each object was taken to be its geometrical center.

B. Results

Figure 2 shows a simple case (The wireframe contours
show the estimated object poses output by the tracking



Fig. 2. Typical case:A ON B, B ON table

Fig. 3. Ambiguous case: B partly ON A, B partly ON table

algorithm). The values for the support function in this scene
are:

ON(A, x) ON(B, x)
x = A — 0%
x = B 93% —

x =Table 2% 92%

The support relation is unambiguous in this case: A is
supported by B, and B by the table. In Figure 3, the situation
is more ambiguous, with B resting partly on the table,
and also leaning on A. The ambiguity is reflected in the
ON measures:

ON(A, x) ON(B, x)
x = A — 25%
x = B 0% —

x =Table 74% 47%

Figure 4 shows another double support example; the object
is held up approximately equally by the two objects, which
is reflected in the computed function:

Fig. 4. Ambiguous case: C partly ON each of A and B

Fig. 5. An anomalous case

ON(A, x) ON(B, x) ON(C, x)
x = A — 1% 28%
x = B 0% — 30%
x = C 0% 0% —

x =Table 91% 93% 3%

Finally, Figure 5 depicts a situation that is seemingly
physically implausible.

ON(A, x) ON(B, x)
x = A — 0%
x = B 22% —

x =Table 4% 84%

The ON measure here is low, and even though there is no
other object with which to compare it, the low value means
the configuration is far from prototypical and not one that
would be expected by the robot, given only the information
that “A is onB”. The problem here is that the COM has been
modified with an extra weight to not be at the geometrical
center ofA, but the robot doesn’t know this, and as stated
earlier it cannot be gleaned from vision alone.



Fig. 6. Objects used in simulation experiments

In summary, we have verified that our approach works in
an implemented real-world system, all the way from sensors
to spatial abstraction, producing outputs that are intuitively
reasonable.

C. Simulation

For the simulated experiments, we used the same object
geometry models as in the real-life experiments. One or
more objects were fixed to one position in space (considered
“known”), and one or more objects were assigned variable
poses (considered “unknown”). Because of the lack of noise,
we were able to use stricter parameter settings:δ =2 cm,
d+
0 =0.7 cm,d−0 =0.4 cm andb = 0.5.
In accordance with the principles put forth in Section II-

C, we then sampled the distribution of the ON function
by randomly selecting poses for the variable objects and
evaluating the ON function for each. The figures in this
section each show 2500 samples that evaluated to ON > 0.5.
Note that the full 6 DOF pose was variable, although the
figures only show the position of the COM.

Figure 6 contains the models of the objects used in the
simulation: a square table, a cereal box and a roughly cubical
larger box, being the same models used with actual objects
above.

Two basic cases are shown in Figures 7 and 8. The former
shows samples ofA’s position, given that it is ON the table;
the latter, given that it is ON B. The stratification that can
be observed corresponds toA standing up, and lying on
its side or back, respectively. This arises directly from the
ON function and shows how ON can encapsulate complex
modes of configurations implicitly. Automatic clustering
would allow for the extraction of these modes, which might
then be used in high-level qualitative reasoning.

Two other configurations of the objectB are shown in
Figure 9. These illustrate how the inclination of the support
object is taken into account in the ON computation. Not all

Fig. 7. Position ofA, given “A ON Table”

Fig. 8. Position ofA, given “A ON B”

points “above”B are valued equally, as might be the case in a
purely geometrical approach, but rather points corresponding
to a largely vertical contact normal are considered more
feasible. In the second image, the distribution is concentrated
to a narrow region corresponding toA balancing on the
topmost edge ofB (which translates to a low ON value in
absolute terms, despite being the global maximum).

The potential uses of these distributions are many. As
explained in Section II-C, they can be translated into prob-
ability distributions. In a search scenario, where it is known
thatA ON B, andB’s pose is known, the distribution may be
used to direct the search forA. If the pose ofB is not known,
the distribution (as computed by assumingB were known)
can be compared to an uninformed prior onA’s location,
allowing the robot to decide whether it is worth it to search
for B first, or if it is better to look for A directly.

In that same vein, Figure 10 contains the result of a
chainedsampling, where both objectsA andB were allowed
to vary randomly. Only when bothB ON Table andA ON B
were greater than0.5 was the position ofA plotted. In
other words, what is represented is the distribution overA’s
position, given thatA ON B andB ON Table, but withB’s
exact pose unknown.

This type of chained inference allows for e.g. searching for
A without first locatingB, while still utilizing the knowledge
that A ON B. As stated above, the distribution can be
compared to the prior ofA, and A given A ON B, to
determine whether it is more beneficial to locateB first or
not.

IV. D ISCUSSION

This work has only begun to explore the possible uses to
a mobile robot of the conceptualization proposed. We would
like to extend the work in several ways. First, evaluating the
efficiency of object search utilising the results of this paper,
as well as exploring how the principle of using functional
criteria can be generalized through a similar treatment of



Fig. 9. Position ofA, given “A ON B”

Fig. 10. Position ofA, given “A ON B, B ON Table”

other important spatial relations, especially topological ones
such as “in” or “at”. In addition, we hope to integrate this
conceptualization of “on” with information from language
and the OMICS database, and conversely to use it to generate
spatial utterances and generalizations about typical relations
between objects. Furthermore our implementation has been
limited to box and plane shapes; it will readily extend to
any convex 3D shapes, but non-convex shapes require that
further assumptions be made.

The perceptual model described in Section II-B assumes
knowledge of the involved objects’ geometry, poses and
centers of mass. Whereas a human is able to estimate these
quantites, even for novel objects, and/or extrapolate them
based on experience, a robot may not always have access
to good such estimates from its visual system. Vision is not
the focus of this work, however, and the soft nature of the
functions gives some robustness to poor visual information;
moreover, and more importantly: as shown in Section II-
D, when the relation information is used in the “opposite
direction”, such as in search, poses do not need to be
provided.

The descriptors used in this work were selected in an
a priori fashion, and the relevant weights were adjusted
manually. In the future, we hope to achieve a more objec-
tive correspondence between the model and the idealized
conceptualization of support – and other such idealized
conceptualizations – through learning, either based on studies
of human classification or on mechanical simulation. The
choice of which features to use in the first place is a still
more challenging learning goal, which must nevertheless be
tackled in order to allow the approach to be applied to
a far wider set of conceptualizations. A concept such as
mechanical support cannot be acquired from scratch without
learning from experience with manipulating physical bodies,
connecting physical forces that are felt to visual properties
of objects and the effects of actions. More work needs to
be done on using such feedback to build functional spatial

concepts, work that cannot be separated from the larger scope
of imbuing robots with greater intelligence.

V. CONCLUSIONS

We proposed an idealized cognitive model for the core
concept underlying English “on”,viz. mechanical support, in
order to give us a functionally grounded abstraction primitive
to use with qualitative reasoning and learning, top-down
processes such as visual search, and linguistic interaction.
A novel perceptual model was designed and implemented
to approximately analyze real-world scenes in terms of this
model, and results of experiments with real-world data were
presented. Finally, we contributed a method to synthesize
expectations about the metric location of an object to aid in
e.g. efficient search.
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Simultaneous Object Class and Pose Estimation for Mobile Robotic
Applications with Minimalistic Recognition

Alper Aydemir, Adrian N. Bishop and Patric Jensfelt

Abstract— In this paper we address the problem of simul-
taneous object class and pose estimation using nothing more
than object class label measurements from a generic object
classifier. We detail a method for designing a likelihood function
over the robot configuration space. This function provides a
likelihood measure of an object being of a certain class given
that the robot (from some position) sees and recognizes an
object as being of some (possibly different) class. Using this
likelihood function in a recursive Bayesian framework allows
us to achieve a kind of spatial averaging and determine the
object pose (up to certain ambiguities to be made precise). We
show how inter-class confusion from certain robot viewpoints
can actually increase the ability to determine the object pose.
Our approach is motivated by the idea of minimalistic sensing
since we use only class label measurements albeit we attempt
to estimate the object pose in addition to the class.

I. I NTRODUCTION

Object search (or active visual (object) search) is an
important component of a mobile robot’s action space [1].
For example, finding, identifying and localizing the pose of
objects is a prerequisite for a robot that wishes to interact
with objects in the environment. In [2] it is shown that a
human understanding of space is significantly based on the
objects present in the scene.

In this paper we are interested in the problem of simulta-
neous object class and pose estimation using a generic object
classifier and a spatially dependent measurement likelihood
model. One novelty we claim is the ability to estimate both
the class and pose of objects in the environment given only
measurements of the object class. Indeed, we attempt to push
the limits of what information can be estimated given nothing
more than a simple object class return and a model of the
spatial likelihood for that class return.

Most existing classification and pose estimation algorithms
match local geometric featuresof the object, such as corners,
edges, holes and surfaces to a precise geometric modelof the
object[3]–[7]. Such techniques require extensive storage and
training data and are far from minimalistic. In addition, these
approaches are sensitive to object occlusions etc where object
class measurements are possible but precise geometrical
measurements of the object are not possible.

Other techniques [6], [8], [9] use a large number of labeled
images taken from different poses and attempt to match
specific images in order to determine the pose. The accuracy
of these approaches increases with the amount of training
and reference images. This technique critically ignores the

The authors are with the Centre for Autonomous Systems (CAS) atthe
Royal Institute of Technology (KTH), Stockholm, Sweden. This work was
supported by the Swedish Foundation for Strategic Research(SSF) through
CAS and also via the EU FP7 project CogX.

relative geometry of the sensor and the object and the affect
of this relationship on the likelihood of recognizing certain
views (or more generally whole objects). In particular, we
show how we can achieve more with much less input if we
consider this relationship explicitly.

1) Original Contribution: We differ from existing object
search methods in the design of our spatial likelihood func-
tions. We will highlight throughout the paper that one novelty
of our approach is that it is truly minimalistic in nature. By
measuring only the object class label we attempt to extract
both the true object class and object pose (orientation and lo-
cation). Indeed, we generally ignore the notion of object view
recognition and assign class labels only to entire objects.We
certainly ignore any geometrical aspects of the object and we
employ generic classifiers (we ignore the particular features
employed by the classifier and indeed in our experiments
we use a recognition algorithm from the literature which
does not make use of any geometrical model of the object).
We can extract certain estimates of the object pose purely
from the structure of the likelihood functions which are
defined over the robot configuration space and hence are
geometrically related to the object pose. In addition, we
show how inter-class confusion, e.g. the ability to mistakenly
measure multiple class labels for a particular object type
from certain views, can be advantageous to the estimation
problem (specifically the estimation of object pose). We can
achieve a high degree of accuracy in pose estimation using
our technique and exploiting inter-class confusion. As faras
we are aware our technique is novel and truly minimalistic.

2) Paper Outline: This paper is organized as follows.
In the next section we outline the general notation used
throughout the paper along with the basics of the robot
dynamic model considered. In Section III we formulate the
problem and outline the design of the likelihood function.
We also provide some intuition regarding the design of the
spatial likelihood function through example. Furthermore, in
Section III we outline the recursive Bayesian algorithm for
computing an objects pose and class and we highlight the
algorithm behaviour using a simple toy example. We show
how measurements of the class label alone can be used to de-
termine accurately the object pose given a suitable likelihood
function defined over the robot configuration space. We then
outline an extension of the algorithm in Section IV for object
class and orientation estimation over a grid. In Section V we
provide the results of a practical experiment over a grid and
in Section VI we discuss the results and directions for future
work. Our conclusion is given in Section VII.



II. PRELIMINARIES

In this section we outline some notational preliminaries
and the robot dynamical model considered.

A. Notation

Introduce a global coordinate frameC at some pre-defined
time t0. Consider a set ofobjectsO = {o1, . . . , ono

} with
position xi ∈ R2 and orientationφi ∈ S1. Consider an
arbitrary objectoi placed so that theR2 location of the
object’s center hovers over the origin ofC at t0. Introduce
a local two-dimensional coordinate frameCi at the center of
oi. Then the orientationφi is defined as the relative rotation
of Ci with respect toC. Each objectoi belongs to a class
{cj}nc

j=1 or theunclassifiedor non-objectclassc0.
The position of a single mobile robot is denoted bys ∈ R2

with headingθ ∈ S1. The distance between the robot andoi
is given byri = ‖xi − s‖. The relative direction tooi from
the robot’s heading is given byϑi = αi − θ whereαi is the
azimuthal bearing tooi in the global coordinate system and
ϑi ∈ S1. We then define a viewpointpi = [s ϑi]⊤.

B. Dynamics

Introduce the matrix Lie groupSE(2) with group element
X(ψ,q) ∈ SE(2) with q = [x y]⊤ ∈ R2 and a group (ma-
trix) multiplication operator. An elementX(θ, r) ∈ SE(2)
acts on a pointpi ∈ R2 by mapping it to(R(θ)pi+r) ∈ R2.
Here (R(θ) is the rotation matrix defined as

R(ψ) =
[

cosψ − sinψ
sinψ cosψ

]
(1)

and note that all elements inSO(2) are congruent to such a
matrix. For notational brevity we write the action ofX(ψ, r)
on q as

X(ψ, r) ◦ q = R(ψ)q + r (2)

which constitutes a left action ofSE(2) on R2. The inverse
X−1(θ, r) ∈ SE(2) mapspi to R⊤(θ)pi −R⊤(θ)r and the
identity is given byX(0,0) ∈ SE(2).

Associated withSE(2) is the vector spacese(2) which is
a Lie algebra with respect to the Lie bracket operation. We
define the basis ofse(2) by {Ex,Ey,Eψ} with

Ei =

 0 0 1(i = x)
0 0 1(i = y)
0 0 0

 , Eθ =

 0 −1 0
1 0 0
0 0 0

 (3)

with i ∈ {x, y} and where1(·) is an indicator function.
Given translational and angular velocity control inputs

u1 = v andu2 = ω we then have

Ẋ(θ, t) = X(θ, t) (Exu1 + Eθu2) (4)

which constitutes a left-invariant, drift-free system on the
groupSE(2). This model is the Lie group representation of
the unicycle model and is our robot kinematic model.

III. PROBLEM FORMULATION

In this section we outline the probabilistic framework
within which our estimation problem is formulated.

A. Classification Likelihoods on Lie Groups

For eachp(t) the robot takes measurements of the poten-
tial class ofoi in the form

yi(t) = [ĉj . . . ĉk]⊤ (5)

with y = [y⊤1 . . . y⊤no
]⊤. This means that a measurement

of objectoi can return more than a single class value1.
We model the likelihood of measurinĝcj for oi as a

function of the robot pose. In fact, we model this likelihood
as a sum of Gaussian densities on the Lie groupSE(2).
Consider an arbitrary normal density inRn of the form

γ(x− µ,Σ) =
1

(2π)
n
2 |Σ|1/2 exp

(
1
2
‖Σ−1

2 (x− µ) ‖22
)
(6)

where Σ is the covariance matrix andµ is the mean. A
Gaussian distribution on the Lie groupSO(2) is given by

χ(x− µ, σ2) =
1

σ
√

2π

∑
k∈Z

exp
[−(x− µ− 2πk)2

2σ2

]
(7)

and if σ2 << 2π in χ(x− µ, σ2) thenχ(x− µ, σ2) can be
approximated well by the casek = 0 in (7). A Gaussian on
the product spaceSE(2) can then be denoted byζ(x−µ,Σ).
We state the following lemma for completeness.

Lemma 1 ( [10]): There exists an integerm and constants
wi > 0 with

∑m
i=1 wi = 1, such that the Gaussian sum

papprox(x) =
m∑
i=1

wiγ(x− µi,Σi) (8)

can approximate any density functionp(x) as closely as
desired in the sense that

∫
Rn |p(x)− papprox(x)| dx can be

made arbitrarily small.
Recall that the elementX(ψ, r) : R2 → R2 acts on points

via left translation denoted byX(ψ, r) ◦ q. For notational
brevity we introduce the following notational definition

X(ψ, r) ◦ [q q3 q4 . . . qn]⊤ = [R(ψ)q + r q3 q4 . . . qn]⊤

(9)
which means thatX(ψ, r) : R2 × A → R2 × A by acting
on the first two dimensions in the standard way and leaving
the remainingn− 2 dimensions unchanged.

We model the likelihood function by

p(ĉi, oj |ci, φj ,xj) = P(ĉi, oj |ci)
∑
ki

wki

(2π)
3
2 |Σki

|1/2 ×

exp
(

1
2
‖Σ

−1
2
ki

(pj −X(φj ,xj) ◦ qki
) ‖22

)
(10)

where
∑
ki
wki

= 1 with i = {1, . . . , nc}. For an object
with positionxj and orientationφj we defineX(φj ,xj)qki

1For example, observing a car from the front may yield several positive
car model class returns). We assume perfect data association,i.e. we know
which objectsoi generate particular class measurements.



with X(φj ,xj) ∈ SE(2) andqki
∈ R2×SO(2) as themean

of the ki
th Gaussian andΣki

is thecovariance2.
The termP(ĉi, oj |ci) specifically deals with the likelihood

of oj being of classci given the measurement̂ci whereas
p(ĉi, oj |ci, φj ,xj)/P(ĉi, oj |ci) is the likelihood ofoj being
in positionxj with orientationφj .

The likelihood p(ĉi, oj |ci, φj ,xj) is also a probability
density function such that for bounded regions ofA of SE(2)
with positive Lebesgue measure the integral∫

A
p(ĉi, oj |ci, φj ,xj) dp (11)

gives the probability of measurinĝci for oj given thatok
is of classci and with orientationφj and positionxj . We
state this explicitly since we will require that the so-called
confusion densitiesp(ĉj , ok|ci, φk,xk) with i 6= j satisfy the
inequality∫

A
p(ĉj , ok|ci, φk,xk) dp ≤

∫
A
p(ĉi, ok|ci, φk,xk) dp

(12)
or p(ĉj , ok|ci, φk,xk) ≤ p(ĉi, ok|ci, φk,xk) for all bounded
subsetsA of SE(2) in a defined region of interestR ⊂
SE(2). That is, over any bounded region inR we want the
probability of measurinĝcj for oi to be less than (or equal
to) the probability of measuringci given that the object is
of true classci (and for all object poses).

Of course, this inequality cannot be satisfied over all
of SE(2) if the confusion likelihood is also required to
be a true density function. But to make this definition
consistent we note that when viewed as a likelihood function
p(ĉi, oj |ck, φj ,xj) is valid as long as it is congruent to a
probability density function via multiplication by a constant.

We model the likelihood function of false positives by the
following Gaussian mixture

p(ĉi, oj |ck, φj ,xj) =
∑
kik

common(ki,kk) wkik

(2π)
3
2 |Σkik

|1/2
×

exp
(

1
2‖Σ

−1
2
kik

(p−X(φj ,xj) ◦ qkik
) ‖22

)
P(ĉi, oj |ck) (13)

where the sum overkik has at mostmin(ki, kk) terms and
(12) must hold inR ⊂ SE(2). The function

common(ki, kk) ∈ {0, 1} (14)

captures the fact that an objectoj can be confusingly
observed aŝci and/orĉk from some robot positions because

2We note at this point that the Gaussian parametersqki
and Σki

are
defined based on the training scheme of the object classifier and pj is the
robot position when the relevant class labels are measured. Heuristically,
qki

is taken to be (one of) the sensor’s position inSE(2) at training time
relative to the object (which is located at the origin duringtraining with
the reference orientation). The variance is (in this paper)tuned to provide
a realistic model of the spatial dependence of the recognition algorithm at
run time to the trained classifier models. In the next subsection we provide
an example further illustrating how the likelihood functions are created.
However, we note here that the motivation for these likelihood functions
is motivated from experience where we have noticed that oftensimply by
measuring the class label for an entire object (not view point) we most likely
restricted one of a small number of points. In reverse, given a known robot
position, the object ismost likelyin one of a small number of locations with
one of a small number of orientations.

the underlying true classesci and ck share acommon
indistinguishability from such locations3.

The classc0 is used to model unclassified classes or
locations in space where no object exists. The likelihood
p(ĉi, oj |c0, φj ,xj) wherei 6= 0 is given by

p(ĉi, oj |c0, φj ,xj) = P(ĉi, oj |c0) (15)

which although not a true likelihood function is valid over
any bounded regionR ⊂ SE(2) since it is congruent to a
uniform density overR. For all classes for which it is defined
we now require

∑
i P(ĉi, oj |ck) = 1.

For much of the spaceSE(2) the object recognizer will not
return any class value foroj . We can (if desired) model the
absence of any returns in{c1, . . . , cnc

} as a measurement
of the dummy classc0. We would then need to construct
the likelihood p(ĉ0, oj |ci, φj ,xj). We do not explore the
design of this likelihood in detail since we will not (in our
implementations) incorporate dummy measurements when
no class is detected4.

If we definec = [c0 c1 . . . cnc
] then the likelihood

p(ĉi, oj |c, φj ,xj) =
∑
k

p(ĉi, oj |ck, φj ,xj) (16)

is the multi-dimensional likelihood function of the object
being in all of the defined classes and all poses given a
particular class return. Given a return measurementyi(t) =
[ĉa ĉb . . . ĉz]⊤ for object i then the joint likelihood is

p(yj , oj |c, φj ,xj) =
∏

bck∈yj

p(ĉk, oj |c, φj ,xj) (17)

under a naive Bayesian assumption, i.e. under the assumption
that p(ĉk, ·|c, ·, ĉj) = p(ĉk, ·|c, ·).
B. Example Likelihood Functions

We now provide some intuition regarding the design of
the likelihood functions. These examples are simplified but
illustrate the heuristics behind the likelihood structure.

Consider an objecto1 of classc1 located at the origin at
time t0 with defined orientationφ1 = 0. An object classifier
is trained on objecto1 from a number of relative positions
denoted byqk1 with qk1 = [q1k1 q

2
k1

0]⊤. For thekth training
position we define a Gaussianζ(p1−X(φ1,x1) ◦qk1 ,Σk1)
whereΣk1 is tuned based on the specific classifiers prop-
erties5. We definep(ĉ1, oi|c1, φi,xi) as the sum of such
Gaussians as in (10) withwk1 = 1/4 andP(ĉ1, o1|c1) = 1.
In this example we setq11 = [10 0 0]⊤, q21 = [−10 0 0]⊤,
q31 = [0 10 0]⊤ and q41 = [0 − 10 0]⊤ with Σk1 =
diag(10, 10, π/4). Now consider a random objectoi at xi =

3Such a case happens, for example, if there are object types which look
very similar or share a similar internal representation (ambiguous objects
or object-data) from certain views.

4The reason we do not generate dummy measurements is thatbc0 will, in
general, provide little information about the true classcj (including c0) for
most robot positionsp and objectsoi. Heuristically, over bounded regions
the likelihood p(bc0, oj |ci, φj ,xj) would resemble a constant minus the
sum (16). Of course this would require some further justification in order
for p(bc0, oj |ci, φj ,xj) to be valid as a likelihood function.

5We discuss later that an interesting direction for future work is the design
of reinforcement learning schemes for tuning such parameters.



[5 5]⊤ with φi = 45o. We plotp(ĉ1, oi|c1, φi,xi) with ϑi = 0
over s ∈ R2 in Figure 1.

Fig. 1. An example likelihood function withϑi = 0 over s ∈ R2.

Figure 1 shows from which positions in space relative to
the target objectoi the likelihood of the class ofoi being
c1 is given that we measurêc1 (and in essence assume
robot relative headingϑi invariance - e.g. this will hold
for omni-directional cameras). Note that the likelihood just
demonstrated is symmetric in terms of the orientationφi, and
as a resultφi can be determined only up to rotations modulo
π/2 given measurements of the classĉ1. We outline the
specific estimation technique in the next subsection and later
provide examples of the pose accuracy that can be achieved.

However, we now demonstrate how inter-class confusion
can be aid the pose estimation problem if the views from
which the confusion is likely are not maximal. Consider an
object o2 of classc2 located at the origin at timet0 with
defined poseφ2 = 0. An object classifier is trained on object
o2 from a number of relative positions denoted byqk2 and
for thekth position we define a Gaussianζ(p2−X(φ2,x2)◦
qk2 ,Σk2). Then we definep(ĉ2, oi|c2, φi,xi) as the sum of
such Gaussians as in (10) withwk2 = 1/4 andP(ĉ2|c2) = 1.
In this example we setqi2 = qi1 and Σk2 = Σk1 . Now
consider a random objectoi at xi = [5 5]⊤ with φi = 45o.
The plot of p(ĉ2, oi|c2, φi,xi) with ϑi = 0 over s ∈ R2 is
identical in this case to the likelihood shown in Figure 1.

Now suppose from a number of positions we know that
o1 ando2 can be confusingly recognized as bothc1 and c2
in some instances. In this example,

common(21, 22) = 1 (18)

and all othercommon(·) equal to zero. We letΣk1,2 =
Σk2 = Σk1 and wk1,2 = 1/4. Also let P(ĉ2|c1) =
P(ĉ1|c2) = 1/2 and now let P(ĉi|ci) = 1/2. Then
p(ĉj , oi|cj , φi,xi), for j = {1, 2}, with ϑi = 0 over s ∈ R2

is the same shape as in Figure 1 except both likelihoods are
weighted by1/2. In Figure 2 we plotp(ĉ1, oi|c2, φi,xi) =
p(ĉ2, oi|c1, φi,xi) with ϑi = 0 over s ∈ R2 for the same
random objectoi at xi = [5 5]⊤ with φi = 45o.

Given a random objectoi of class c1 or c2 we now
gain some intuition about how class confusion can aid in
removing any ambiguity regarding the pose of the object.
For example, ifoi were viewed from a number of robot
positions aroundX(φi,xi) ◦ q21 , i.e. around the confusion

Fig. 2. A confusion likelihood function withϑi = 0 over s ∈ R2.

peak, and botĥc1 and ĉ2 were measured at these positions
then the likelihood of the object pose would be (significantly)
dominated by a single mode at the true pose. We will explore
a detailed toy example illustrating this property later. We
will also explore a practical example showing a real-world
experimental result.

C. Maximum A Posterior Probabilities

In terms of Bayes’ rule we know

p(ci, φj ,xj |ĉi, oj) =
p(ĉi, oj |c, φj ,xj)p(ci, φj ,xj |oj)

p(ĉi, oj)
(19)

or in terms ofy(t) we have

p(ci, φj ,xj |yj , oj) =
p(yj , oj |c, φj ,xj)p(ci, φj ,xj |oj)

p(yj , oj)
(20)

where the denominator is given by

p(yj , oj) =∫
SE(2)

p(yj , oj |c, φj ,xj)p(ci, φj ,xj |oj) dφjdxj (21)

Note we have neglected illustrating the dependence on
time but the recursion is clear with the priorp(ci, φj ,xj)
at timet equal to the posteriorp(ci, φj ,xj |yj , oj) computed
at some timeτ < t. We also know that

P(ci|yj , oj) =
∫

SE(2)

p(ci, φj ,xj |yj , oj) dφjdxj (22)

is the posterior probability of objectoj being of classci
given the measurementsyj and

∑
i P(ci|yj , oj) = 1 where

i = 0 can be included naturally. For anyoj we then have∑
i

∫
SE(2)

p(ci, φj ,xj |yj , oj) dφjdxj = 1 (23)

where the sum is taken over all classesc0 to cnc
.

If we want the maximum a posterior (MAP) class and
object orientation (or pose) then we can take the maximum
class index and object pose estimates via

{c̃i, φ̃j , x̃j} = argmax
i,φj ,xj

{p(ci, φj ,xj |yj , oj)}i∈{1,...,nc} (24)

wherec̃i is the MAP class estimate for objectj correspond-
ing to the maximization argument indexi.

In general, (24) leads tonc maximization problems
for each oj . Each density is often multi-modal but each



mode can be determined easy via grid-search. Ifĉk /∈
yj(t) and p(ĉk, oj |ci, φj ,xj) = 0 for all i 6= k then
p(ci, φj ,xj |yj , oj) = 0 at time t and at least one maxi-
mization problem is avoided.

D. Bringing it All Together with a Toy Example

A toy example is now examined in order to further develop
an intuition regarding the approach outlined in this paper.A
more detailed practical experiment is given later in the paper.

The fact we can localize the pose of the object accurately
(even up to an ambiguity determined by the number of
Gaussians in the likelihood function) is quite novel given we
only use class label measurements. However, we go further
then this and show how class confusions (from certain view
points) can even reduce the number of ambiguities.

Consider an objecto1 located atx1 = [5 5]⊤ with true
orientationφ1 = 45o. Consider two potential object classes
c1 andc2 with defined likelihood functions

p(bci, o1|ci, φ1,x1) =
0.2495

(2π)
3
2 |Σ1i |1/2

×

exp

„−1

2
‖Σ

−1
2

1i
(p−X(φ1,x1)q1i) ‖2

2

«
+

0.2495

(2π)
3
2 |Σ2i |1/2

exp

„−1

2
‖Σ

−1
2

2i
(p−X(φ1,x1)q2i) ‖2

2

«
(25)

for both i = 1 and i = 2 (with P(ĉi|ci) = 1/2 − 0.001 as
a consequence). The mean parameters are given byq11 =
q12 = [0 10 0]⊤ andq21 = q22 = [0 − 10 0]⊤. The false
positive likelihoods are given by

p(ĉi, o1|cj , φ1,x1) =
0.2495

(2π)
3
2 |Σ1i,j

|1/2 ×

exp
(−1

2
‖Σ

−1
2

1i,j

(
p−X(φ1,x1)q1i,j

) ‖22) (26)

with i 6= j ∈ {1, 2} andq1i,j
= [0 10 0]⊤ (andP(ĉj |ci) =

1/2 − 0.001). The variance is given byΣij = Σ1i,j
=

diag(10, 10, π/4) for all combinations ofi and j. Now
consider the classc0 with

p(bci, o1|c0, φ1,x1) = P(bci|c0) = 0.001 (27)

for i ∈ {1, 2}. The recognition system can return class
measurementŝc1 and ĉ2.

We plot p(ĉi, o1|ci, φ1,x1) and p(ĉi, o1|cj , φ1,x1) with
i 6= j ∈ {1, 2} and withϑi = 0 over s ∈ R2 in Figure 3.

Fig. 3. The likelihoodsp(bci, o1|ci, φ1,x1) andp(bci, o1|cj , φ1,x1) with
i 6= j ∈ {1, 2} evaluated atx1 = [5 5]⊤ andφ1 = 45o. This shows the
relationship between the robot position and the likelihoods.

In this example we assumex1 is known but the true object
class and orientationφi is unknown. This is a reasonable
approximation in many active object search problems6. In
the next section, we consider a grid-based object search
and orientation estimation problem where this assumption
is explicitly realized.

The initial priors are thusp(ci, φ1,x1|o1) = 1/(2π). We
simulate measurements at a number of positions in space in
order to examine their affect on the posterior densities.

Time 1
The robot position is given byp = X(φ1,x1)◦[2 −10 0]⊤.

The measurements are given byy1(1) = [ĉ1]⊤. The posterior
density functions are shown in Figure 4.
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Fig. 4. The posteriors densities after the first measurement.

We know P(ci|yj , oj) =
∫

SO(2)
p(ci, φj ,xj |yj , oj) dφj

and we can computeP(c0|y1, o1) = 0.4231, P(c1|y1, o1) =
0.4244 andP(c2|y1, o1) = 0.1524 all at time1. Then for the
maximum class posterior estimatẽc1 we can compute the
maximumargmaxφ1

p(c1, φ1,x1|y1(1), o1) which is clearly
(up to numerical tolerance) ambiguous with̃φ1 ≈ 55o and
φ̃1 ≈ 235o. The estimate of̃c1 is not overwhelmingly
probable and the orientation estimateφ̃1 is not exceedingly
accurate since we have only employed a single measurement.

Time 2
The robot is atp = X(φ1,x1) ◦ [−2 − 10 0]⊤. The

measurements are given byy1(2) = [ĉ1]⊤. The posterior
density functions are shown in Figure 5.

We computeP(c0|y1, o1) = 0.3019, P(c1|y1, o1) =
0.5735 and P(c2|y1, o1) = 0.1247 at time 2. Then for
the maximum class posterior estimatec̃1 we compute the
maximum argmaxφ1

p(c1, φ1,x1|y1(1), o1) which is again
(up to numerical tolerance) ambiguous with̃φ1 ≈ 45o

and φ̃1 ≈ 225o. However, now the orientation estimate
is accurate up to the ambiguity. The increased accuracy
in the orientation (neglecting the ambiguity) is a result of
the spatial averaging that occurs when observing the object
from different robot positions (and this accuracy is quite
interesting given we only physically measure the class label).

6For example, laser or stereo vision can be used to position objects in
space in some scenarios but does not necessarily aid in the estimation of
object class or orientation. In any case, we make this assumption here for
simplicity and to make the example intuitively clear.
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Fig. 5. The posteriors densities after the second measurement.

In the next time step we move to the other side of the object
and show how confusion aids in removing the ambiguity.

Time 3
The robot position is given byp = X(φ1,x1)◦ [0 10 0]⊤.

The measurements are given byy1(3) = [ĉ1 ĉ2]⊤. The
posterior density functions are shown in Figure 6.
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Fig. 6. The posteriors densities after the third measurement.

We computeP(c0|y1, o1) = 0.1502, P(c1|y1, o1) =
0.8498 and P(c2|y1, o1) = 1.8 × 10−5 at time 3. Then for
the maximum class posterior estimatec̃1 we compute the
maximum argmaxφ1

p(c1, φ1,x1|y1(1), o1) which is now
uniqueφ̃1 ≈ 45o. The orientation estimate is non-ambiguous
in this case since we exploited inter-class confusion.

Note that we have estimated the orientation quite accu-
rately using only measurements of the object class label and
a pre-defined heuristic spatial likelihood function. We believe
this is a novel result in the sense of minimalistic sensing7.

IV. GRID-BASED OBJECTCLASSIFICATION AND

ORIENTATION ESTIMATION

Consider a grid onR2 denoted byG. For simplicity,
we assume the gridG consists ofng grid squares of uni-
form size (the generalization to nonuniform grid cells is
straightforward). Each grid square is denoted bygi ∈ G
and can be characterized by the center pointgi ∈ R2. We
are interested in assigning to each cellgi the probability

7The sequence of measurements (and confusions) affect the evolution of
the posterior densities in interesting ways but we cannot explore all the
cases here. In the experimental section more examples are given.

densityp(ci, φj ,xj |yj , gj) from which we can determine the
probabilityP(ci|yj , gj) via marginalization. In fact, for each
cell we assignnc such probability densities - one for each
class. Then

∑
i P(ci|yj , gj) = 1 wherei = {0, . . . , nc} for

each cell. In practice a lot of the cells will be dominated by
the probability valueP(c0|yj , gj).

In this scenario,xj is the location of thej’th cell gj and
is known. If we imagine a robot located ats with ϑj the
direction tooj defines a ray which we limit to the lengthd.
We update the set of cells{gj} that intersect such a ray using
the posterior density formula given in the previous sections.
The valuexj is taken as the cell centergj ∈ R2 and thus
cells close or far from the robot (along the ray) are likely to
be estimated asc0. We could also define a conic region, e.g.
by defining two rays using the bounding box of the object
in the image, and then update the cells which intersect the
conic region, e.g. see Figure 7.
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The cells intersected by the
ray to the object (for a set
distance d in front of the robot)
are updated as potential object
locations. The location of these
cells are known.

The bounding box of the object
can also be used to generate a
conic region in which cells are
updated. This can aid in finding
accurate intersections.

Fig. 7. An example grid environment.

The grid-based estimation problem follows closely the
examples given in the last subsection where the location
of each cell is known and is analogous to the location of
an object position. For simplicity we have assumed cell
independence. It is possible to relax this assumption but
there are difficulties in doing so that are beyond the scope
of this paper. For the grid-based scenario we will examine a
practical experiment which is outlined in the next section.

V. EXPERIMENTAL RESULTS

We conduct our experiments on the EU FP7 project CogX
robot platform. The robot is equipped with a Point Grey Flea
stereo camera (only one camera used in the experiment) on
top of a Pioneer P3X robot base; see Figure 8.

We use FERNS as an object class detector [11], [12]. The
robot position is computed from only odometry and the grid
organization is known (each grid cell is 2 square decimeters).

The robot is in a room with three objects,o1 is a box
containing physics books ando2 ando3 are identical boxes
containing robot parts. The boxes are located as shown in
Figure 8. All objects have the sameCAS lab logo on one
of their sides and cannot be differentiated based on the
class returns when viewed from this side. We call thisthe
confusion sideof the object. On the polar opposite side,o1
exhibits a label indicating the box contains physics books
whereas botho2 and o3 contain identical labels indicating



they contain robot parts. Views of this distinguishing box
label are said to be of thenon-confusion sideof the object.
The true orientations foro1, o2 and o3 are φ1 = 255◦,
φ2 = 315◦ andφ3 = 180◦.

Fig. 8. [Left] CogX robotic platform and [Right] the robot trajectory and
layout of the environment.

The robot starts at(0, 0) and follows the trajectory
shown in Figure 8. Numbered positions in Figure 8 are
where the robot takes a class label measurement. The non-
object class, physics books box and robot parts box are
labeled asc0, c1 and c2 respectively. In this scenario
the units are decimeters. As such, the likelihood functions
p(ĉi, oj |ci, φj ,xj) for i ∈ {1, 2} and j ∈ {1, 2, 3} are
identical to those defined in (25) in the simulated example
problem. Similarly,p(ĉi, oj |ck, φj ,xj) for i 6= k ∈ {1, 2} are
identical to the likelihood functions defined in (26). Finally,
p(ĉi, o1|c0, φ1,x1) for i ∈ {1, 2} is identical to the function
defined in (27). The recognition system can of course return
class measurementŝc1 and ĉ2.

A. Orientation Estimation at the Correct Grid Cell

The estimation algorithm in this section is run over a grid
as discussed in the last section. However, to visualize the
orientation estimate’s density we need to essentially look
at an individual cell. Thus, in this subsection we examine
the orientation estimate in the practical experiment at the
true object grid cell. Later we examine the grid map for
the environment and show the distribution of the class label
probabilities over a number of cells.

At point 1, the robot detectso2 on its confusion side,
i.e. both ĉ1 and ĉ2 are measured. The resulting orientation
estimates for each class are shown in Figure 10 part (a).
Since botĥc1 and ĉ2 are detected and no further information
is available, the probability estimates for both classes are
equal but the maximum a posterior orientation estimate is
non-ambiguous. The orientation estimateφ̃2 ≈ 317◦ which
is relatively close to the true orientation estimate.

At point 2, the robot detectso3 from a non-confusion side;
see Figure 9. The class measurement is onlyĉ2 since the
observed side is a discriminative one. However notice that
the orientation estimate is multi-modal with̃φ3 ≈ 3◦ and
φ̃3 ≈ 183◦. Since this box is on a shelf against a wall, it
is not possible to observe it from other sides. We will show

in the following how observing the confusion side improves
the overall orientation estimate.
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Fig. 9. The robot measuresc2 only. Note that the distribution is multi-
modal. No further measurements are taken of this object.

At point 3, the robot observes a non-confusion side ofo2,
i.e. only ĉ2 is measured which is the true class ofo2; see
Figure 10 part (b). Notice that the probability overφ2 for
the classc1 has dropped and will continue to do so as more
measurements of̂c2 are acquired.
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Fig. 10. [Top] The object is first seen from its confusion side. This
is not enough to determine the class therefore class estimatesare equal.
[Bottom] The observation from its non-confusion side helps improving the
class estimates.

At point 4, the robot detects theo1 from its non-confusion
side, i.e. onlŷc1 is measured which is the true class ofo1. As
with the first measurement ofo3, we have two peaks for the
detected class shown in Figure 11. The orientation estimate
is given by φ̃1 ≈ 57◦ and φ̃1 ≈ 237◦. The maximum class
estimate is̃c1.

At point 5, the robot observeso1 from its confusion side.
In this case since the object has been detected once from its
non-confusion side, the probability ofo1 being of classc1 is
now much higher and the orientation estimate is now non-
ambiguous withφ̃1 ≈ 258◦ as shown in Figure 11. We now
see that the confusion side helps to eliminate one of the peaks
in the orientation estimate and the spatial likelihood function
has helped the estimate converge to an accurate value.
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Fig. 11. [Top] The robot first measuresc1 and then [Bottom] bothc1 and
c2. Notice even though the confusion of the second measurement improves
the orientation estimation.

B. Class Probability Estimation over the Grid Map

As described previously, the estimation algorithm is ex-
ecuted over a grid where the detected object rays define
a set of cells updated after each measurement. Each cell
is associated with an orientation and class density (for all
possible classes). As an example, the marginalized probabil-
ities for c0, c1 and c2 are visualized in Figure 12 for class
measurements ofo2 (recall we have assumed that particular
class measurements can be assigned to the correct object).

In this particular snapshot,o2, which is of true classc2, is
seen from two positions (points 3 and 4 in Figure 8) and two
rays are cast. The gray shading in each picture along the rays
represents the probabilityP(ci, o2|y2) for each respective
class. We have normalized the shading soP(ci, o2|y2) = 0 is
pure white whileP(ci, o2|y2) = 1 is pure black. The orange
background is used here to simplify visualization but can be
thought of as the initial prior class probabilities for all cells
(i.e. equal priors for all classes) and remains valid since these
cells are not updated given only these measurements.

In Figure 12 we can note the probabilityP(c2, o2|y2)
along the rays increases in magnitude up until the grid
cells located at the approximate object location, i.e. the
intersection point of the rays. It then decreases as expected.
Similarly, P(co, o2|y2) decreases in magnitude along the rays
until the intersection where it is almost zero and then begins
to increase as expected further away from the object.

VI. CONCLUSION

We have provided a solution to the problem of simultane-
ous object class and pose estimation using a generic object
classifier and a spatially dependent measurement likelihood
model. Our novelty is the ability to estimate both the class
and pose of the objects in the environment given only mea-
surements of the object class label from a generic classifier.

We believe the heuristics behind the design of the like-
lihood functions are realistic. However, one practically and

(a) Classc0

(b) Classc1 (c) Classc2

Fig. 12. An example distribution over a grid whereo2, which is of true
classc2, is seen from points3 and4 in Figure 8.

theoretically interesting direction for future work includes the
development of reinforcement-like learning algorithms for
estimating the likelihood function parameters online. Another
interesting direction for future work involves the design of
control algorithms for actively searching the environmentin
order to maximize the information gain.
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Object search on a mobile robot using
relational spatial information

Alper AYDEMIR, 1 Kristoffer SJÖÖ and Patric JENSFELT

Centre for Autonomous Systems, Royal Institute of Technology, Sweden

Abstract. We present a method for utilising knowledge of qualitative spatial rela-
tions between objects in order to facilitate efficient visual search for those objects.
A computational model for the relation is used to sample a probability distribution
that guides the selection of camera views. Specifically we examine the spatial rela-
tion “on”, in the sense of physical support, and show its usefulness in search exper-
iments on a real robot. We also experimentally compare different search strategies
and verify the efficiency of so-called indirect search.

Keywords. Indirect search, Active visual search, Spatial relations,Qualitative
spatial reasoning

Introduction

The ability to find objects in a 3D world is an important item ona mobile robot’s skill
repertoire. Previous work on object search stems mainly from the field of computer vi-
sion. Ideally a robot with a specific task of locating an object should make use of all the
bits and pieces of evidence; be it from an overheard dialogue, target object’s class lim-
iting the search to a specific region (e.g. forks are usually found in kitchen) or a known
spatial relation between the target and some other entity. Some work concentrates on lo-
cating the target in the image, thus assuming that the targetis already in the field of view
[7]. Others investigate algorithms for covering a known or previously unknown world
efficiently [1,5,8,9,10].

One powerful idea which naturally involves integration of multiple cues isindirect
search[3]. Indirect search is about first looking for an intermediate object in order to
find the target object by exploiting the relation between theformer and the latter. This
can be exemplified by first searching for the larger and easier-to-detect whiteboard, and
then looking for the pen next to it. To be practical, the system needs to make a decision
on which approach to choose based on some criteria. Althoughthis is a simple idea,
accomplishing it by fusing multiple types of cues can prove to be hard and is not yet in
place in the previous work.

The novelty of this paper is given by an investigation of the following question: Is
it possible to make use of spatial relations in order to aid a mobile robot tasked with
finding an object? For this particular work we have chosen to investigate the relation of

1Corresponding Author: Alper Aydemir, Royal Institute of Technology (KTH), Centre for Autonomous
Systems, SE-100 44 Stockholm, Sweden; E-mail: aydemir@csc.kth.se



physical support, i.e.on. We introduce a computational perceptual model for the physical
support relation, and show how algorithms using this model can significantly increase
the efficiency of visual object search, illustrating the fact through real world experiments.
In this way, we believe that the work presented here takes a more principled approach
towards indirect search compared to previous work.

1. Spatial Relations as functions

Spatial relations between entities are important in human cognition, as evidenced by
the prolific use of spatial prepositions in language, in bothconcrete and metaphorical
contexts. Here, we are interested in using the information carried by a relation between
two objectsA and B, together with the location of one of them, for the purpose of
locating the other efficiently.

We regard a spatial relation as a function, dependent on the objects involved, from
the space of all the objects’ possible poses, to the interval[0, 1]:

RA,B : {πA, πB} → [0, 1] (1)

where1 represents that the relation is completely fulfilled by the pose combination, and
0 that the relation does not apply at all. The resulting value,despite being in the range
[0, 1], is not a probability. However, it is possible to obtain a probability distribution over
poses implicitly from this function, as shown below.

1.1. ON

As a good example of a spatial relation that will be useful fora robot in a search scenario,
we have chosen “on”. “On” is one of the most fundamental prepositions in the English
language, and represents a highly relevant functional relationship between many objects
in our environment [4,6]; thus, a robot will often have information about an object’s
location in terms of it being “on” something else – this information could come from
dialogue with humans, from commonsense rules for the typical behaviour of objects, or
from a statistical model learned from experience over time.

The central functional aspect of the word “on” is thesupportthat one object gives
another. Humans learn to judge this with experience, manipulating and observing; for
now, robots must rely on short-cuts. We therefore propose a perceptual geometric model
intended to estimate how well the relation between two objects corresponds to one of
support. The model is defined using the following criteria (O denotes thetrajectorobject,
i.e. the object that is “on” the other, andS the support object orlandmark). The proposed
function is termed ON(O, S). The criteria are illustrated in Figure 1; they are:

• Separation between objects, d. d can be positive or negative, negative values
meaning that objects are, or seem to be, interpenetrating.
In order for an object to mechanically support another, theymust be in contact.
Due to imperfect visual input and other errors, however, contact may be difficult
to ascertain precisely. Hence, to create a soft constraint,the apparent separation
is used as a penalty.
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Figure 1. Key features used in computation of ON: Separationd, COM offsetl, contact angleθ and contact
thresholdδ. The gray area represents the contact.

• Horizontal distance between COM and contact, l. It is well known that a body
O is statically stable if its center of mass (COM) is above its area of contact
with another objectS; the latter object can then take up the full weight of the
former. Thus we impose a penalty on ON(O, S) that increases with the horizontal
distance from the contact area to the COM ofO. The contact area is taken to be
that portion ofS’s surface that is within a threshold,δ, of O, in order to deal with
the uncertainties described above. Ifd > δ, the point onS closest toO is used
instead; otherwise,l is the positive distance to the outer edge of the contact area
if outside it, and the negative distance if inside.

• Inclination of normal force, θ – the angle between the normal of the contact be-
tweenO andS on the one hand, and the vertical axis on the other. The reason
for including this is that, all other things being equal, thenormal force decreases
as the cosine ofθ, meaning the weight ofO must be either supported by another
object or by friction (or adhesion).

All these values can be computed from visual perception in principle. The position
of the COM is taken as the average point of the objects’ geometry (since density cannot
be determined by vision), unless otherwise known in advance.

The first criterion is evaluated as thedistance factorin an exponential function:

ONdistance(O, S) , exp
(
− d

d0(d)
ln 2

)
(2)

whered0 is the falloff distance at which ON drops by half:

d0 =
{−d−0 , d < 0

d+
0 , d >= 0

The constantsd−0 andd+
0 are both greater than0 and can have different values (repre-

senting the penalty for the penetrating and nonpenetratingcase, respecively).
The latter two criteria make up thecontact factor:

ONcontact(O, S) , sin θ · 1 + exp(−(1− b))

1 + exp
(
−

(
−l

lmax
− b

)) (3)

Here,lmax is the maximum possible distance an internal point can have within the contact
area, andb is an offset parameter.



The exact expressions for the factors (2) and (3) are not central here; what matters
is that they yield the applicability 1 for the ideal case for each criterion, and drop off to
0 as the criterion is violated, while being “soft” in order tobe robust to error.

The values are combined by choosing whichever factor is smaller, indicating the
greater violation of the conditions for support:

ON(O, S) , min(ONcontact, ONdistance) (4)

1.2. Probability modelling

Although the conceptualization above does not explicitly make use of any probabilities,
it is obvious that the fact of an object being ON another is not sufficient to recover the
exact pose of the trajector. A probability distribution over poses can be produced in the
following way:

Given the pose and geometry of the landmarkS, and the geometry (but not the pose)
of the trajectorO, each possible poseπ for the trajector yields a value of ON(Oπ, S) for
that pose.

It is now possible to introduce probabilities in the following way. Introduce a
true/false eventOn(O, S) signifying that ON(O, S) > t wheret is a threshold. Then,

p(π|On(Oπ, S)) =
p(On(Oπ, S)|π)p(π)

p(On(Oπ, S))
= (5)

=
[ON(Oπ, S) > t]p(π)

p(On(Oπ, S))

Here[] denotes the Iverson bracket:

[X] =
{

1, if X is TRUE

0, otherwise

In other words, the probability is simply proportional to the prior for the poseπ whenever
ON(Oπ, S) > t, and 0 elsewhere. Though it may be hard to express this distribution
analytically, by drawing samples randomly fromp(π), discarding those failing to reach
the threshold, and normalising over the remainder, an arbitrarily good approximation can
be found. In the following, we use at value of 0.5.

Figure 2 shows simulated examples of distributions sampledaccording to the above.
2(c) showschainedsampling: an object is ON another, which is ON the table, but both
have unknown poses. First the bottom object is sampled, and for each sample that passes
the threshold, the top object is sampled in turn. The uncertainties of both objects add up,
resulting in a more diffuse point cloud at a greater height above the table.

2. Object Search

The goal of the object search process performed by a mobile robot is to calculate a set
of sensing actions with minimum cost which brings the targetobject, in whole or partly,
into the sensor field of view so as to maximize the target object detection probability.



(a) Object on table (b) Object on box (c) Object on box on table

Figure 2. Simulated examples of sampled distributions of ON

Here we briefly give a formulation of the object search problem using the notation
of [10]. Let Ψ be the2D search region whose structure is knowna priori. To discretize
the search region,Ψ is tessellated into identically sized cells,c1...cn. The area outside
of the search region is represented by a single cellc0. A sensing actions is then defined
as taking an image ofΨ from a view pointv and running a recognition algorithm to
determine whether the target objecto is present or not. In the general case, the parameter
set ofs consists of camera position(xc, yc, zc), pan-tilt angles(p, t), focal lengthf and
a recognition algorithma; s = s(xc, yc, zc, p, t, a). The cost of a search planS = s0...si

is then given asC(S).
A search agent starts with an initial probability distribution (PDF) on target object

location overΨ. We assume that there is exactly one target object in the environment
either inside or outside the search region. This means that all cells will be dependent and
every sensing action will influence the values of all cells. Letβ be a successful detection
event andαi the event that the center ofo is atci. The probability update rule after each
s with a non-detection result is then:

p(αi|¬β) =
p(αi)(1− p(β|αi))

p(α0) +
∑n

j=1 p(αj)(1− p(β|αj))
(6)

Note that fori = 0 , p(β|αi) = 0, i.e. we cannot make a successful detection if
the object is outside the search region . Therefore after each sensing action with a non-
detection result the probability mass insideΨ shifts towardsc0 and the rest ofΨ which
was not in field of view.

2.1. Next best view selection

The next step is to define how to select the best next view givena PDF. First, candidate
robot positions are generated by randomly picking samples from the traversable portion
of Ψ. This results in several candidate robot poses each with associated view cones. For
a given camera, the length of the view cone is given by the greatest distance at which the
object can reliably be detected, which depends on the size ofthe object.

The next best view point is then defined as:

argmax
j=1..N

n∑
i=1

p(αi)V (ci, j) (7)

WhereN is the number of candidate view points andV is defined as:



V =
{

1, if ci is inside of thejth view cone
0, otherwise

3. Experiments

3.1. Implementation Details

The robot used in our experiments is a Pioneer III wheeled robot, equipped with a
Hokuyo URG laser range finder and a stereo camera (with no zoomcapability) mounted
on a pan-tilt unit at 1.4 m above the ground. The system uses a SLAM implementation [2]
for localization and mapping and builds an occupancy gridmap based on laser data. The
experiments were carried out in a mock-up living room (Figure 3). Two planar objects
– a low table and a large desk – were present in the experimental area, and their poses
known to the system. The detectable objects used were a largecardboard box and small
rice carton (see Figure 4). Preparatory experiments showedthat the threshold distance, at
which the objects were detected at least 75% of the time, was 1m and 4 m for the small
and the large object, respectively. These were the maximum distances used in the view
cone generation (see Section 2.1).

Figure 3. Experimental environment and robot platform

During experiments, the larger box and the rice carton were placed randomly on one
of the tables, at a 50% chance for each. In order to minimize the bias, different people
from our lab, unconnected with the research, were asked to “put the box on the table/desk
and rice carton on the box”. The objects were free to be placedin any orientation and
pose provided they are placed on their physical support object.

In order to assign a prior to the grid cells (Section 2) we generated random samples
as described in Section 1.2 and used KDE. 150 samples that passed the threshold ON >
0.5 were convoluted with a simple 2D Epanechnikov kernel:

K(u) = c · (1− u2)

with a kernel radius chosen to be 0.2 m. The resulting grid wasthen normalized.



Figure 4. Test objects: “rice” and “printer”

The object search was carried out as described in Section 2. The initial information
given to the system was:

1. Thea priori probability that the object sought was in fact in the room wasgiven
at 80% (i.e.p(c0) = 0.2).

2. The “rice” object was ON the “printer” object with 100% certainty.
3. The “printer” object was ON either the table or the desk, each with 50% proba-

bility.

When the best next view was decided on, the robot moved to the corresponding position
and orientation. 25 pose samples for the target object (withON above the threshold 0.5)
were then obtained from the region of the view cone, and theiraverage used to set the tilt
angle of the camera in order to capture the most likely objectheight.

Object detection and pose estimation was done using previously trained SIFT fea-
tures. The generation and processing of new views was kept upuntil either the “rice”
object was found, or until the search was considered to have failed. The criterion for
failure was a posterior probability of 70% that the object was not inside the room. We
performed three types of searches utilising the prior information to varying degrees; un-
informed search, chained inference with 2 relations and indirect search with 2 relations.
In the following we will denote the rice carton byA and the cardboard box byB.

3.2. Chained inference with 2 relations

In this test, the information given was thatB was ON a table, and thatA was ON B, but
otherwiseA andB had unknown poses. The robot is tasked to look directly forA. By
making use of the a priori information via chained inference, as described in Section 1.2,
a probability distribution was sampled forA’s pose, and visual search was planned using
this distribution directly. Figure 5 shows the robot processing a view during this search.
Note the tilt of the camera, illustrating the robot’s expectation for the vertical position of
the object, given that it is supposed to be on top of the largerbox.

3.3. Indirect search with 2 relations

In this scenario, the robot exploits the position of the relatively more easily detectable
B to find A. The initial information provided to the robot is the same asin Section 3.2.
However, this time the system first sampled the distributionof B (given that it was on a
table) and performed the visual search forB based on the resulting probability distribu-



Figure 5. Chained inference, direct search: While searching for the rice carton, the robot looks towards the
height of the target object had it been on top of the large box object.

(a) (b)

Figure 6. (a) The robot first finds the cardboard box which can be detected easily as opposed to rice carton.
(b) Once the cardboard box is found, the search space is greatly reduced and the rice carton is found with the
next view.

tion. Only if and whenB was found did the system compute the distribution ofA using
this new data, using that distribution in its turn to performa focused search forA. Note
that by findingB and generating possible poses forA the robot reduces the search space
significantly. The experimental results also bear this out.Figure 6 shows the robot as it
detects the larger box at a distance, then closes to locate the “rice” object at a distance
where the model indicates that detection is likely.

3.4. Uninformed search

As a baseline, we ran the algorithm without utilising the information in the spatial rela-
tion. Thus, item 3 in the above list ofa priori knowledge was not used. Instead, the visual
search forB used a prior PDF that simply assigned a uniform probability for the object to
all obstacles registered by the laser scanner. In lieu of thevertical information otherwise
provided by the spatial relation, the camera instead tiltedto a set sequence of: down 30◦,
straight forward, and up 30◦. When theB object was detected, the conditioned probabil-



Mode % success Avg. # views, failure Avg. # views, success
Direct chained 73 5 5
Indirect chained 93 5 2
Uniform 46 17 10

Figure 7. Results of experimental evaluation

ity for A was used as in 3.3. The reason for not conducting an uninformed search directly
for A over the whole space is that this proved infeasible in experiments, as the number
of view points invariably exceeded our limit of20. The fail search criterion was also not
met because the smaller view cones resulting from the object’s smaller size shifted little
of the probability mass out towardsp(c0), the probability that the target object is outside
of the search space. This is in contrast to the larger “cardboard” object where after each
non-detection a substantial amount of probability mass flowed towardsp(c0).

3.5. Results

For each of 15 different object configuration, all three types of searches were performed
for a total of 45 runs. We present the results of our experiments in Table 7.

By comparing uniform and direct search, the advantage of using the spatial relation
knowledge is evident. Ignoring the information that the printer box is on the table leads
to unnecessary views of the walls and other irrelevant obstacles. Also the lack of vertical
position information necessitates redundant image processing as the camera goes through
3 tilt angle settings in order to ensure vertical coverage.

The difference in performance between indirect and direct search illustrates the use-
fulness of indirect search, even when the spatial relationsare taken into account fully.
Chained sampling allows the robot to directly create a probability representation for the
sought object, bypassing the search for the larger object and providing an approximate
height at which to aim the camera; nevertheless, the small size of the object means that
many views may be necessary to cover a large area . However in the indirect search case,
once the larger object is located then the search space is greatly reduced and typically
the target object is found within the next view or two.

4. Conclusions

We have proposed a way in which spatial relations, in the formof applicability functions,
can be used to aid in visual object search. We suggested a perceptual geometrical model
that approximates the core meaning of the topological preposition “on”, i.e. the notion
of support. In experiments on real robot, running autonomously, we have shown the
advantages to being able to incorporate information about support into a visual search
framework:

• Knowing that a relation holds between an object of known poseand one of un-
known pose allows for limiting the 2D space over which to search for the latter.

• Indirect search can help with the localization of a smaller object, by allowing the
search to start with a larger, easier-to-detect object.

• The support property can be used to guide the search in the vertical dimension.



The results reinforce the notion that indirect search is a useful method in active visual
search; our contribution here is the expression of how indirect search is done in con-
junction with qualitative spatial relations, as well as thespecific instantiation using the
ON relation.

5. Discussion

In this work, experiments were relatively limited in scope and served only to compare
different search modes with each other. One avenue of investigation is to vary the param-
eters of the objects involved; for example, changing the characteristics of the involved
objects to find the threshold where indirect search becomes more costly than chained
search.

The inclusion of other qualitative relations is another interesting direction for further
research; especially other topological relations such as “in”, “near”, and “at”, as these
are all to some extent objective and functional in nature.

The search problem formulation used herein is also rather simplistic, counting the
cost of a search merely in the number of views processed. The formulation also presup-
poses a “one-shot” visual system, as opposed to a continual one. The visual search al-
gorithm would necessarily change under a different problemformulation; however, the
way spatial relations are included in the solution need not be much changed, we believe.
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Stochastically Convergent Localization of Objects by Mobile Sensors
and Actively Controllable Relative Sensor-Object Pose

Adrian N. Bishop and Patric Jensfelt

Abstract— The problem of object (network) localization using
a mobile sensor is examined in this paper. Specifically, we
consider a set of stationary objects located in the plane and
a single mobile nonholonomic sensor tasked at estimating their
relative position from range and bearing measurements. We
derive a coordinate transform and a relative sensor-object
motion model that leads to a novel problem formulation where
the measurements are linear in the object positions. We then
apply an extended Kalman filter-like algorithm to the estimation
problem. Using stochastic calculus we provide an analysis of the
convergence properties of the filter. We then illustrate that it is
possible to steer the mobile sensor to achieve a relative sensor-
object pose using a continuous control law. This last fact is
significant since we circumvent Brockett’s theorem and control
the relative sensor-source pose using a simple controller.

I. INTRODUCTION

This paper considers the problem of object localization

using a mobile sensor taking relative range and bearing

measurements [1], [2]. Furthermore, we consider the problem

of actively steering the mobile sensor to achieve a desired

relative sensor-object pose with respect to individual objects.

The term object can be interpreted loosely and might refer to

a transmitting node or a target such as an aircraft or missile

etc. Alternatively, an object might refer to an everyday object

of interest that is to be manipulated by a mobile autonomous

robot in an industrial or home environment.

The idea behind the second (control) problem considered

in this paper is that it is often the case that a sensor can better

localize a target from a particular position or given a certain

relative trajectory [3], [4]. Alternatively, we are interested in

the problem of localizing a field of objects which the mobile

sensor might then wish to return to and manipulate or analyze

from certain relative positions.

For example, consider a robot exploring an unknown

environment and tasked at localizing a specified class of

objects relative to its current position. Following a period

of localization, the robot might be asked to return to a

particular object and take visual pictures of the object from

certain relative positions; i.e. from a certain distance with

a certain relative viewing angle [5]. Alternatively, the robot

may be required to return to a particular object in order to

manipulate or grasp the object for analysis [6] and this task

requires a specified relative robot-object pose. It is these sort

of scenarios which motivate the formulations and algorithms

considered in this paper.

A.N. Bishop and P. Jensfelt are with the Centre for Autonomous Systems,
KTH, Stockholm, Sweden. This work was supported by the Centre for
Autonomous Systems (CAS) and the EU FP7 project “CogX”.

A. Contributions of this Paper

The contributions of this paper are related to the polar-like

nature of the derived problem formulation and the rigorous

convergence analysis provided. Firstly, we introduce the rel-

ative sensor-object dynamic model (given a unicycle robot)

in polar coordinates which leads to a linear measurement

equation. We then outline an extended Kalman filter (EKF)

algorithm that can be used to estimate the relative object

positions. We rigorously analyze the convergence of the filter

and illustrate a condition which will guarantee the mean-

square error exponential convergences to a bounded steady

state value. The problem formulation for object localization

introduced in this paper is a very natural representation which

leads to improved estimation performance.

Following the filter analysis we outline the problem of

actively steering the unicycle robot to achieve a desired

(relative in this case) pose with respect to an object of

interest. We derive a simple continuous control law for the

sensor’s translational and angular velocities that will steer

it to a desired relative distance and angle with respect to

the object (or an estimate of the object) position. The polar

problem formulation advocated in this paper provides a nat-

ural representation of this control problem and simplifies the

controller design. To achieve a desired unicycle sensor pose

in a global Cartesian framework is non-trivial. Moreover,

the relative object-sensor distance and the relative object

sensor angle is a more natural representation of the desired

(intuitive) control objective.

Thus, the overall concept of object localization and active

sensor-object pose control (for localization and viewing

the object) is naturally derived in a simple way in this

paper. This contribution is significant and aims to highlight

the benefits of seeking alternative coordinate systems as a

means of simplifying certain nonlinear problems in robotics,

localization and multi-agent systems control.

II. PRELIMINARIES

Consider a mobile sensor with a state description s =
[x y φ]T ∈ {R2 × SO(1, R)}. Here x and y are the sensor’s

Cartesian position coordinates and φ is the sensor’s heading.

The sensor dynamics are based on the unicycle model,

ẋ = v cos φ

ẏ = v sin φ (1)

φ̇ = w

where v is the translational velocity and w is the sensor’s

angular velocity. Note that there are three state variables in
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R
2 × SO(1, R) and only two control inputs. The nonholo-

nomic constraint on the sensor is given by

ẋr sin φr = ẏr cos φr (2)

and implies via Brockett’s theorem that a desired robot pose

s∗ = [x∗ y∗ φ∗]T can not be asymptotically stabilized using

a linear smooth time-invariant control law. We assume the

control inputs v and w are known precisely (although we

can relax this assumption, we do not do so in this paper).

The environment is populated with a set V of objects
or target nodes with |V| = n. Here objects might mean

source nodes (e.g. active enemy radars, acoustic sources

etc), landmarks or feature points as discussed in the simul-

taneous localization and mapping literature, or targets such

as aircraft, missiles etc. Alternatively, objects might mean

everyday objects of interest that are to be manipulated by a

mobile autonomous robot in a home/industrial environment.

The Cartesian position of the ith object is denoted by

pi = [xi yi]T ∈ R
2. The objects are stationary in this case

and represent the map of the environment which is to be

estimated by the mobile sensor. At some time t the sensor

can sense a subset G(t) ⊆ V of landmarks. At time t the

true measurements of object i are given by

di =
√

(xi − x)2 + (yi − y)2

ϑi = θi − φ = arctan
(

yi − y

xi − x

)
− φ (3)

∀i ∈ G(t)

where ϑi = θi − φ is the relative bearing to the ith object

in the sensor’s internal Cartesian coordinate system, i.e. the

Cartesian coordinate system rotated by the sensor’s heading.

Let z = [sr p1 . . . pn]T. The measurements are typically

corrupted by a noise process n(t) and thus we can obtain

the measurement equation

dy(t) � ψ(t)dt = h(z)dt + E(t)dn(t) (4)

in continuous-time. Here, n(t) is a zero-mean Weiner process

and E(t) is a measurement noise weighting matrix that can

be dependent on the true state. For example, it might be true

that the noise present in the range measurements is a fraction

of the true range. The measurements and robot dynamics are

nonlinear in the chosen coordinate system.

III. LOCALIZATION OF OBJECTS IN POLAR

COORDINATES

One contribution of this paper is a novel localization analy-

sis that takes advantage of the polar-like nature of the relative

range and bearing measurements. There is a long history in

the bearing-only target tracking literature [1], [7] of working

in variants of polar coordinate systems. Here, we derive a

relative sensor-object motion model and then formulate an

estimation problem that involves linear measurements (which

can significantly improve the performance of the EKF as

noted in many different example problems [1], [7]).

Recall the true measurements taken by the mobile sensor

are given by

di =
√

(xi − x)2 + (yi − y)2

ϑi = θi − φ = arctan
(

yi − y

xi − x

)
− φ (5)

∀i ∈ G(t)

where the state s = [x y φ]T of the sensor and the position

of the objects pi = [xi yi]T ∈ R
2 are in some external (non-

relative) coordinate system. The measurements are nonlinear

in the first two components of s and in pi, ∀i.
Now define the following state variable ri = [di ϑi]T

with di ∈ (0,∞) and ϑi ∈ [−π, π). We will always assume

that di �= 0 for both theoretical and very practical reasons.

The augmented state variable in this section is given by

z = [r1 . . . rn]T and encompasses the relative sensor-object

position for all objects in the set. In practice the state z can

be augmented online when each new object is sensed.
The measurements (5) are linear in ri or more generally

in z = [r1 . . . rn]T and are given by the continuous-time

measurement equation

dy(t) � ψ(t)dt = H(G(t))zdt + E(t)dn(t) (6)

where E(t) is not required to be independent of z (as

discussed previously). Here H(G(t)) is a time-varying linear

matrix which is dependent only on the set G(t) of currently

sensed landmarks. For example, if all of the landmarks are

sensed and the state variable z is ordered appropriately, then

H would be the identity matrix.
Consider again a robot that obeys the unicycle model (1)

in R
2 × SO(1, R). Then we can write down the following

differential equation for the dynamics of ri,

ḋi = −v cos ϑi

ϑ̇i =
v

di
sin ϑi − w (7)

which is nonlinear in ri. Note also that di must be bounded

away from zero here for technical reasons (although prac-

tically this is also logical). Again we assume v and w are

known precisely.

A. On the Observability of the Polar Localization Problem
and the Convergence of the EKF-Based Algorithm

In this subsection we will examine and prove a number of

results regarding the convergence of an EKF-like algorithm

for estimating the relative object state variable.
1) Error Free Measurements and Dynamics: We consider

first the observability properties of the state z = [r1 . . . rn]T

with ri = [di ϑi]T evolving according to (7). We also assume

error free measurements of the form ψ(t) = H(G(t))z(t).

Corollary 1: Assume the robot-landmark dynamics and

the measurements are deterministic and error free. The state

ri(s) = [di(s) ϑi(s)]T for some i ∈ V and for s ≥ τ or

s < τ can be calculated at any time t ≥ τ if and only if

G(τ) ∩ ri(τ) �= ∅ for some instant τ .

The fact that Corollary 1 is true is not surprising but is

provided for completeness.
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2) Error Free Dynamics and Noisy Measurements: A

natural extension to the above result concerns the behavior

of an estimate ẑ of z when the dynamics of the state

ri = [di ϑi]T are error free and deterministic but the

measurements

dy(t) = H(G(t))zdt + E(t)dn(t) (8)

are corrupted by an additive Weiner process. Naturally, the

behavior of any state estimate ẑ depends on the particular

estimator and thus let us consider an estimator of the form

dẑ = f(ẑ, v, w)dt + K(t) (dy(t) − H(G(t))ẑdt) (9)

where the function fi(·) that captures the dynamics of the

subspace ri = [di ϑi]T is given by

fi(ẑ, v, w) =

[
−v cos ϑ̂i

v

d̂i
sin ϑ̂i − w

]
(10)

where v and w are again considered as deterministic control

inputs with no errors. The function f(·) is thus a vertical

concatenation of the fi(·). The gain K(t) is given by

K(t) = P(t)HT(G(t))R−1(t) (11)

and P(t) is the solution to the following Riccati differential

equation

dP(t) =
[
A(t)P(t) + P(t)AT(t) + Q(t)

]
dt −

P(t)HT(G(t))R−1(t)H(G(t))P(t)dt (12)

where Q and R are positive-definite tuning matrices. Note

that A(t) is the Jacobian of f(·) evaluated at ẑ. The Jacobian

Ai(t) of fi(·) is given by

Ai(t) =

[
0 −v sin ϑ̂i

− v

d̂2
i

sin ϑ̂i
vr

d̂i
cos ϑ̂i

]
(13)

and is evaluated at r̂i and is dependent on v. Note the

estimation error ζ = z − ẑ evolves according to

dζ = (A(t) − K(t)H(G(t))) ζdt +
�(z, ẑ, v, w)dt − K(t)N(t)dn(t) (14)

where we have used the following Taylor expansion of f(·)
about the estimate ẑ,

f(z, v, w)− f(ẑ, v, w) = A(t) (z − ẑ) + �(z, ẑ, v, w) (15)

where �(z, ẑ, v, w) accounts for the higher order terms.

Recall that ri = [di ϑi]T with di ∈ (0,∞) and ϑi ∈ [−π, π)
for all t. Then it is clear that the following bound holds

‖A(t)‖ = a < ∞ (16)

for all t where for any time-varying matrix M(t) we assume

the following

‖M(t)‖ = sup{‖M(t)‖ : mij ∈ Mij ⊆ R} (17)

for all t and for some norm ‖ · ‖. At this point we make the

following assumptions.

Assumption 1: The translational velocity of the robot v(t)
is uppperbounded in any arbitrary coordinate scale such that

v(t) ≤ v for all t. For simplicity we also assume that v(t) > 0
for all t. Now it follows that there exists a temporal coordinate

scale such that v(t) ≤ 1 for all t.

Assumption 2: The relative distance between the robot and

the ith landmark at time t belongs to the space di(t) ∈ (0,∞)
in any arbitrarily chosen coordinate scale. There exists a

spatial coordinate scale such that for all t we have di(t) ∈
[1,∞).

Assumptions 1 and 2 are weak (actually notational) and

can almost surely be satisfied in practice (i.e. by finding

explicit spatial and temporal scales). The case of v = 0 is

trivially obtained from the subsequent results. For simplicity

we also assume the following.

Assumption 3: For all t we have r̂i(t) = [d̂i(t) ϑ̂i(t)]T

with d̂i(t) ∈ [1,∞) and ϑ̂i(t) ∈ [−π, π).

Assumption 3 calls for the state estimate components to

be restricted to the assumed true global state space. Finally,

we make the following assumption on the design parameters.

Assumption 4: The following Q(t) ≥ qI, R(t) ≥ rI
and P(t0) ≥ p0I are given for some q, r, p0 > 0 such

that ‖Q(t)‖ ≥ q and ‖R(t)‖ ≥ r. Moreover, Q(t) and

R(t) are chosen to be bounded by ‖Q(t)‖ ≤ q < ∞ and

‖R(t)‖ ≤ r < ∞ for all t. Also, we have ‖E(t)‖ ≤ e < ∞
with E(t) ≥ eI.

Clearly, Assumption 4 is standard. We will also need the

following lemma concerning the growth of �(z, ẑ, vr, wr).

Lemma 1: The following inequality holds

‖�(z, ẑ, vr, wr)‖ = ‖f(z, ·) − f(ẑ, ·) − A(t) (z − ẑ) ‖
≤ 2a‖ζ‖ (18)

for |V| = n with probability 1 when Assumptions 1-4 hold.

Proof: The proof is trivial and follows from (16) and

the triangle inequality.

Note also that �(z, ẑ, vr, wr) = 0 when ζ(t) = 0. We

assume the initial estimation error ζ(t0) belongs to the set

ζ(t0) ∈ {η ∈ {[0,∞) × [−π, π)} : ‖ζ(t0)‖ ≤ d} (19)

for some constant d < ∞. We also assume initially that

G(t) = V for all t > t0 and thus the error propagates

according to (14) with (for simplicity) H(G(t)) = I for all

t. It is common to assume a full measurement vector when

performing such an analysis [8].

Lemma 2: Suppose Assumptions 1-4 hold. Then the state

estimate covariance P(t) is bounded by

0 < p ≤ ‖P(t)‖ ≤ p < ∞ (20)

for all t > t0 and where

p �
(
‖P(t0)‖ +

‖Q(t)‖ + ‖R(t)‖‖Λ(t)‖2

2κ

)
(21)
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and where Λ is chosen such that

ηT (A(t) + Λ(t)) η ≤ −κ‖η‖2 (22)

is satisfied for all η ∈ R2 with κ > 0.

Proof: The upper bound can be obtained by considering

the following time-varying linear control system

−q̇ = A(t)q + u (23)

with a boundary q(T ) = qT for some ∞ ≥ T > 0 and with

controllability Grammian

C(t + τ, t) =
∫ t+τ

t

Φ(t + τ, t)ΦT(t + τ, t)dt (24)

where Φ(t+τ, t) is the fundamental matrix with Φ(t, t) = I.

Clearly, the system (23) is uniformly completely controllable.

Consider the following cost function

J (t, τ,q,u) = B(t0,q(t0)) +
∫ T

t0

(
qTQq + uTRu

)
dt

(25)

and value function B(t,q(t)) = qT(t)P(t)q(t). Let the

control input equal u(t) = Λ(t)q for some continuous

bounded matrix Λ(t) such that −q̇ = (A(t)+Λ(t))q. Note

now that

B(T,q(T )) = qT(T )P(T )q(T )
≤ B(t0,q(t0)) +∫ T

t0

qT
(
Q + ΛT(t)RΛ(t)

)
qdt (26)

Solving −q̇ = (A(t) + Λ(t))q for q(T ) implies that

‖q(T )‖2 = ‖qT ‖2 = ‖q(t0)‖2 −
2

∫ T

t0

qT (A(t) + Λ(t))q dt (27)

and (22) implies ‖q(t0)‖2 ≤ ‖qT ‖2 and
∫ T

t0
qTq dt ≤

‖qT ‖2

2κ . Using this with (26) leads to the upper-bound.

Note that ‖P(t)‖ is bounded above by a constant inde-

pendent of the time t > t0. Part of Lemma 2 follows from a

theorem given in [9]. The condition (22) calls for the system

pair A(t) and H(G(t)) to be uniformly detectable. In our

case we know that the system is observable (which implies

detectability [9], [10]). As such, a suitable matrix Λ(t) exists

with probability one.

Theorem 1: Consider the system (14) with an initial con-

dition (19) and H(G(t)) = I. Suppose that Assumptions 1-4

hold. If ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p > 4ap
p then the

estimation error is bounded above with

E{‖ζ(t)‖2} ≤ max
{

np2e2

2γr2
,

p

p
‖ζ(t0)‖2

}
(28)

where γ = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p − 4ap/p and

the error E{‖ζ(t)‖2} as t → ∞ is bounded by np2e2

2γr2 .

Proof: The error system (14) can be thought of

as a linear system with a nonlinear perturbation being

driven by a zero-mean Weiner process. Let B(t, ζ(t)) =
ζT(t)P−1(t)ζ(t) > 0 and note that

dB =
[
∂B
∂t

+
∂B
∂ζ

(A(t) − K(t)) ζ

]
dt +

∂B
∂ζ

�(z, ẑ, vr, wr)dt +

1
2
tr

(
hess(B)K(t)E(t)ET(t)KT(t)

)
dt −

∂B
∂ζ

K(t)E(t)dn

dB =
[
∂B
∂t

+ LB
]

dt − ∂B
∂ζ

K(t)E(t)dn (29)

using Ito’s differential formula and where L is the Kol-

mogorov backward operator, hess(·) denotes the Hessian

operator and tr(·) denotes the matrix trace. Evaluating the

terms and re-arranging leads to

dB =
[
ζT

[−P−1(t)Q(t)P−1(t) − R−1(t)
]
ζ
]
dt +

2ζTP−1(t)�(z, ẑ, vr, wr)dt +
1
2
tr

(
R−1(t)E(t)ET(t)R−T(t)PT(t)

)
dt −

2ζTR−1(t)dn

≤
[
−α‖ζ‖2 +

4a

p
‖ζ‖2 +

npe2

2r2

]
dt −

2ζTR−1(t)dn (30)

where we have explicitly employed Lemma 1 and Lemma 2

and where

α = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖ (31)

Clearly we have p−1‖ζ‖2 ≤ B(t, ζ(t)) ≤ p−1‖ζ‖2 such

that some simple algebra implies that

dB ≤ −
(

αp − 4ap

p

)
Bdt +

npe2

2r2
dt −

2ζTR−1(t)dn
B ≤ B(t0, ζ(t0)) −∫ t

t0

(
αp − 4ap

p

)
B(τ, ζ(τ))dτ +

npe2

2r2

∫ t

t0

dτ − 2
∫ t

t0

ζT(τ)R−1(τ)dn(τ) (32)

From the Bellman-Gromwall lemma [11] we have

B(t, ζ(t)) ≤ B(t0, ζ(t0)) exp (−γ(t − t0)) +
npe2

2γr2
(1 − exp (−γ(t − t0))) −

2
∫ t

t0

ζT(τ)R−1(τ)dn(τ) (33)

where

γ =
(
αp − 4ap/p

)
(34)
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with γ > 0 if and only if αp > 4ap
p . Taking the expectation

E{·} of both sides of (33) gives

E{B(t, ζ(t))} ≤ B(t0, ζ(t0)) exp (−γ(t − t0)) +
npe2

2γr2
(1 − exp (−γ(t − t0))) (35)

and thus

E{‖ζ(t)‖2} ≤ p

p
‖ζ(t0)‖2 exp (−γ(t − t0)) +

np2e2

2γr2
(1 − exp (−γ(t − t0))) (36)

We then easily find that

E{‖ζ(t)‖2} ≤ max
{

np2e2

2γr2
,

p

p
‖ζ(t0)‖2

}
(37)

for all t if γ > 0 and the error E{‖ζ(t)‖2} as t → ∞ is

bounded by np2e2

2γr2 . This completes the proof.

Importantly, we have shown under what conditions an

EKF-like algorithm will yield an exponentially bounded and

converging mean-square estimation error. The asymptotic

mean-square estimation error is dependent on the specific

robot trajectory but is upper-bounded by np2e2

γr2 . Theorem 1

is a significant contribution to the problem of localization

using a mobile sensor and is a fundamental result.

Corollary 2: Suppose that Assumptions 1-4 hold and

(A,H(t)) is a uniformly detectable pair (which is guaranteed

since (A,H(t)) is actually an observable pair). Now if γ > 0
and n → 0, then ‖ζ(t)‖ → 0 as t → ∞.

That is, as the measurement noise approaches zero, the

estimation error will asymptotically (and actually exponen-

tially [9], [12]) converge to zero given the satisfaction of the

required conditions; i.e. the EKF as applied in this paper acts

as an asymptotic nonlinear observer; e.g. see [7], [9], [12]–

[14]. Thus, Corollary 2 and Theorem 1 justify application

of the EKF in well-posed scenarios (where the noise is

small). We can also derive a result similar to Theorem 1

when process noise (i.e. control input noise) is present. For

brevity and due to space limitations, estimator simulations

will appear in an extended version of the paper.

IV. ACTIVE SENSOR-OBJECT POSE CONTROL

We now illustrate a technique to steer the sensor to a

desired relative sensor-object pose ti = [dti ϑti]
T

using a

simple continuous control law; e.g. similarly to the formation

control problem [15]. This might be desired if the mobile

sensor wishes to view (with a visual sensor for example) a

particular object i ∈ V from a (possibly estimated) distance

and viewing angle. Similarly, the mobile sensor might be a

robot which must achieve a certain robot-object pose in order

to manipulate the object in some manner (due to the physical

configuration or constraints of the manipulation device).

Consider the global Cartesian sensor motion equations (1)

and a Cartesian representation of the ith object’s position.

Steering the sensor to achieve a desired distance di and a

desired relative (viewing) angle ϑi with the object is non-

trivial since the desired objective is not stated linearly in

the sensor state components. Moreover, it would require a

discontinuous or time-varying nonlinear control law.
However, consider the relative state ri = [di ϑi]

T
and

the problem of steering the mobile sensor to a desired

relative state ti = [dti ϑti]
T

. Note that the control objective

is expressed naturally and the sensor state-object state is

linearly related to the objective.
The described polar formulation also has a very attractive

property in that we can use Lyupunov techniques to design

the stabilizing sensor-object pose control law. Brockett’s

(negative) theorem is in a sense circumvented (albeit we

do not control the robot pose in a global sense) and the

practicality is (arguably) increased by considering such a

formulation. The controller we outline is continuous and

leads to very natural trajectories.
We now outline the control law for v and w that will

steer the mobile sensor to have a desired (or target) pose

ti = [dti ϑti]
T

with respect to the estimated state of object

i given by r̂i(τ) = [d̂i(τ) ϑ̂i(τ)]T at some time τ . The

following remark concerns an implicit technical requirement

of the controller with respect to the considered estimation

problem outlined in the previous section.

Remark 1: We have a state subspace estimate r̂i(τ) =
[d̂i(τ) ϑ̂i(τ)]T at some time τ as the output from the EKF

algorithm discussed in the previous section. Now we can set

to zero the Kalman gain K(t) subspace corresponding to the

state r̂i of object i for all t > τ . Then we have measurements

(or estimates as it so happens) of the relative sensor object

pose r̂i(t) = [d̂i(t) ϑ̂i(t)]T for all t > τ that are not

affected by a stochastic process ∀t > τ . For example, if the

sensor does not move such that v = 0 and w = 0 then

r̂i(t) = [d̂i(t) ϑ̂i(t)]T for all t > τ is constant. This does

not necessarily occur when the Kalman gain K(t) subspace

corresponding to the state r̂i is non-zero and we are taking

measurements of object i.

Thus we want the control error

δti(t) = ti−r̂i(t) = [dti ϑti]
T−[d̂i(t) ϑ̂i(t)]T, t > τ (38)

to be minimized to zero where r̂i(t) is the subspace output

of the EKF-like algorithm given that we have set to zero the

Kalman gain K(t) subspace corresponding to the state r̂i of

object i for all t > τ . The following theorem outlines the

control law and states the stability result.

Theorem 2: Consider the control error (38) and suppose

that Assumptions 1-4 hold. The control inputs are given by

v = −k1 cos
(
ϑ̂i(t)

)(
dti − d̂i(t)

)
w = −k2

(
ϑti − ϑ̂i(t)

)
, ∀t > τ (39)

where Assumption 3 specifies that ϑ̂i(t) ∈ [−π, π) and k1 >
0 and k2 > 0 are control gains. Assume that ϑti �= ±π/2.

Then the error (38) asymptotically and exponentially con-

verges to zero given any initial sensor-object configuration

r̂i(τ) = [d̂i(τ) ϑ̂i(τ)]T.
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Proof: The error δti(t) obeys

δ̇ti(t) =

[
k1 cos2 ϑ̂i(t) 0

sin ϑ̂i(t)

d̂i(t)
−k2

]
δti(t), t > τ (40)

where we always have di(t) > 0 and Assumption 2 claims

there exists a coordinate scale such that di(t) ≥ 1 in any

practical scenario. We also have Assumption 3 which claims

the estimated state output will belong to the adopted state

space such that d̂i(t) ≥ 1.
Note that differential equation (40) is of the form δ̇ti(t) =

F(δti(t))δti(t) and is nonlinear since F(δti(t)) is dependent

on the error. Let B(δti(t)) = δti(t)Tδti(t) be a candidate

Lyapunov function. Consequently,

Ḃ(δti(t)) = 2δti(t)TF(δti(t))δti(t) (41)

and it remains to establish that F(δti(t)) is strictly negative

definite. Observe that F(δti(t)) is strictly diagonally dom-

inant. Moreover, the eigenvalues of F(δti(t)) have strictly

negative real parts everywhere except ϑ̂i(t) = ±π
2 . If ϑti =

±π
2 is not a desired pose objective then clearly δti(t) is not

at equilibrium and w �= 0. Thus ϑ̂i(t) = ±π
2 represent non-

attractive and non-invariant manifolds in the state space. This

completes the proof.
A relative angle ϑti = ±π/2 ± ε for any arbitrarily small

ε > 0 is stabilizable given the designed continuous controller.

In practice this is quite sufficient. To achieve an exact relative

angle ϑti = ±π/2 requires a slight (technical) modification

of the control law for v and is straightforward but results in

a control function for v that is discontinuous at ϑ̂i(t) = ±π
2 .

The details are omitted for brevity but are quite simple.
We thus have illustrated how a polar formulation of the

problems considered can be directly exploited to yield very

simple solutions in a very natural form. The controlled

sensor trajectories are also very natural. We now consider

an example involving a robot with unicycle kinematics (1)

and initial state s = [0 0 0]T. We have randomly placed

an object (simulating a random initial sensor-object pose) in

the environment. The desired relative pose is characterized

solely by ti = [2 − π/4]T and k1 = k2 = 0.2. Figure 1 part

(a) illustrates the sensor trajectory and part (b) illustrates the

range and angle error convergence.
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Fig. 1. (a) shows the sensor trajectory and (b) shows the error convergence.

From Figure 1 we note the natural and continuous sensor

trajectory and the fast convergence of the errors to zero.

Nothing more than Lyapunov methods were used to prove

control stability. Additional examples are omitted for brevity.

V. CONCLUDING REMARKS

The problem of object localization using a mobile sensor

was examined in this paper. We derived a coordinate trans-

form and a relative sensor-object motion model that leads

to a novel problem formulation where the measurements are

linear in the object positions. We then apply an extended

Kalman filter-like algorithm to the estimation problem. Using

stochastic calculus we analyzed the convergence properties

of the filter. We then illustrate that it is possible to steer the

mobile sensor back to a relative sensor-object pose using a

simple continuous control law. This last fact is significant

since we can circumvent Brockett’s negative result. The

polar formulation considered in this paper provides a very

natural representation of the general localization and sensor-

object pose control problems. This simplifies the design of

the filter and the control law (since the actual problem is

represented naturally and so are the control objectives) and

it also improves the performance of the estimator (as no

approximate linearization of the measurements is needed).
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A Stochastically Stable Solution to the Problem of Robocentric Mapping

Adrian N. Bishop and Patric Jensfelt

Abstract— This paper provides a novel solution for robo-
centric mapping using an autonomous mobile robot. The
robot dynamic model is the standard unicycle model and the
robot is assumed to measure both the range and relative
bearing to the landmarks. The algorithm introduced in this
paper relies on a coordinate transformation and an extended
Kalman filter like algorithm. The coordinate transformation
considered in this paper has not been previously considered
for robocentric mapping applications. Moreover, we provide
a rigorous stochastic stability analysis of the filter employed
and we examine the conditions under which the mean-square
estimation error converges to a steady-state value.

I. INTRODUCTION

Simultaneous localization and mapping (or SLAM) refers

to the process of building a map of an environment from

sensory information gathered by a mobile robot, while simul-

taneously estimating the position of the robot using the map

[1]–[6]. An introduction to the SLAM problem is available

in many papers; e.g. see [7], [8] and the references therein

for an overview of the different approaches. Following the

work in [1], one of the most common methods for solving the

SLAM problem is to use an extended Kalman Filter (EKF).

However, the traditional SLAM state vector1 [1], [2], [4] in

a global coordinate system is not observable as discussed in

[9] given only relative landmark-robot measurements such

range and/or bearing. Another problem is that of estimator

inconsistencies caused by accumulated linearization errors

[10]–[12]. In [13] the concept of robocentric mapping is

introduced and this concept it is shown to better deal with

linearization errors than the traditional SLAM formulation.

The EKF consistency and the convergence of the ap-

proximate EKF covariance matrix is analyzed in [12] for

the general problem of SLAM. However, it is possible, in

the framework of the EKF, for the covariance matrix to

be asymptotically bounded while the state estimation error

diverges asymptotically. Moreover, it is the state estimate

itself that will be used by the robot when making decisions

etc. Hence, the actual (or mean) estimation error is a more

meaningful quantity to analyze.

The primary contribution of this paper is the development

of a robocentric mapping algorithm based on a simple,

yet particularly important, coordinate transformation. By

building a map in a relative polar framework we eliminate

the nonlinearities associated with the measurement equation.

Moreover, we eliminate the difficulties associated with the

A.N. Bishop and P. Jensfelt are with the Centre for Autonomous Systems,
KTH, Stockholm, Sweden. This work was supported by the Centre for
Autonomous Systems (CAS) and the EU FP7 project CogX.

1The traditional SLAM state vector consists of the pose of the robot and
the Cartesian location of the landmarks.

unobservable states [9] and the inconsistencies caused by the

affect of the EKF linearizations (which alter the unobservable

subspace [9]). A robocentric map is also (arguably) more

useful/natural than a global map for a large class of problems.

The relative robot dynamic model remains nonlinear but

takes on a different form. We then apply the standard

extended Kalman filter (EKF) to this problem and justify

this approach via a rigorous stochastic convergence analysis.

The convergence of the EKF relative map is given in terms

of the mean estimation error and is based on stochastic cal-

culus. The convergence analysis in this paper is necessarily

conservative, with the particular asymptotic properties of the

mean estimation error being naturally dependent on the exact

robot trajectory; e.g. see [14]–[18].

The approach and analysis given in this paper was partly

inspired by [9][13] where the difficulties of the global SLAM

problem are highlighted and where it is implied (perhaps

not always explicitly) that a robocentric approach would

circumvent many of these problems. The coordinate frame-

work chosen in this paper was inspired by the large bearing-

only tracking literature where it is shown that removing

the nonlinearities associated with the measurement equation

can significantly improve the EKF performance [19], [20].

Finally, a rigorous mean-error convergence analysis was

given to further justify the application of the EKF and

to provide a deeper insight into the proposed robocentric

mapping algorithm.

The remainder of this paper is organized as follows. In

Section II we introduce some preliminary notation and con-

ventions. In Section III we introduce the concept of mapping

in polar coordinates using a robocentric framework. We

outline the standard extended Kalman filter-like algorithm

which forms the basis of the estimator considered in this

paper. In Section III we then analyze the observability of the

mapping problem considered and the convergence properties

of the particular estimator considered. In Section IV we

present some simple simulation results and in Section V

we relate our robocentric problem to the traditional SLAM

problem. In Section VI we give our conclusions.

II. PRELIMINARIES

Consider a single robot with a state sr = [xr yr φr]
⊤ ∈

{R2 × SO(1,R)} where xr and yr are the robot’s Cartesian

position coordinates and φr is the robot’s heading. The robot

dynamics are based on the unicycle model,

ẋr = vr cosφr

ẏr = vr sinφr (1)

φ̇r = wr
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where vr is the translational velocity and wr is the robots

angular velocity. Note that there are three robot state vari-

ables in {R2 × SO(1,R)} and only two control inputs. The

nonholonomic constraint on the robot is given by

ẋr sinφr = ẏr cosφr (2)

The robot will generally only know vr and wr up to some

error denoted by v and w respectively. Here, v and w are

assumed to be uncorellated zero-mean Weiner processes. The

dynamics of the robot are thus assumed to obey

d




xr

yr

φr



 =




vr cosφr

vr sinφr

wr



 dt+




σv cosφr 0
σv sinφr 0

0 σw




[
dv
dw

]

(3)

which is a stochastic differential equation of the Ito-type.

Here, σv and σw are the standard-deviations of the errors

v and w respectively. The environment is populated with a

set V of landmark (or feature) points with |V| = n. The

Cartesian position of the ith landmark is denoted by pi =
[xi yi]

⊤ ∈ R
2. The landmarks are stationary in this case

and represent the map of the environment which is to be

estimated by the mobile robot. At some time t the robot can

sense a subset G(t) ⊆ V of landmarks. At time t the true

robot measurements are given by

di =
√

(xi − xr)2 + (yi − yr)2

ϑi = θi − φr = arctan

(
yi − yr

xi − xr

)
− φr (4)

∀i ∈ G(t)

where ϑi = θi − φr is the relative bearing to ith landmark

in the robots internal Cartesian coordinate system, i.e. the

Cartesian coordinate system rotated by the robots heading.

Let z = [sr pi . . . pn]⊤ denote a traditional SLAM state

vector. The measurements are typically corrupted by a noise

process n(t) such that

dy(t) , ψdt = h(z)dt+ E(t)n(t) (5)

in continuous-time. Here, n(t) is a zero-mean Weiner process

and E(t) is a measurement noise weighting matrix that can

be dependent on the true state. The measurements and robot

dynamics are nonlinear in the chosen coordinate system.

III. IMPROVED ROBOCENTRIC MAPPING IN POLAR

COORDINATES

The contribution of this paper is a novel robocentric

algorithm for mapping and localization that takes advantage

of the polar-like nature of the relative range and bearing

measurements. There does not appear to be any similar

(polar-like) algorithms in the SLAM or robocentric mapping

literature. However, there is a long history in the bearing-

only tracking literature [19], [20] of working in variants

of polar coordinate systems. The motivation is that the

measurements are then linear in the state components. Recall

the measurements taken by the robot are in the form

di =
√

(xi − xr)2 + (yi − yr)2

ϑi = θi − φr = arctan

(
yi − yr

xi − xr

)
− φr (6)

where the state sr = [xr yr φr]
⊤ of the robot and the position

of the landmarks pi = [xi yi]
⊤ ∈ R

2 are in some external

(non-robocentric) coordinate system. The measurements are

nonlinear in the first two components of sr and in pi, ∀i.
Now define the following state variable ri = [di ϑi]

⊤

with di ∈ (0,∞) and ϑi ∈ [−π, π). The augmented state

variable in this section is given by z = [r1 . . . rn]⊤.

The measurements (6) are linear in ri or more generally

in z = [r1 . . . rn]⊤ and are given by the continuous-time

measurement equation

dy(t) , ψdt = H(G(t))zdt+ E(t)n(t) (7)

where E(t) is not required to be independent of z. Here,

H(G(t)) is a time-varying linear matrix which is dependent

only on the set G(t) of currently sensed landmarks. For

example, if all of the landmarks are sensed and the state

variable z is ordered appropriately, then H would be the

identity matrix.

Consider again a robot that obeys the unicycle model (1)

in R
2 × SO(1,R). Then we can write down the following

differential equation for the dynamics of ri,

ḋi = −vr cosϑi

ϑ̇i =
vr

di

sinϑi − wr (8)

which is nonlinear in ri. Note also that di must be bounded

away from zero. Again we (must) assume that the control

inputs are corrupted by an additive noise process v and w
such that

d

[
di

ϑi

]
=

[
−vr cosϑi

vr

di

sinϑi − wr

]
dt+

[
σv cosϑi 0
σv sinϑi −σw

] [
dv
dw

]
(9)

is a more accurate depiction of the relative robot and ith

landmark dynamics. Here, v and w are uncorellated Weiner

processes with standard deviations of σv and σw respectively.

Note that the affect of v on ϑi and di is conditioned on a

nonlinear function of a true state variable (in this case ϑi).

A. On the Observability of the Polar SLAM Problem and the

Convergence of the EKF-Based Polar SLAM Algorithm

In this subsection we will examine and prove a number of

results related to the observability of the considered polar-

coordinate SLAM problem formulation. We will also exam-

ine and prove a number of results regarding the convergence

of an EKF-like algorithm for estimating the relative polar

state variable.

1) Error Free Measurements and Dynamics: We consider

first the observability properties of the state z = [r1 . . . rn]⊤

with ri = [di ϑi]
⊤ evolving according to (8). We also assume

error free measurements of the form

ψdt = H(G(t))zdt (10)

such that the system and measurements are noiseless and

deterministic. The following result concerns the observability

of the subspace ri = [di ϑi]
⊤ for some i ∈ V .
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Corollary 1: Assume the robot-landmark dynamics and

the measurements are deterministic and error free. The state

ri(s) = [di(s) ϑi(s)]
⊤ for some i ∈ V and for s ≥ τ or

s < τ can be calculated at any time t ≥ τ if and only if

G(τ) ∩ ri(τ) 6= ∅ for some instant τ .

The fact that Corollary 1 is true is not surprising. How-

ever, it again highlights the observable space of the SLAM

problem is purely relative [9]. Hence, by considering a rela-

tive (robocentric) mapping algorithm we are not attempting

to extract more information (in any finite time) from the

measurements than is available [9][12].

2) Error Free Dynamics and Noisy Measurements: A

natural extension to the above result concerns the behavior

of an estimate ẑ of z when the dynamics of the state

ri = [di ϑi]
⊤ are error free and deterministic but the

measurements

dy(t) , ψdt = H(G(t))zdt+ E(t)n(t) (11)

are corrupted by an additive Weiner process. Naturally, the

behavior of any state estimate ẑ depends on the particular

estimator and thus let us consider an estimator of the form

dẑ = f(ẑ, vr, wr)dt+ K(t) (dy(t) − H(G(t))ẑdt) (12)

where the function fi(·) that captures the dynamics of the

subspace ri = [di ϑi]
⊤ is given by

f(ẑ, vr, wr) =

[
−vr cosϑi

vr

di

sinϑi − wr

]
(13)

where vr and wr are again considered as deterministic

inputs with no errors. The function f(·) is thus a vertical

concatenation of the fi(·). The gain K(t) is given by

K(t) = P(t)H⊤(G(t))R−1(t) (14)

and P(t) is the solution to the following Riccati differential

equation

dP(t) =
[
A(t)P(t) + P(t)A⊤(t) + Q(t)

]
dt−

P(t)H⊤(G(t))R−1(t)H(G(t))P(t) (15)

where Q and R are positive-definite tuning matrices. Note

that A(t) is the Jacobian of f(·) evaluated at ẑ. The Jacobian

Ai(t) of fi(·) is given by

Ai(t) =

[
0 −vr sinϑi

− vr

di

sinϑi
vr

di

cosϑi

]
(16)

and is evaluated at r̂i and is dependent on vr. Note the

estimation error ζ = z − ẑ evolves according to

dζ = (A(t) − K(t)H(G(t))) ζdt+

̺(z, ẑ, vr, wr)dt− K(t)E(t)dn(t) (17)

where we have used the following Taylor expansion of f(·)
about the estimate ẑ,

f(z, vr, wr) − f(ẑ, vr, wr) = A(t)(z − ẑ) + ̺(z, ẑ, vr, wr)
(18)

where ̺(z, ẑ, vr, wr) accounts for the higher order terms.

Recall that ri = [di ϑi]
⊤ with di ∈ (0,∞) and ϑi ∈ [−π, π)

for all t. Then it is clear that the following bound holds

‖A(t)‖ = a <∞ (19)

for all t where for any time-varying matrix M(t) we assume

the following

‖M(t)‖ = sup{‖M(t)‖ : mij ∈ R} (20)

for all t and for some norm ‖·‖. For the subsequent analysis,

it turns out that the coordinate spatial and temporal scales

will play an important role. Hence, at this point let us make

the following assumptions.

Assumption 1: The translational velocity of the robot

vr(t) is uppperbounded in any arbitrary coordinate scale such

that vr(t) ≤ v for all t. For simplicity we also assume that

vr(t) > 0 for all t. Now it follows that there exists a temporal

coordinate scale such that vr(t) ≤ 1 for all t.

Assumption 2: The relative distance between the robot

and the ith landmark at time t belongs to di(t) ∈ (0,∞) in

any arbitrarily chosen coordinate scale. There exists a spatial

coordinate scale such that for all t we have di ∈ [1,∞).

Assumptions 1 and 2 are weak (actually notational) and

can almost surely be satisfied in practice (i.e. by finding

explicit spatial and temporal scales). The case of vr = 0 is

trivially obtained from the subsequent results. For simplicity

we also assume the following.

Assumption 3: For all t we have r̂i(t) = [d̂i(t) ϑ̂i(t)]
⊤

with d̂i ∈ [1,∞) and ϑ̂i ∈ [−π, π).

Assumption 4: For all t we assume that the error ζi2 =
(ϑi − ϑ̂i) is taken modulo 2π and ζi2 ∈ [−π, π).

Assumption 3 calls for the state estimate components to

be restricted to the assumed true global state space. For

ϑ̂i(t) this can be achieved via a trivial modular operation.

Assumption 4 ensures the value of the bearing error falls

within a consistent 2π interval. Finally, we make the follow-

ing standard assumption regarding the design parameters

Assumption 5: The following Q(t) ≥ qI, R(t) ≥ rI
and P(t0) ≥ p0I are given for some q, r, p0 > 0 such

that ‖Q(t)‖ ≥ q and ‖R(t)‖ ≥ r. Moreover, Q(t) and

R(t) are chosen to be bounded by ‖Q(t)‖ ≤ q < ∞ and

‖R(t)‖ ≤ r < ∞ for all t. Also, we have E(t) ≤ e < ∞
with E(t) ≥ eI.

We will also need the following lemma concerning the

growth of ̺(z, ẑ, vr, wr).

Lemma 1: The following inequality holds

‖̺(z, ẑ, vr, wr)‖ = ‖f(z, ·) − f(ẑ, ·) − A(t)(z − ẑ)‖

≤ 2a‖ζ‖ (21)

for |V| = n with probability 1 when Assumptions 1-5 hold.
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Proof: From the triangle inequality we obtain

‖f(z, vr, wr) − f(ẑ, vr, wr) − A(t)(z − ẑ)‖ ≤

‖f(z, vr, wr) − f(ẑ, vr, wr)‖ + ‖ − A(t)ζ‖ ≤

‖f(z, vr, wr) − f(ẑ, vr, wr)‖ + aζ (22)

which follows using (19). Now if f(·) is Lipschitz then

‖f(z, vr, wr) − f(ẑ, vr, wr)‖ ≤ c‖z− ẑ‖ for some 0 < c <
∞. Actually, we know that if ‖A(t)‖ is bounded by a then

f(·) is Lipschitz with Lipschitz coefficient a. Thus, the proof

is immediate.

Note also that ̺(z, ẑ, vr, wr) = 0 when ζ(t) = 0. We now

consider the the propagation of the estimation error ζ(t) =
z(t) − ẑ(t) for all t > t0 given an initial estimation error

ζ(t0) which we will assume belongs to the set

ζ(t0) = {η ∈ {[0,∞) × [−π, π)} : ‖ζ(t0)‖ ≤ b} (23)

for some constant b <∞. We assume initially that G(t) = V
for all t > t0. The error propagates according to (17) with

(for simplicity) H(G(t)) = I for all t. It is common to as-

sume a full landmark measurement vector when performing

such an analysis [4], [12]. We state the following lemma

regarding the error covariance.

Lemma 2: Suppose Assumptions 1-5 hold. Then the state

estimate covariance P(t) is bounded by

0 < p ≤ P(t) ≤ p <∞ (24)

for all t > t0 and where

p ,

(
‖P(t0)‖ +

‖Q(t)‖ + ‖R(t)‖‖Λ(t)‖2

2κ

)
(25)

and where Λ is chosen such that

η⊤ (A(t) + Λ(t))η ≤ −κ‖η‖2 (26)

is satisfied for all η ∈ R
2 with κ > 0.

Proof: The upper bound can be obtained by considering

the following time-varying linear control system

−q̇ = A(t)q + u (27)

with a boundary q(T ) = qT for some 0 < T ≤ ∞ and with

controllability Grammian

C(t+ τ, t) =

∫ t+τ

t

Ψ(t+ τ, t)Ψ⊤(t+ τ, t)dt (28)

where Ψ(t+τ, t) is the fundamental matrix with Ψ(t, t) = I.

The system (27) is uniformly completely controllable since

‖A(t)‖ < ∞ and ‖Ψ(t + τ, t)‖ > exp(−τ‖A(t)‖) which

implies C(t+τ, t) is never singular for t0 ≤ t < τ . Consider

the following cost function

J (t, τ,q,u) = B(t0,q(t0)) +

∫ T

t0

(
q⊤Qq + u⊤Ru

)
dt

(29)

and value function B(t,q(t)) = q⊤(t)P(t)q(t). Let the

control input equal u(t) = Λ(t)q for some continuous

bounded matrix Λ(t) such that −q̇ = (A(t) + Λ(t))q. Note

now that

B(T,q(T )) = q⊤(T )P(T )q(T )

≤ B(t0,q(t0)) +
∫ T

t0

q⊤
(
Q + Λ⊤(t)RΛ(t)

)
qdt (30)

Solving −q̇ = (A(t) + Λ(t))q for q(T ) implies that

‖q(T )‖2 = ‖qT ‖
2 = ‖q(t0)‖

2 −

2

∫ T

t0

q⊤ (A(t) + Λ(t))q dt (31)

and thus (26) implies that ‖q(t0)‖
2 ≤ ‖qT ‖

2 and∫ T

t0
q⊤q ≤ ‖qT ‖2

2κ
. Using this with (30) leads easily to the

upper-bound.

Note that ‖P(t)‖ is bounded above by a constant inde-

pendent of the time t > t0. This bound holds irrespective of

whether or not the state estimation error is bounded. Part

of Lemma 2 follows from a theorem given in [21]. The

condition (26) calls for the system pair A(t) and H(G(t)) =
I to be uniformly detectable. In our case we know that

the system is observable (which implies detectability [21],

[22]). As such, a suitable matrix Λ(t) exists with probability

one. Alternatively, an upper-bound on ‖P(t)‖ can be derived

independent of (26) when the state is observable [21].

We now state a result concerning the exponential bound-

edness of the expected error E {‖ζ(t)‖} for all t > t0 and

the asymptotic properties of the expected estimation error.

Theorem 1: Consider the system (17) with an initial con-

dition (23) and H(G(t)) = I. Suppose that Assumptions 1-5

hold. If ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p > 4ap
p

then the

estimation error is bounded above with

E
{
‖ζ(t)‖2

}
≤ max

{
npe2

2γr2
,
p

p
‖ζ(t0)‖

2

}
(32)

where γ = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p − 4ap/p and

the error E
{
‖ζ(t)‖2

}
as t→ ∞ is bounded by npe2

2γr2 .

Proof: The error system (17) can be thought of

as a linear system with a nonlinear perturbation being

driven by a zero-mean Weiner process. Let B(t, ζ(t)) =
ζ⊤(t)P−1(t)ζ(t) > 0 and note that

dB =

[
∂B

∂t
+
∂B

∂ζ
(A(t) − K(t)) ζ

]
dt+

∂B

∂ζ
̺(z, ẑ, vr, wr)dt+

1

2
tr

(
hess(B)K(t)E(t)E⊤(t)K⊤(t)

)
dt−

∂B

∂ζ
K(t)E(t)dn

dB =

[
∂B

∂t
+ LB

]
dt−

∂B

∂ζ
K(t)E(t)dn (33)

using Ito’s differential formula and where L is the Kol-

mogorov backward operator, hess(·) denotes the Hessian
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operator and tr(·) denotes the matrix trace. Evaluating the

terms and re-arranging leads to

dB =
[
ζ⊤

[
P−1(t)Q(t)P−1(t) + R−1(t)

]
ζ
]
dt+

2ζ⊤P−1(t)̺(z, ẑ, vr, wr)dt+
1

2
tr

(
R−1(t)E(t)E(t)R−⊤(t)P⊤(t)

)
dt−

2ζ⊤R−1(t)dn

≤

[
−α‖ζ‖2 +

4a

p
‖ζ‖2 +

npe2

2r2

]
dt−

2ζ⊤R−1(t)dn (34)

where we have explicitly employed Lemma 1 and Lemma 2

and where

α = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖ (35)

Clearly we have p−1‖ζ‖2 ≤ B(t, ζ(t)) ≤ p−1‖ζ‖2 such

that some simple algebra implies that

dB ≤ −

(
αp−

4ap

p

)
Bdt+

npe2

2r2
dt−

2ζ⊤R−1(t)dn

B ≤ B(t0, ζ(t0)) −∫ t

t0

(
αp−

4ap

p

)
B(τ, ζ(τ))dτ +

npe2

2r2

∫ t

t0

dτ − 2

∫ t

t0

ζ⊤(τ)R−1(τ)dn(τ) (36)

From the Bellman-Gromwall lemma [23] we have

B(t, ζ(t)) ≤ B(t0, ζ(t0)) exp (−γ(t− t0)) +

npe2

2γr2
(1 − exp (−γ(t− t0))) −

2

∫ t

t0

ζ⊤(τ)R−1(τ)dn(τ) (37)

where
γ =

(
αp− 4ap/p

)
(38)

with γ > 0 if and only if αp > 4ap
p

. Taking the expectation

E{·} of both sides of (37) gives

E {B(t, ζ(t))} ≤ B(t0, ζ(t0)) exp (−γ(t− t0)) +

npe2

2γr2
(1 − exp (−γ(t− t0))) (39)

and thus

E
{
‖ζ(t)‖2

}
≤

p

p
‖ζ(t0)‖

2 exp (−γ(t− t0)) +

npe2

2γr2
(1 − exp (−γ(t− t0))) (40)

We then easily find that

E
{
‖ζ(t)‖2

}
≤ max

{
npe2

2γr2
,
p

p
‖ζ(t0)‖

2

}
(41)

for all t if γ > 0 and the error E
{
‖ζ(t)‖2

}
as t → ∞ is

bounded by npe2

2γr2 . This completes the proof.

Importantly, we have shown under what conditions an

EKF-like algorithm will yield an exponentially bounded

and converging mean-square estimation error. The condition

γ > 0, which guarantees the expected error converges,

is independent of e. We have also given a method of

estimating the asymptotic mean-square error. The asymptotic

mean-square estimation error is dependent on the specific

robot trajectory but is upper-bounded by npe2

2γr2 . Theorem 1

is a significant contribution to the problem of robocentric

mapping and is a fundamental result. It is important to note

again that the algorithm considered in this paper is based on

nothing more than an EKF-like architecture and a coordinate

transform; see [20], [24], [25] for other EKF stability results.
3) Noisy Robot-Landmark Dynamics and Noisy Measure-

ments: We now consider the case where process noise is

present and where (for simplicity) H(G(t)) = I for all t.
We assume an EKF-like algorithm of the form (12) with

Assumptions 1-5 holding. The error ζ = z − ẑ obeys

dζ = [(A(t) − K(t)) ζ + ̺(z, ẑ, vr, wr)] dt+

G(t)

[
dv
dw

]
− K(t)E(t)dn(t)

dζ = [(A(t) − K(t)) ζ + ̺(z, ẑ, vr, wr)] dt+

[G(t) − K(t)E(t)]





[
dv
dw

]

dn(t)



 (42)

where Gi(t) is given by

‖Gi(t)‖ =

∥∥∥∥

[
σv cosϑi 0
σv sinϑi −σw

]∥∥∥∥ = g <∞ (43)

and G(t) = [G1(t) . . . Gn(t)]
⊤

. Moreover, Lemma 1 and

Lemma 2 still apply since they depend only on the validity

of Assumptions 1-5. Now we are in a position to prove the

main result concerning the exponential boundedness of the

expected estimation error for all t > t0.

Theorem 2: Consider the system (42) with an initial con-

dition (23) and H(G(t)) = I. Suppose that Assumptions 1-5

hold. If ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p > 4ap
p

then the

estimation error is bounded above with

E
{
‖ζ(t)‖2

}
≤ max

{
n(r2g2 + ppe2)

2γr2p
,
p

p
‖ζ(t0)‖

2

}
(44)

where γ = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p − 4ap/p and

the error E
{
‖ζ(t)‖2

}
as t→ ∞ is bounded by

n(r2g2+ppe2)

2γr2p
.

Proof: The proof is similar to the proof of Theorem

1. We will omit most of the details as a consequence. Let

B(t, ζ(t)) = ζ⊤(t)P−1(t)ζ(t) > 0 and note that

dB =

[
∂B

∂t
+
∂B

∂ζ
(A(t) − K(t)) ζ +

∂B

∂ζ
̺(z, ẑ, ·)

]
dt+

dt+
1

2
tr

(
hess(B)Ξ(t)Ξ⊤(t)

)
dt−

∂B

∂ζ
Ξ(t)





[
dv
dw

]

dn(t)



 (45)
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where

Ξ(t) = [G(t) − K(t)E(t)] (46)

and where we have employed Itos differential formula.

Evaluating the terms and re-arranging leads to

dB =
[
ζ⊤

[
P−1(t)Q(t)P−1(t) + R−1(t)

]
ζ
]
dt+

2ζ⊤P−1(t)̺(z, ẑ, vr, wr)dt+
1

2
tr

(
P−1(t)G(t)G⊤(t)

)
dt+

1

2
tr

(
P−1(t)K(t)K⊤(t)

)
dt−

2ζ⊤P−1(t)Ξ(t)





[
dv
dw

]

dn(t)





≤

[
−α‖ζ‖2 +

4a

p
‖ζ‖2 +

n(r2g2 + ppe2)

2γr2p

]
dt−

2ζ⊤P−1(t)Ξ(t)





[
dv
dw

]

dn(t)



 (47)

where we have explicitly employed Lemma 1 and Lemma 2

and where

α = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖ (48)

Now noting that p−1‖ζ‖2 ≤ B(t, ζ(t)) ≤ p−1‖ζ‖2 and

using the Bellman-Gromwall lemma [23] we come to

B(t, ζ(t)) ≤ B(t0, ζ(t0)) exp (−γ(t− t0)) −

2

∫ t

t0

ζ⊤(τ)P−1(τ)Ξ(τ)





[
dv(τ)
dw(τ)

]

dn(τ)



 +

n(r2g2 + ppe2)

2γr2p
−

n(r2g2 + ppe2)

2γr2p
exp (−γ(t− t0)) (49)

where

γ =

(
αp− 4

ap

p

)
(50)

with γ > 0 if and only if αp > 4ap
p

. Taking the expectation

of (49) and proceeding as in the proof of Theorem 1 gives

E
{
‖ζ(t)‖2

}
≤ max

{
n(r2g2 + ppe2)

2γr2p
,
p

p
‖ζ(t0)‖

2

}
(51)

for all t if γ > 0. The error E
{
‖ζ(t)‖2

}
as t → ∞ is

bounded by
n(r2g2+ppe2)

2γr2p
. This completes the proof.

Again we have a fundamental result concerning the ex-

ponential boundedness and convergence of the expected

estimation error. Note that the steady state expected mean

square error bound is larger when process noise is present

(as expected).

IV. NUMERICAL SIMULATIONS

The algorithm presented in this paper is now illustrated via

simulation. The examples we consider involve a single mo-

bile robot and a rectangular configuration of 40 landmarks.

The scenario is illustrated graphically in Figure 1.

Fig. 1. The example scenario considered in this paper consists of 40
landmarks and a single mobile robot. The true robot trajectory is illustrated
by the sequence of arrow heads (and starts at the origin).

The true robot velocity has a magnitude vr = 0.5. The

true angular velocity of the robot has magnitude wr = π
32 .

The matrix Q(t) = G(t)G⊤(t) is evaluated at the estimated

target state but uses the true values of σv and σw. The matrix

R is a constant matrix representing the true covariance of the

measurement vector. The initial landmark positions are equal

to the first noisy measurements and the associated initial

covariance matrix is equal to R. This initialization method

is a very convenient side benefit of our approach.

A. Example 1

Firstly we consider the case in which the robot senses the

entire set V of landmarks for all t. This is of course not

entirely practical but is the precise condition under which

the analysis of this paper pertains to (and is a common as-

sumption made when analyzing the convergence of mapping

and/or SLAM algorithms). The velocity error has standard

deviation magnitude of σv = 0.05. The angular acceleration

error has a standard deviation magnitude of σw = 0.0175.

The bearing and range noise are assumed to be independent

of the state with standard deviation magnitudes of 0.035 and

0.5 respectively. The RMS state estimation error for 10000

simulation runs is shown in Figure 2.

Fig. 2. The RMS state estimation error for the complete relative (robo-
centric) range and bearing state estimate for example 1.
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It is clear that the error is bounded above and converging to

a steady value. Note that the error vector consists of bearing

and range errors (as we are working in polar coordinates).

However, each state component is bounded and convergent.

The error covariance also converges and we plot the average

maximum singular value of P(t) in Figure 3.

Fig. 3. The average maximum singular value of P(t) for example 1.

It is clear that the maximum singular value of the covari-

ance matrix P(t) converges very fast to a steady state value.

The average value of α and ‖A(t)‖ is shown in Figure 4.

Fig. 4. The mean value of α and ‖A(t)‖ for example 1.

From Figure 3 and Figure 4 we can verify that the

simulation results agree with the theoretical results provided

in this paper.

B. Example 2

The example considered here is identical to the previous

example except for the values of the noise variances. Here we

increase the values such that σv = 0.1 and σw = 0.035. The

bearing and range noise standard deviations are 0.175 and 1.5
respectively. These are large error statistics. The RMS state

error value for 10000 simulation runs is shown in Figure 5.

Fig. 5. The RMS state estimation error for the complete relative (robo-
centric) range and bearing state estimate for example 2.

The RMS error is bounded above and converging. The

value to which the error is converging is also greater than that

value indicated in Figure 2 for example 1 (as expected) and

it takes slightly longer for the error to reach a steady-value.

The covariance matrix P(t) or more specifically ‖P(t)‖ also

converges to a steady state value as expected. It can similarly

be shown (as was the case in example 1) that the condition

γ > 0 is satisfied in this simulation example (given relatively

large error statistics).

A significant advantage exhibited by the algorithm con-

sidered in this paper is the coordinate transformation that

subsequently permits linear measurements. This can consid-

erably improve the performance of the EKF as shown here

and in the bearing-only tracking literature [19], [20].

C. Example 3

Finally, we consider the same noise parameters and sim-

ulation scenario as examined in example 1 but we restrict

the sensing domain of the robot such that it can only sense

a subset G ⊆ V of landmarks at each time t. Specifically,

the robot can sense a landmark i at time s if and only if

ϑi(s) ∈ (−π/2, π/2) and di(s) ∈ (0, 5). We assume perfect

data-association capabilities. The duration of each simulation

run is increased to 400 seconds. We plot the RMS state error

value over 10000 simulation runs in Figure 6.

Fig. 6. The RMS state estimation error for the complete relative (
robocentric) range and bearing state estimate for example 3.

The robot completes one cycle and closes-the-loop in

just over 50 seconds. The error is increasing as the robot

moves from its initial position at the origin around the first

loop. When the robot completes one loop we see a notable

(and sudden) decrease in the error which then converges to

a reasonably stable value. We plot the average maximum

singular value of P(t) in Figure 7.

Fig. 7. The average maximum singular value of P(t) for example 3.
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A similar situation is observed with the singular values

of the covariance matrix P(t). During the first loop the

uncertainty is increasing and following the loop-closure the

uncertainty decreases dramatically.

V. DISCUSSION

Consider the state variable z = [sr r1 . . . rn]⊤ and the

corresponding EKF algorithm used to estimate z. The state

estimation of the subspace [r1 . . . rn]⊤ would obey the ana-

lytical results derived in this paper while the state estimation

of [sr] would depend on the nonlinear measurements and is

not covered explicitly in this paper. Actually, [sr] represents

an unobservable subspace of z = [sr r1 . . . rn]⊤. Thus it is

possible to directly relate the robocentric mapping algorithm

developed in this paper to the general global SLAM problem

by simply further augmenting the state variable as z =
[sr r1 . . . rn]⊤ and modifying (in an obvious way) certain

properties of the EKF algorithm. The result would be an

algorithm for an unobservable state variable. The observable

state space [r1 . . . rn]⊤ is the robocentric output and the

estimation error associated with the space [r1 . . . rn]⊤

would obey the results developed in this paper. Of course

the entire state z might diverge and there is no guarantee

that the entire P(t) matrix is bounded (this would depend

non-trivially on the robot trajectory and initialization).

Further experimental and simulation results will appear

in an extended version of this paper. The results given

here were simplified in an attempt to highlight the main

convergence properties of the filter. A comparison of the

proposed algorithm with that of the traditional formulation

of EKF-SLAM is warranted along with an analysis of the

degree-of-nonlinearity of the converted dynamic model.

VI. CONCLUDING REMARKS

Robocentric mapping provides an attractive and tractable

solution to many problems in robotics. The approach in-

troduced in this paper is based on nothing more than an

extended Kalman filter (EKF) and a very advantageous

coordinate transform. The novelty of this transformation is

that it leads to a linear measurement equation, i.e. it removes

significant nonlinearities associated with the measurements.

The standard unicycle model is given in polar coordinates

and relative to each landmark position. Hence, the robocen-

tric mapping problem given range and bearing measurements

is formulated in (arguably) its most natural form. To justify

the application of the EKF we then analyzed the finite-time

and the asymptotic convergence properties of the error. We

showed how the performance of the EKF estimation error can

be related to the design parameters and the noise properties.
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Abstract—In this paper, a new approach to robotic mapping
is presented that uses modified spherical coordinates in a robot-
centered reference frame and a bearing-only measurement model.
The algorithm provided in this paper permits robust delay-
free state initialization and is computationally more efficient
than the current standard in bearing-only (delay-free initialized)
simultaneous localization and mapping (SLAM). Importantly,
we provide a detailed nonlinear observability analysis which
shows the system is generally observable. We also analyze the
error convergence of the filter using stochastic stability analysis.
We provide an explicit bound on the asymptotic mean state
estimation error. A comparison of the performance of this filter
is also made against a standard world-centric SLAM algorithm
in a simulated environment.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is a well

researched problem within robotics. Many implementations
and scenario variations exist using a variety of different
filters [1]–[4]. However, it is surprising that within the SLAM
literature, there is relatively little research on the use of,
and subsequent performance surrounding, different coordinate
systems or on the analysis of the filter error convergence. In
the closely related field of target tracking, research has shown
that coordinate transforms that linearize the measurement
model may improve error convergence [5], [6]. Indeed, in
traditional target tracking [5] the system dynamic model is
often originally linear in Cartesian coordinates. However, by
changing coordinates in order to derive an analytically linear
measurement model we typically sacrifice this linearity of the
system model. Nevertheless, overall estimation performance
is often improved as discussed in [5], [6]. In robotic mapping
and localization algorithms we typically start with a nonlinear
system model in any case. Moreover, in the typical world-
centric SLAM formulation we start with an unobservable
[7], [8] nonlinear (in both system and measurements) state
estimation problem.
The unobservability of the world-centric SLAM problem

[7], [8] suggests that a robot-centric formulation may be more
appropriate. Moreover, estimator inconsistencies caused by
accumulated linearization errors [9]–[11] are exasperated in
world-centric coordinates, particularly for extended Kalman
filter-like (EKF) algorithms. In [12] the concept of robocentric
mapping is introduced and shown to better deal with lineariza-
tion errors than the traditional SLAM formulation.
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One contribution of this paper is an algorithm for robo-
centric bearings-only SLAM which uses a modified spherical
coordinate system. The problem of bearing-only SLAM is of
interest since many sensors are capable only of providing
the bearing of target-points-of-interest. For example, single
camera, vision-based, measurement systems provide only the
bearings to particular points in three-dimensional space [13].
Similarly, passive sensing technology often provides only
target bearing information. By building a map in a relative
spherical-like framework, we eliminate the nonlinearities asso-
ciated with the measurement equation. Moreover, we eliminate
the problems associated with the unobservable states [7] and
the inconsistencies caused by the EKF linearizations (which
alter the unobservable subspace [7]).
Another important contribution of this paper is the inclusion

of a rigorous observability analysis. We show that in general,
our robocentric system state is observable, i.e. the relative
location of the landmarks are observable, given only relative
bearing measurements. We go further than this and provide
conditions under which the state estimation error of an EKF-
like algorithm is bounded. The convergence analysis in this
paper is actually conservative, with the particular asymptotic
properties of the mean estimation error dependent on the exact
robot trajectory; e.g. see [14], [15]. The analysis in this paper is
provided in order to justify the modified spherical coordinates
considered, and the wide application of the EKF in mapping
(and, in particular, in mapping in this coordinate framework).
The work in this paper differs from that in the target

tracking literature since we consider a nonlinear robot dynamic
model. We then rigorously analyze the observability and
convergence of an EKF-like algorithm given the particular
nonlinear dynamics, bearing-only measurements and the mod-
ified coordinate system. We differ from related work in the
robot mapping and localization literature by introducing a
new coordinate system, within which a number of distinct
advantages are shown to exist. We also differ from existing
robotic mapping papers by introducing a rigorous convergence
and observability analysis for the estimation problem. This
analysis will be of interest to roboticists employing similarly
structured algorithms.

II. PRELIMINARIES
We assume a robot moving on a planar surface according

to the unicycle motion model. The robot state is described by
the vector xr = [xr yr zr φr]T. The robot is steered using



the inputs vr and ωr, which are the translational and angular
velocities. The robot’s motion is described by the following
system of nonlinear equations

ẋr = vr cosφr

ẏr = vr sin φr

żr = 0
φ̇r = wr

(1)

These inputs are disturbed by the noise components vn

and ωn, which are assumed to be uncorrelated zero-mean
Weiner processes with standard deviations σv and σω . The
full stochastic motion model for the robot is described by

d

⎡⎢⎢⎣
xr

yr

zr

φr

⎤⎥⎥⎦ =

⎡⎢⎢⎣
vr cosφr

vr sin φr

0
ωr

⎤⎥⎥⎦ dt+

⎡⎢⎢⎣
σv cosφr 0
σv sin φr 0

0 0
0 σω

⎤⎥⎥⎦[ dvn

dωn

]
(2)

The robot moves through an environment populated by n
point landmarks, which it is capable of observing through
bearing measurements. We denote by V the set of all such
landmarks and by G(t) ⊂ V the set of landmarks observable
at time t. Let the Cartesian coordinates of the ith landmark be
denoted by pi = [xi yi zi]T. Then the true measurements of
the ith landmark can be expressed as

αi = arctan
yi − yr

xi − xr
− φr

βi = arcsin
zi − zr√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2
(3)

or concisely using the measurement vector yi(t) =
[αi(t) βi(t)]�. Let z = [x�r p�i . . . p�n ]� denote a traditional
SLAM state vector. The measurements yi(t) are typically
corrupted by a noise process n(t) such that

dy(t) � ψdt = h(z)dt + E(t)n(t) (4)

in continuous-time. Here, we assume that n(t) is a zero-mean
Weiner process and E(t) is a measurement noise weighting
matrix that can be dependent on the true state. The mea-
surements and robot dynamics are nonlinear in the chosen
Cartesian coordinate system.

III. ROBOCENTRIC MAPPING IN MODIFIED SPHERICAL
COORDINATES

The contribution of this paper is a novel robocentric algo-
rithm for mapping and localization which takes advantage of
the spherical-like nature of the relative bearing measurements.
There does not appear to be any similar (spherical-like)
algorithms in the SLAM or robocentric mapping literature.
The spherical coordinates of landmark i in the robot’s

reference frame is given by

αi = arctan
yi − yr

xi − xr
− φr

βi = arcsin
zi − zr√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2

di =
√

(xi − xr)2 + (yi − xr)2 + (zi − zr)2 (5)

which we write succinctly as ri = [αi βi di]�. Using (5)
together with the unicycle motion model (1) of the robot yields

α̇i =
vr sin αi

di cosβi
− ωr

β̇i =
vr

di
cosαi sinβi (6)

ḋi = −vr cosαi cosβi

Taking the previously defined noise processes vn and ωn

into account, we get the following stochastic motion model

d

⎡⎣ αi

βi

di

⎤⎦ =

⎡⎣ vr sin αi

di cos βi
− ωr

vr

di
cosαi sin βi

−vr cosαi cosβi

⎤⎦ dt +⎡⎣ σv sin αi

di cos βi
−σω

σv

di
cosαi sin βi 0

−σv cosαi cosβi 0

⎤⎦[ dvn

dωn

] (7)

We thus have a nonlinear system (7) and linear measure-
ments (9). However, we go one step further and modify the
dynamic system (7) slightly. In particular, we will not consider
the range di of each landmark i but rather the inverse range
ρi = 1/di, see [5], [13]. In this case, we have ρ̇i = −ρ2

i ḋi or
taking account of the input noise we have

dρi = vrρ
2
i cosαi cosβidt + σvρ2

i cosαi cosβidvn (8)

and thus the modification of the dynamic system (7) is
obvious. The reason for using ρi instead of di is related to the
initialization and is explained in the subsequent subsection.
We redefine ri = [αi βi ρi]� and z = [r1 . . . rn]�.
The measurements (3) are linear in ri or more generally in
z = [r1 . . . rn]� and can then be given by the continuous-
time measurement equation

dy(t) � ψdt = H(G(t))zdt + E(t)n(t) (9)

where E(t) is not required to be independent of z. Here,
H(G(t)) is a time-varying linear matrix which is dependent
only on the set G(t) of currently sensed landmarks.
The function fi(·) which captures the dynamics of the

subspace ri is

fi(ẑ, vr, wr) = fi(r̂i, vr, wr) =

⎡⎣ vrρi sin αi

cos βi
− ωr

vrρi cosαi sin βi

vrρ
2
i cosαi cosβi

⎤⎦
(10)

and where f(·) is thus a vertical concatenation of the fi(·).
For latter use we introduce the following Taylor expansion of
f(·) about the estimate ẑ,

f(z, vr , wr)− f(ẑ, vr, wr) = A(t)(z − ẑ) + 	(z, ẑ, vr, wr)
(11)

whereA(t) is the Jacobian of f(·) and 	(z, ẑ, vr, wr) accounts
for the higher order terms. The JacobianAi(t) of fi(·) is given
by

Ai = vrρ
2
i

⎡⎢⎣
cos αi

ρi cos βi

sin αi sin βi

ρi cos2 βi

sin αi

ρ2
i cos βi

− sinαi sin βi

ρi

cos αi cos βi

ρi

cos αi sin βi

ρ2
i

− sinαi cosβi − cosαi sinβi
2 cos αi cos βi

ρi

⎤⎥⎦
(12)



and is evaluated at an estimate r̂i. For any time-varying matrix
M(t) we introduce the following notation

‖M(t)‖ = sup{‖M(t)‖ : mij ∈ R} (13)

for all t and for some norm ‖ · ‖. Moreover, we make the
following standing assumption for simplicity.
Assumption 1: The robot does not travel directly over or

directly underneath a true landmark location or the estimated
location of a landmark, i.e. βi �= ±π/2 or β̂i �= ±π/2.
Assumption 1 is a technical requirement of the chosen

coordinate system but not strong in practice. In fact, landmarks
are often not chosen automatically to lie directly above or
below the robot’s trajectory and if indeed they were then we
could subsequently alter the robot trajectory to avoid this. As
a consequence of the assumption, the following bound holds

‖A(t)‖ = a < ∞ (14)

for all t given a particular robot trajectory. The error ζ = z− ẑ
is the so-called state estimation error. We will also need the
following lemma concerning the growth of 	(z, ẑ, vr, wr).
Lemma 1: The following inequality holds

‖	(z, ẑ, vr, wr)‖ = ‖f(z, ·)− f(ẑ, ·)−A(t)(z − ẑ)‖
≤ 2a‖ζ‖ (15)

for with probability 1 when Assumption 1 holds.
Proof: From the triangle inequality we obtain

‖f(z, vr, wr)− f(ẑ, vr, wr)−A(t)(z − ẑ)‖ ≤
‖f(z, vr, wr)− f(ẑ, vr, wr)‖+ ‖ −A(t)ζ‖ ≤

‖f(z, vr, wr)− f(ẑ, vr, wr)‖+ aζ (16)

which follows using (14). Now if f(·) is Lipschitz then
‖f(z, vr, wr)−f(ẑ, vr, wr)‖ ≤ c‖z−ẑ‖ for some 0 < c <∞.
Actually, we know that if ‖A(t)‖ is bounded by a then f(·)
is Lipschitz with Lipschitz coefficient a.
Note also that 	(z, ẑ, vr, wr) = 0 when ζ(t) = 0.

A. Initialization in Modified Spherical Coordinates
Since the location of the landmarks, or even their number,

is not known beforehand, we will need to augment our state
with the parameters for each new landmark when they are first
observed. This presents a problem, since we only observe the
two bearings, α and β, in any single measurement, and not
the depth (or inverse depth).
This problem is particularly severe in Cartesian coordinates,

since the conic region of uncertainty will not be well approxi-
mated by a Gaussian distribution. One way to get around this is
to use so called delayed initialization [16], where a landmark is
not added to the state until it has been observed sufficiently for
the depth to be estimated. However, this adds to the complexity
of the implementation, requiring the provisional landmarks to
be handled as a separate case.
Civera et al. [13] proposed a method for undelayed ini-

tialization for global SLAM by parameterizing the landmarks
using the robot pose in Cartesian coordinates together with the

two observed bearings and the inverse depth. In our robocen-
tric formulation, we will only use the latter three parameters.
The bearings are trivially initialized using the measurement
values and measurement statistics. The uncertainty in the
inverse depth can be reasonably well approximated using a
Gaussian function [13]. Also, by using the inverse depth ρi

instead of di, we can better account for a very large range of
initial di values (including∞) in the uncertainty region given
a reasonable value for ρi(0) and σρ(0).

B. Observability of the Proposed Estimation Problem
When discussing the observability of the proposed SLAM

algorithm, we will use the property of local weak observabil-
ity, as defined by Hermann and Krener in [17]. The same
method was previously applied to the global SLAM problem
in [8] to prove its fundamental unobservability.
A system Σ is said to be locally weakly observable at a

point x0 if we can instantaneously distinguish x0 from its
neighbors. To test for this property, we use the observability
rank condition, which is a sufficient condition for local weak
observability. For simplicity, we will only consider a system
with a single landmark i. We define our system Σ as

Σ :
ẋ = f(x, vr, ωr) =

⎛⎝ fα

fβ

fρ

⎞⎠ =

⎛⎝ vrρi sin αi

cos βi
− ωr

vrρi cosαi sinβi

vrρ
2
i cosαi cosβi

⎞⎠
y = h(x) =

(
h1

h2

)
=
(

αi

βi

)
where x ∈ M and M is a 3-dimensional C∞ connected
manifold and f and h are C∞ functions.
Let OΣ be the matrix whose rows consist of repeated Lie

derivatives of one-forms dhi(x) with respect to the Lie algebra
F of vector fields generated by f(x, vr, ωr) on M. These
repeated Lie derivatives are defined recursively as

L0
fdhi(x) =

∂hi(x)
∂x

(17)

and given an iterative index q ∈ N we have

Lq
fdhi(x) = Lq−1

f dhi(x)∂f(x,vr ,ωr)
∂x

+
[

∂
∂x

(
LD−1

f dhi(x)
)T

f(x, vr , ωr)
]T

(18)
For our system Σ, we have

L0
fdh1 = [1 0 0], L0

fdh2 = [0 1 0] (19)

L1
fdh1 = vr

[
ρi cosαi

cosβi

ρi sin αi sin βi

cos2 βi

sinαi

cosβi

]
(20)

L1
fdh2 = vrρi[

− sinαi sinβi

vr
cosαi cosβi cosαi sin βi]

(21)

L2
fdh1(x) =

⎡⎢⎢⎣
4v2

rρ2
i cos2 αi

cos2 βi
− 2v2

rρ2
i

cos2 βi
+ vrωrρi sin αi

cos βi

4v2
rρ2

i sin αi cos αi sin βi

cos2 βi
− vrωrρi cos αi sin βi

cos βi

4v2
rρi sin αi cos αi

cos2 βi
− vrωr cos αi

cos βi

⎤⎥⎥⎦
�

(22)



L2
fdh2(x) =

⎡⎢⎢⎣
2v2

rρ2
i sin αi cos αi sin βi

cos βi
− 4v2

rρ2
i sin αi cosαi sin βi cosβi + vrωiρi cosαi sin βi

4v2
rρ2

i cos2 αi cos2 βi − 2v2
rρ2

i cos2 αi − v2
rρ2

i sin2 αi

cos2 βi
+ vrωr cosαi sin βi

4v2
rρi cos2 αi sin βi cosβi − 2v2

rρi sin2 αi sin βi

cos βi
+ vrωr sin αi sin βi

⎤⎥⎥⎦
�

(23)

If rank(OΣ) = 3, for some point x0, the system fulfills the
observability rank condition at this point, and is thus locally
weakly observable at this point [17].
Note by inspection, if vr = 0, OΣ will never be full rank

since the third column will be zero. Intuitively, the robot is
stationary and can never observe any change in the landmark
bearings and thus cannot observe depth. If vr �= 0 and ωr = 0
then (20) and (21) ensure that the observability rank condition
will hold as long as αi and βi are not both equal to zero. This
means that Σ will be locally weakly observable for all x with
αi �= 0 and βi �= 0. This also agrees with intuition, since if
the robot was moving directly towards the landmark, it would
not observe any change in bearing.
Finally, if both vr �= 0 and ωr �= 0 then (22) ensures that

the observability rank condition will hold for every x ∈ M
and thus Σ will be locally weakly observable. Intuitively,
this corresponds to the robot traveling on an arc, so that no
landmark will remain on the indistinguishable line.

C. The Estimator
The behavior of an estimate ẑ of z depends on the particular

estimator. Thus we consider an estimator of the form

dẑ = f(ẑ, vr, wr)dt + K(t) (dy(t) −H(G(t))ẑdt) (24)

The gain K(t) is given by

K(t) = P(t)H�(G(t))R−1(t) (25)

and P(t) is the solution to the following Riccati differential
equation

dP(t) =
[
A(t)P(t) + P(t)A�(t) + Q(t)

]
dt−

P(t)H�(G(t))R−1(t)H(G(t))P(t) (26)

where Q and R are positive-definite tuning matrices. For
completeness we state the following common assumption.

Assumption 2: The following Q(t) ≥ qI, R(t) ≥ rI
and P(t0) ≥ p0I are given for some q, r, p0 > 0 such
that ‖Q(t)‖ ≥ q and ‖R(t)‖ ≥ r. Moreover, Q(t) and
R(t) are chosen to be bounded by ‖Q(t)‖ ≤ q < ∞ and
‖R(t)‖ ≤ r < ∞ for all t. Also, we have E(t) ≤ e < ∞
with E(t) ≥ eI.

The analysis in this paper will consider the propagation of
the estimation error ζ(t) = z(t)− ẑ(t) for all t > t0 given an
initial estimation error ζ(t0) which we will assume belongs to
the set

‖ζ(t0)‖ ≤ b in the state space (27)

for some constant b < ∞. We assume initially that G̃(t) =
G for all t > t0. It is common to assume a full landmark
measurement vector for analysis [3], [11].

Note that in general, the continuous time estimator in this
section does not involve a prediction stage. However, by letting
R−1(t) = 0 over the time interval t ∈ [k0, k1] we can easily
allow for the absence of measurements over that interval.

D. On the Convergence of the Feature Estimator
We consider (for simplicity) the case where G̃(t) = G(t)

for all t. We assume an EKF-like algorithm of the form (24)
with Assumptions 1-2 holding. The error ζ = z− ẑ obeys

dζ = [(A(t)−K(t)) ζ + 	(z, ẑ, vr, wr)] dt +

G(t)
[

dvn

dwn

]
−K(t)E(t)dn(t)

dζ = [(A(t)−K(t)) ζ + 	(z, ẑ, vr, wr)] dt +

[G(t) −K(t)E(t)]

⎡⎣ [
dvn

dwn

]
dn(t)

⎤⎦ (28)

where Gi(t) is given by

‖Gi(t)‖ =

∥∥∥∥∥∥
⎡⎣ σvρi sin αi

cos βi
−σω

ρiσv cosαi sinβi 0
−σvρ

2
i cosαi cosβi 0

⎤⎦∥∥∥∥∥∥ = g < ∞

(29)
and G(t) =

[
G�

1 . . . G�
n

]�. Recall Lemma 1 bounds the
growth of the nonlinear perturbation term 	(z, ẑ, vr, wr). We
need the following assumption.
Assumption 3: The state covarianceP(t) is bounded by

0 < p ≤ P(t) ≤ p <∞ (30)

for all t > t0
Note that Assumption 3 is quite reasonable. In fact, the

lower bound follows from a general controllability argument.
We also conjecture based on the analysis in [18] that it is
possible to formally prove that Assumption 3 holds for all t,
given only that the control inputs ensure the state is observable,
e.g. vr �= 0 for all t, and ‖A(t)‖ is bounded.
Theorem 1: Consider (28) with an initial condition (27) and

G(t) = V(t) for all t. Suppose that Assumptions 1-2 hold. If

‖P−1(t)Q(t)P−1(t) + R−1(t)‖p > 4ap/p (31)

then the estimation error is bounded above with

E {‖ζ(t)‖2} ≤ max

{
n(r2g2 + ppe2)

2γr2p
,

p

p
‖ζ(t0)‖2

}
(32)

where

γ = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p− 4ap

p
(33)

and E {‖ζ(t)‖2} as t→∞ is bounded by n(r2g2+ppe2)

2γr2p .

3



Proof: Let B(t, ζ(t)) = ζ�(t)P−1(t)ζ(t) > 0 and note
that

dB =
[
∂B
∂t

+
∂B
∂ζ

(A(t) −K(t)) ζ +
∂B
∂ζ

	(z, ẑ, ·)
]

dt +

1
2
tr
(
hess(B)Ξ(t)Ξ�(t)

)
dt−

∂B
∂ζ

Ξ(t)

⎡⎣ [
dvn

dwn

]
dn(t)

⎤⎦ (34)

where Ξ(t) = [G(t) −K(t)E(t)] and where we have em-
ployed Itos differential formula. Evaluating the terms and re-
arranging leads to

dB =
[
ζ�

[
P−1(t)Q(t)P−1(t) + R−1(t)

]
ζ
]
dt +

2ζ�P−1(t)	(z, ẑ, vr, wr)dt +
1
2
tr
(
P−1(t)G(t)G�(t)

)
dt +

1
2
tr
(
P−1(t)K(t)K�(t)

)
dt−

2ζ�P−1(t)Ξ(t)

⎡⎣ [
dvn

dwn

]
dn(t)

⎤⎦
≤

[
−α‖ζ‖2 +

4a

p
‖ζ‖2 +

n(r2g2 + ppe2)
2γr2p

]
dt−

2ζ�P−1(t)Ξ(t)

⎡⎣ [
dvn

dwn

]
dn(t)

⎤⎦ (35)

where we have explicitly employed Lemma 1 and where

α = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖ (36)

Now noting that p−1‖ζ‖2 ≤ B(t, ζ(t)) ≤ p−1‖ζ‖2 and
using the Bellman-Gromwall lemma [19] we come to

B(t, ζ(t)) ≤ B(t0, ζ(t0)) exp (−γ(t− t0))−

2
∫ t

t0

ζ�(τ)P−1(τ)Ξ(τ)

⎡⎣ [
dvn(τ)
dwn(τ)

]
dn(τ)

⎤⎦+

n(r2g2 + ppe2)
2γr2p

−

n(r2g2 + ppe2)
2γr2p

exp (−γ(t− t0)) (37)

where γ =
(
αp− 4ap

p

)
with γ > 0 if and only if αp > 4ap

p .
Taking the expectation of (49) and rearranging gives

E {‖ζ(t)‖2} ≤ max

{
n(r2g2 + ppe2)

2γr2p
,

p

p
‖ζ(t0)‖2

}
(38)

for all t if γ > 0. The error E {‖ζ(t)‖2} as t→∞ is bounded
by n(r2g2+ppe2)

2γr2p . This completes the proof.

Importantly, we have provided conditions under which an
EKF-like algorithm will yield an exponentially bounded and
converging mean-square estimation error.

IV. NUMERICAL ANALYSIS
The proposed algorithm is now illustrated via simulation.

We compare the performance of the spherical robot-centric
SLAM algorithm against a global SLAM algorithm similar to
the one used in [13] in a simulated environment.
The state of the global SLAM algorithm takes the form g =

[xr yr zr φr b�1 . . . b�n ]� with bi = [x∗ir y∗ir z∗ir α∗i β∗i ρ∗i ]
�

for a single landmark i. The x∗ir , y∗ir and z∗ir state components
are the position of the robot in global coordinates when the
landmark i is first initialized (or observed). Here α∗i , β∗i and
ρ∗i are the αi, βi and ρi values relative to the robot’s position
when landmark i is first initialized, i.e. [x∗ir y∗ir z∗ir]

� and the
position of landmark i. The reason for this parametrization
[13] is that it enables us to do single step initialization of
the landmarks, which would be very difficult using a purely
Cartesian representation.
A typical map and robot trajectory is shown in Fig 1. In

5

0

5

5

0

5

1
0
1
2
3

y

x

z

Robot trajectory
Robot
Landmark

Fig. 1. A typical map layout and robot trajectory.

each simulation run, the landmarks are distributed randomly
in a square pattern along the x and y axes, and uniformly on
the z-axis. The robot moves along a randomly generated path
in the center of the environment.

A. Example Scenario
In this case, the robot can sense landmark i if and only if

αi(t) ∈ (−π/4, π/4) and βi(t) ∈ (−π/4, π/4). The process
noise is σv = 0.42, σω = 1.06 and the measurement noise
has standard deviation 0.0873 radians for both bearings. Each
simulation runs for 1500 time steps.
Since the robocentric algorithm does not estimate the robot’s

global position, we cannot compare the trajectories produced
by the two algorithms. Thus, for the global algorithm, we
generate a relative map by computing the estimated spherical
landmark position relative to the estimated robot pose. The
RMS errors are shown in Fig 2 over 1000 simulations. For
both algorithms, the errors converge to a steady value and
both perform well in terms of the relative map.
Note that Fig 2 does not illustrate the error in the robot pose

or its effect on the global map. In some simulations, both the
global map and the pose estimate were offset by a significant
amount. Fig 3 shows a birds-eye view of such a case and
highlights the flaws of world-centric mapping.
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Fig. 2. The RMS error for the relative α bearings, β bearings and inverse
distance ρ respectively.
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Fig. 3. This figure shows the global SLAM map and estimated robot
trajectory is rotated and displaced quite significantly. The error in the global
coordinates occurs despite, as shown in Fig 2, the fact that an accurate relative
map can be derived from the global state.

This distortion of the global map is caused by an unobserv-
able state in global SLAM, as was shown in [8].

V. A NOTE ON COMPLEXITY
When analyzing the computational complexity of a SLAM

algorithm, one critical factor is the size of the state. One of the
costliest operations in the EKF is the multiplication of large
matrices, which is typically O(m3) for m-by-m matrices.
This gives the spherical robot-centric algorithm a significant

speed boost over the global SLAM algorithm, since the size
of the state is effectively cut in half. This speed boost was
also notably observed in every simulation.

VI. CONCLUDING REMARKS
In this paper we proposed a computationally efficient robo-

centric mapping algorithm that can be implemented using
a linear measurement equation. We further highlighted the
problems caused by the unobservable state components in
traditional, world-centric SLAM, i.e. Fig 3. We have illustrated

(and suspect it is well known) that a relative map computed
using the global SLAM state vector can perform comparably
with a dedicated robocentric algorithm even if the actual global
map is quite inaccurate. Given that only the relative state
components are observable and the increased computational
cost in maintaining a global map, we question the utility in
doing so, and thus further motivate the work in this paper.
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Abstract – We re-examine the problem of global localiza-
tion of a robot using a rigorous Bayesian framework based
on the idea of random finite sets. Random sets allow us to
naturally develop a complete model of the underlying prob-
lem accounting for the statistics of missed detections and of
spurious/erroneously detected (potentially unmodeled) fea-
tures along with the statistical models of robot hypothesis
disappearance and appearance. In addition, no explicit data
association is required which alleviates one of the more diffi-
cult sub-problems. Following the derivation of the Bayesian
solution, we outline its first-order statistical moment approx-
imation, the so called probability hypothesis density filter.
We present a statistical estimation algorithm for the num-
ber of potential robot hypotheses consistent with the accu-
mulated evidence and we show how such an estimate can
be used to aid in re-localization of kidnapped robots. We
discuss the advantages of the random set approach and ex-
amine a number of illustrative simulations.

Keywords: Robot localization; multiple-hypothesis local-
ization; PHD filtering; random-set-based localization.

1 Introduction
The general approach to global localization (when not us-

ing GPS or artificial beacons such as bar codes and transpon-
ders) is to compare information (or features) extracted from
sensor readings with an a priori map associated with the
global reference frame. Each comparison carries some ev-
idence about where the robot may be, and the challenge is
then, as efficiently as possible, to find the correct pose, or a
number of poses, that are in some statistical sense the most
consistent with the accumulated evidence.

The approach proposed in this work most closely resem-
bles the multiple hypothesis localization algorithms such
as [1–3]. For brevity, we must point to the literature [4] for
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were supported by the Swedish Foundation for Strategic Research (SSF)
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‘CogX’. A.N. Bishop was also supported by NICTA. NICTA is funded by
the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence program.

information on the other common approaches; most notably
the Monte-Carlo (particle-filter type) algorithms [5, 6].

In the multiple-hypothesis technique [1–3], a set of Gaus-
sians is used to represent individual pose hypotheses. The
advantage of this is that a standard Kalman based pose
tracking module can be used to independently update each
hypothesis in a simple scheme commonly known as mul-
tiple hypothesis tracking (MHT). A further advantage of
using a set of Gaussians is that it enables us to explic-
itly reason about each hypothesis whereas a particle filter,
or a position probability grid, in principle requires you to
process a much larger number of particles/cells (and their
weights/probabilities). This is computationally challenging
and is often circumvented by performing thresholding on the
probabilities or clustering to form fewer hypotheses. Further
advantages of the MHT-based approaches is found in [2].

A disadvantage of the multi-hypothesis techniques is
that they inherently don’t solve some of the most diffi-
cult problems related to localization (albeit they do with
external algorithm components). In particular, the data-
association problem and the problem of estimating (in an
integrated/optimal fashion) a meaningful statistic regarding
the number of poses consistent with the accumulated ev-
idence and system models are not inherent. The second
problem is often not studied explicitly in most localiza-
tion algorithms1 but plays an important role in the local-
ization performance when false positive feature detections
occur and/or more general measurement/system models are
considered (such as in this paper). In such cases, the for-
mer data-association problem is further complicated and so-
called clutter-rejection must be incorporated.

Furthermore, the standard vector-based stochastic differ-
ential (or difference) equation framework is arguably not a
natural formulation for the multi-hypothesis tracking prob-
lem. Instead, in this paper we will explicitly exploit the
framework of random finite sets (RFS - a term made precise
later) and stochastic point processes [7]. A theoretically op-

1Some algorithms can potentially provide an ad-hoc estimate on the
number of consistent robot poses, e.g. by counting particle clusters or hy-
potheses above some weight. However, the framework discussed in this
paper provides such an estimate inherently and, in particular, it provides an
estimate of the mathematically expected number of hypotheses consistent
with the data.



timal, Bayesian filtering, framework can then be formulated
using the concept of finite set statistics (FISST) [8].

For computational reasons, Mahler [9] proposed a first-
oder moment approximation to the full Bayesian solution
and termed the first-moment, the probability hypothesis den-
sity (PHD). A generic sequential Monte Carlo implementa-
tion [10–12] has been proposed and accompanied by con-
vergence results [12–14]. Alternatively, an analytic solu-
tion to the PHD recursion was presented in [15] for prob-
lems involving linear Gaussian target dynamics, a Gaussian
birth model and linear Gaussian (partial) observations. It is
shown in [15] that when the initial prior intensity is a Gaus-
sian mixture, the posterior intensity at any subsequent time
step is also a Gaussian mixture. Furthermore, the Gaussian-
mixture PHD recursions can approximate the true posterior
intensity to any desired degree of accuracy [16].

See [7,8,11] for a comprehensive background on random
finite set-based estimation and the PHD filter.

1.1 Contribution
The PHD filter has primarily been examined in the context

of target tracking (with various sensors etc) [7]. However, a
recent paper [17] has examined the performance of the PHD
filter in solving the simultaneous localization and mapping
(SLAM) problem. The PHD filter-based SLAM implemen-
tation [17] was shown to outperform the base implementa-
tion of FastSLAM in a number of adverse environments. In
this paper, we re-examine the problem of global robot local-
ization using a rigorous Bayesian framework based on the
concept of random finite sets and the PHD filter.

Random sets allow us to naturally develop a com-
plete model of the underlying problem accounting for the
statistics of missed detections and the statistics of spuri-
ous/erroneously detected (potentially unmodeled) features.
In addition we incorporate the statistical models of robot
hypothesis disappearance (death) and appearance (typically
after kidnapping or error). No explicit data association
is required which alleviates one of the more difficult sub-
problems. Following the derivation of a complete and inte-
grated Bayesian solution, we outline its first-order statistical
moment approximation, i.e. the probability hypothesis den-
sity filter. We present a statistical estimation algorithm for
the expected number of potential robot hypotheses consis-
tent with the accumulated evidence and we show how such
an estimate can be used to aid in re-localization of kidnapped
robots. We then discuss the advantages of the random set
approach and examine a number of illustrative examples.

Our technique’s ability to handle missed detections, false
alarms (false feature detections) and to associate an entire
set of measurement hypotheses to a set of robot pose hy-
potheses within an integrated framework is significant. The
stochastic vector realizations of robot localization (including
the traditional multiple hypothesis techniques [1–4]) have to
deal with such problems explicitly and outside any Bayes
optimal (or approximated) filter. To the best of the authors’
knowledge, this paper presents the first complete Bayesian
localization solution involving the concept of random finite

sets and details the first implementation of the PHD filter for
global robot localization.

2 Conceptual Model
The idea behind the set-based, multiple hypothesis gener-

ation and tracking technique presented in this paper is illus-
trated in Figure 1.

Figure 1: Multiple robot hypotheses are generated by a sin-
gle measurement of some features in the environment given
a priori knowledge that such features appear in a number of
places in the global map.

In this illustration we see a situation where the true po-
sition of the robot is given by the solid square in the mid-
dle of the room in the figure. A door is detected in front
and slightly to the right of the robot. Matching this feature
to the map, consisting of four doors in one room, results
in eight potential robot poses. These eight poses give rise
to eight hypotheses regarding the pose of the robot. In the
formulation outlined in this work, each hypothesis gener-
ated by a single feature detection is input to the estimation
algorithm as an additional measurement. The grouping of
such measurement hypotheses are modeled as random sets.
In addition, the state of the robot’s knowledge is modeled
as a random set of robot pose hypotheses. The idea is that
by making more observations of features in the environment
and matching these to the existing robot pose hypotheses,
those pose hypotheses which are not supported by the mea-
surement set, i.e. the measurement hypotheses, can be elim-
inated (in a manner to be made precise) from the robot pose
state set.

2.1 The Robot Set State Model
The true pose of a single robot is represented by the ran-

dom variable Rt measured on the space E ⊆ Rnr with re-
alization rt. The number of robot pose hypotheses is time-
varying and given by Nt at time t. We denote the individual
pose hypotheses by Xi

t. The set of state pose hypotheses at
time t is denoted by Xt.

The true state of a single robot is assumed to obey

Rt = ψt (rt−1) + Wt (1)

where the input {Wt} is a sequence of independent Gaus-
sian random variables that account for control input errors



and unmodeled dynamics etc. More general, non-Gaussian,
error inputs can be accommodated in the general framework
outlined in this paper.

Note that the transition density for the individual robot
hypotheses Xi

t ∈ Xt is now given by

f i
t|t−1(x

i
t|xi

t−1) = N (xi
t; ψt

(
xi

t−1

)
,Σt) (2)

whereN (·; m,P) denotes a Gaussian density function with
mean m and covariance P and Σt is the covariance of Wt.

The state set transition model in this paper incorporates
statistical models of hypothesis appearance (birth) and hy-
pothesis disappearance (death). New hypotheses might ap-
pear when the robot is kidnapped or in the case of localiza-
tion error.

The probability that any hypothesis i continues to exist at
time t given that it exists at t − 1 is given by the survival
probability pi

S . Now it follows that

Xt =

⎡⎣ ⋃
Xi

t−1∈Xt−1

St|t−1(Xi
t−1)

⎤⎦ ∪ btBt (3)

where bt ∈ {0, 1} and btBt is defined to be Bt when bt = 1
or ∅ when bt = 0. Also,

St|t−1(Xi
t−1) =

{
Xi

t ∩ E with probability pi
S

∅ with probability 1− pi
S

(4)

where the evolution of Xi
t−1 follows (2). If we neglect Bt,

then it is clear that we are modeling the motion and death
of a number of robot hypotheses in (3). That is, if bt =
0 then our set transition model accounts only for random
hypothesis disappearance.

The input bt ∈ {0, 1} acts as a kidnapped robot switch
which is set to 1 based on the outcome of kidnapped robot
test outlined later in the paper. If bt = 1 then we permit
a statistical model of the new hypotheses, i.e. the possible
locations of the kidnapped robot. The new hypotheses born
at time t are characterized by a Poisson random finite set Bt

with intensity

βt =
Jβ

t∑
i=1

w
(β,i)
t N (x; m(β,i)

t ,P(β,i)
t ) (5)

which can approximate any arbitrary intensity function as
closely as desired in the sense of the L1 error [18]. The test
for switching bt ∈ {0, 1} will be detailed later in the paper.

Using finite set statistics (FISST), we can find an explicit
expression for the random set state transition density2. Now
the multiple-hypothesis transition density ft|t−1(Xt|Xt−1)
under the model (3) and with bt = 1 is given by

ft|t−1(Xt|Xt−1) =
∏

x∈Xt

βt ·
∏

xi
t∈Xt−1

(1− pi
S) ·

e
−

(∑ J
β
t

i=1 w
(β,i)
t

)
·
∑

θ

∏
i:θ(i)>0

pi
Sft|t−1(x

θ(i)
t |xi

t−1)
βt(1− pi

S)
(6)

2In the case of random finite sets we make no distinction between the
random sets and their realizations.

and with bt = 0 it is given by

ft|t−1(Xt|Xt−1) =
∏

xi
t∈Xt−1

(1− pi
S) ·

∑
θ

∏
i:θ(i)>0

pi
Sft|t−1(x

θ(i)
t |xi

t−1)
βt(1− pi

S)
(7)

where the summation is taken over all associations θ :
{1, . . . , Nt−1} → {1, . . . , Nt}; see [7]. To the best of
our knowledge, this is the first complete set-based transition
density function proposed for global robot localization.

2.2 The Measurement Set Model
We consider ns information sources, e.g. sensors on the

robot. Each information source j generates an output

Z(j,i)
t = ζj

t

(
rt,Fφj(i)

)
+ Vj

t , for i = 1, . . . ,M j
t (8)

in the observation space M ⊆ Rnzj where typically nzj
≤

nr. Note that certain measurement spaces, such as bear-
ing measurements, can be approximated by subspaces of the
real line. The input Fφ(i) ∈ G is some feature in the global

environment model G and M j
t is the number of measure-

ment hypotheses generated by the jth source given the true
robot pose rt and G. The function φj : {1, . . . ,M j

t } →
{1, . . . ,number of features} relates the index of the gen-
erated measurement hypotheses to the set of features in the
global model G3. The input {Vj

t} is a sequence of indepen-
dent Gaussian random variables. Of course, more general
noise models can also be considered in this framework.

The measurement likelihood function is

g
(j,i)
t (z(j,i)

t |rt,Fφj(i)) = N (z(j,i)
t ; ζj

t

(
rt,Fφj(i)

)
,Λj

t ) (9)

where Λj
t is the covariance of Vj

t .
The considered measurement model incorporates mea-

surements of the true robot pose (or nonlinear functions of
such) and false measurement hypotheses generated by am-
biguities (e.g. multiple occurrences of particular features) in
the environment. In addition, we account for spurious false
(clutter) measurements which are caused by false detections
(e.g. of unmodeled features in the environment or simply
detection/recognition errors). Finally, we also consider the
possibility of missed measurements.

The probability that some modeled feature Fφj(i) is ac-
tually detected by sensor j is given by the detection prob-
ability pj

D, i.e. the probability of missing a measurement
is 1 − pj

D. Spurious false (clutter) measurements at sensor
j are approximated by a Poisson random finite set Cj

t with
intensity

κj
t = γj

tU(G) (10)

3For example, the robot might, using sensor j, measure the bearing to
some detected feature, e.g. a door, in the environment. This single mea-
surement constrains the robot position to a number of rays associated with
this and similar features, e.g. other doors, in the environment. Each con-
straint is treated as a measurement hypothesis and the total number of such
hypotheses is Mj

t .



where U(G) denotes a uniform density function over the en-
vironment. The clutter corresponds to the spurious set of
measurement hypotheses generated by erroneous detections
or the detection of features not in the environment model.
The detection probability pj

D can be a function of the envi-
ronment model G and the true robot pose. Thus, we can use
pj

D to model the sensor geometry etc [19].
Now it follows that the set of measurement hypotheses at

sensor j is given by

Zj
t =

⎡⎣ ⋃
i=1,...,hj

Dt(Rt,Fφj(i))

⎤⎦ ∪ Cj
t (11)

where

Dt(Rt,Fφj(i)) =

{
{Z(j,i)

t }hj

i=1 with prob. pj
D

∅ with prob. 1− pj
D

(12)

and where Z(j,i)
t is modeled by (8) and (9) with g(j,i)

t . Now
the entire set of evidence at time t is given by

Zt =
ns⋃
i=1

{Zi
t, i} (13)

where the union is disjoint and Mt =
∑ns

i=1M
i
t . The mea-

surement likelihood function corresponding to the single-
sensor model (11) is given by

gj
t (Z

j
t |Xt) = e−γt ·

∏
z∈Zj

t

κt ·
∏
z∈Zj

t

(1− pD) ·

∑
θj

∏
i:θj(i)>0

pDgt(zt(θj(i))|xi
t)

κt(1− pD)
(14)

where the summation is taken over all associations θj :
{1, . . . , Nt} → {1, . . . ,M j

t } and where zt(θj(i)) is an el-
ement in Zj

t marked by the function θj ; see [7]. The multi-
sensor likelihood function gt(Zt|Xt) is then given by

gt(Zt|Xt) =
ns∏

j=1

gj
t (Z

j
t |Xt) (15)

under the assumptions adopted in (11). To the best of the au-
thor’s knowledge, this measurement model is the most gen-
eral considered in the literature on global robot localization.

3 A General Bayesian Localization
Algorithm

The aim of global localization is to use the measured data
Zt and some dynamical constraint on the random robot pose
Rt to estimate the set Xt of potential robot positions in
the environment. If |Xt| = 1 then the robot is said to be
uniquely localized and it is of course the hope that in such
cases X1

t ≈ Rt for the single estimate X1
t ∈ Xt. The notion

of a “set” of information points Zt and a “set” of hypothe-
ses Xt is critical as it allows us to side-step the problem of

associating measurement points to a priori hypotheses in ad-
dition to other bookkeeping localization tasks.

Let pt(Xt|Z1:t) denote the multiple hypothesis posterior
density. Then, the optimal Bayes localization filter propa-
gates the posterior in time via the recursion

pt|t−1(Xt|Z1:t−1) =∫
ft|t−1(Xt|X)pt−1(X|Z1:t−1) μS(dX) (16)

pt(Xt|Z1:t) =
gt(Zt|Xt)pt|t−1(Xt|Z1:t−1)∫

gt(Zt|Xt)pt|t−1(Xt|Z1:t−1) μS(dX)
(17)

where μS is an appropriate reference measure on the collec-
tion of finite sets of E . FISST is the first systematic approach
to multi-object filtering that uses random finite sets in the
Bayesian framework presented above [7, 15]. The general
recursive Bayesian filter based on density functions defined
for random finite set models suffers from a severe compu-
tational requirement and only a few implementations have
been studied (using Monte-Carlo methods and for the prob-
lem of multi-sensor/multi-target tracking) [7, 11, 20, 21].

4 A First-Order Moment Approxi-
mation: The PHD Filter

The probability hypothesis density filter is an approxi-
mation developed to alleviate the computational intractabil-
ity of the general Bayes filter. The PHD filter propagates
the posterior intensity, a first-order statistical moment of the
posterior state.

Assumption 1. The predicted multi-target random finite set
governed by pt|t−1 is Poisson.

For a random finite set X on E with probability distribu-
tion P, its first-order moment is a non-negative function v
on E , called the intensity, such that for each region A ⊆ E∫

|X ∩ A| P(dX) =
∫
A
v(x) dx (18)

where

E[N ] =
∫
E
v(x) dx (19)

and E[N ] denotes the expected number of elements in X.
The local maxima of v are points in X with the highest local
concentration of expected number of elements, and hence
can be used to generate estimates for the elements of X.

Let vt and vt|t−1 denote the intensities associated with the
multiple target posterior density pt and the multiple target
predicted density pt|t−1. The posterior intensity is vt(x) =
vns

t (x) where

vk
t (x) = (1− pk

D)vk−1
t (x) +∑

z∈Zk
t

pk
Dg

(k,′)
t (z|x)vk−1

t (x)

κk
t + pk

D

∫
g
(k,′)
t (z|x′)vk−1

t (x′) dx′
(20)



and v0
t (x) = vt|t−1(x). The PHD predictor is given by

vt|t−1(x) = btβt + p′S

∫
ft|t−1(x|x′)vt−1(x′) dx′ (21)

Following [7] we note that the PHD filter (similarly to the
full recursive multi-target Bayesian estimator), admits ex-
plicit statistical models for missed detections, false alarms
and the geometry of the sensor’s field of view. In addition,
the PHD filter admits explicit statistical models of robot hy-
pothesis disappearance (death) and appearance (due to, for
example, kidnapping). In addition, at every step the PHD fil-
ter computes an estimate of the number of robot hypotheses
consistent with the data up until this step.

The last property aids in clutter-rejection and will be used
to derive a probabilistically justified test for kidnapping.

5 Multi-Sensor and Multi-Hypothesis
Gaussian-Sum PHD Filter

In this section we present an implementation of the PHD
filer based on a mixture of Gaussians algorithm.

We firstly suppose that each hypothesis is constrained by
a linear model of the form

Xi
t = Φtxi

t−1 + Wt (22)

Also, the output of information source (sensor) j obeys

Z(j,i)
t = Γj

trt + Vj
t (23)

In addition, we make a reasonable assumption that the sur-
vival probability pi

S is independent of the individual state
hypothesis, i.e. pi

S = pS . Under the above assumptions the
following Gaussian-Mixture PHD filter (GM-PHD) is an ex-
act implementation of the conceptual PHD filter.

Proposition 1 ( [15]). Suppose the modeling assumptions
presented hold and that the posterior intensity at time t− 1
is a Gaussian mixture of the form

vt−1(x) =
Jt−1∑
i=1

wi
t−1N (x; mi

t−1,P
i
t−1) (24)

Then, the predicted intensity at time t is given by

vt|t−1(x) = βt +pS

Jt−1∑
i=1

wi
t−1N (x; mi

t|t−1,P
i
t|t−1) (25)

where
mi

t|t−1 = Φtmi
t−1 (26)

Pi
t|t−1 = Σt + ΦtPi

t−1Φ
�
t (27)

and is also a Gaussian mixture.

Proposition 2 (Adapted from [15]). Suppose the modeling
assumptions presented hold and that the predicted intensity
at time t is a Gaussian mixture of the form

vt|t−1(x) =
Jt|t−1∑
i=1

wi
t|t−1N (x; mi

t|t−1,P
i
t|t−1) (28)

Then, the posterior intensity at t is vt(x) = vns
t (x) where

vk
t (x) = (1− pD)vk−1

t (x) +∑
z∈Zk

t

Jt|t−1∑
i=1

w
(i,k)
t|t (z)N (x; m(i,k)

t|t (z),P(i,k)
t|t ) (29)

=
Jk

t∑
i=1

w
(i,k)
t N (x; m(i,k)

t ,P(i,k)
t ) (30)

and v0
t (x) = vt|t−1(x) and where

w
(i,k)
t|t (z) =

pDw
(i,k−1)
t q

(i,k)
t (z)

κt + pD

∑Jk
t|t−1

�=1 w
(�,k−1)
t q

(�,k)
t (z)

(31)

q
(i,k)
t (z) = N (z;Γtm

(i,k−1)
t ,Λt + ΓtP

(i,k−1)
t Γ�

t )

mi
t|t(z) = m(i,k−1)

t + K(i,k)
t (z− Γtm

(i,k−1)
t ) (32)

K(i,k)
t = P(i,k−1)

t Γ�
t (Λt + ΓtP

(i,k−1)
t Γ�

t )−1

Pi
t|t = (I−K(i,k)

t Γt)P
(i,k−1)
t (33)

and vt(x) is also a Gaussian mixture.

The preceding propositions show how the Gaussian com-
ponents of the posterior intensity are analytically propagated
in time (for the linear Gaussian measurement and hypothesis
dynamic model4) [15].

5.1 Accounting for Nonlinear Models
Instead of (22) and (23) we know each state pose hypoth-

esis Xi
t ∈ Xt is constrained by the transition density

f i
t|t−1(x

i
t|xi

t−1) = N (xi
t; ψt

(
xi

t−1

)
,Σt) (34)

and each measurement hypothesis likelihood function is

g
(j,i)
t (z(j,i)

t |rt,Fφj(i)) = N (z(j,i)
t ; ζj

t

(
rt,Fφj(i)

)
,Λj

t ) (35)

It then follows that the transition density for the individual
hypotheses is now approximately given by

f i
t|t−1(x

i
t|xi

t−1) = N (xi
t; Φtxi

t−1,Σt) (36)

where Σt is the covariance Wt and now

Φt =
∂ψt (xt−1)
∂xt−1

∣∣∣∣
xt−1=mi

t−1

(37)

In addition, the measurement likelihood functions can be ap-
proximated by

gj
t (z

j
t |xt) = N (zj

t ; Γj
txt,Λ

j
t ) (38)

where

Γj
t =

∂ζj
t (xt,0)
∂xt

∣∣∣∣∣
xt=mi

t|t−1

(39)

Now plugging the Jacobians Φj
t and Γj

t into the previously
outlined GM-PHD filter (covariance formulas) leads to an
approximation in the spirit of the extended Kalman filter5.

4In order to be computationally feasible the authors of [15] proposed a
simple pruning and merging strategy.

5In [15] an unscented extension of the GM-PHD filter is also outlined
in a similar manner.



5.2 The Expected Number of Hypotheses
The predicted number of hypotheses is given by

E[Nt|t−1] = pSE[Nt] + bt

Jβ
t∑

i=1

w
(β,i)
t (40)

while the updated, expected, number of hypotheses is given
by E[Nt] = E[Nns

t ] where

E[Nk
t ] = (1− pk

D)E[Nk−1
t ] +

∑
z∈Zk

t

Jt|t−1∑
i=1

w
(i,k)
t|t (z) (41)

and E[N0
t ] = E[Nt|t−1]. Note that while some other ap-

proaches can potentially provide an estimate on the number
of consistent robot poses, e.g. by counting particle clusters
or hypotheses above some weight, the PHD framework in-
herently provides a statistically relevant estimate of the ex-
pected number of hypotheses consistent with the data.

6 Recovery from Localization Error
and Kidnapping

The kidnapped robot switch bt ∈ {0, 1} allows us to
switch a statistical model of new hypothesis appearance into
the state hypothesis set transition model when we suspect
the need to permit new hypotheses. The switch is given by

bt =
{

0 if E[Nt] ≥ τk
1 if E[Nt] < τk

(42)

where τk << 1 is a kidnapping threshold on the expected
number of state pose hypotheses. The idea behind the kid-
napping switch is that if the expected number of hypotheses
falls below some threshold (typically << 1) then the robot
has either been kidnapped or the localization algorithm has
encountered an error. In either case, we are justified in sus-
pecting that the new hypotheses are required (assuming we
know that the true robot is still located in the environment).

The spatial distribution of the Poisson random finite birth
set Bt is a sum of Gaussian components βt and can be tai-
lored to account for any a priori information available or can
be used to approximate a uniform density over the environ-
ment model (as closely as desired [18]).

7 Experiments
We evaluated the localization algorithm using both simu-

lated and real feature measurements6. In both cases, we use
a real robot trajectory7. The floor plan with corner and door
features is shown in Figure 2.

6The experiments conducted were designed to highlight a number ad-
vantages of the PHD filter framework such as providing an estimate on the
expected number of robot poses and kidnap detection using real data.

7The robot employed in the experiments is a Pioneer P3X.
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Figure 2: The floorplan at the Center for Autonomous Sys-
tems (CAS) at KTH with corner and door features high-
lighted. Two real robot trajectories are shown with start po-
sitions (S1 and S2) and end positions (E1 and E2).

7.1 Example 1
As previously stated, one particular advantage of the PHD

framework is the inherent estimation of the number of robot
poses consistent with the accumulated evidence and the sys-
tem models. Firstly, we illustrate this behavior for a robot
traveling along the first trajectory (S1→E1) shown in Fig-
ure 2 with real door features extracted as in [2]. In this case,
we would expect that the expected number of hypotheses
should not approach one for some time due to the symmetry
in the features. The sequence of localization is illustrated in
Figure 3 and verifies our expectations.

The estimated expected number of hypotheses for an in-
dividual run is depicted in Figure 4 along with the maximum
Gaussian component weight scaled by this expected value.

From Figure 3 and 4 we see that the robot is uniquely
localized just prior to E1 (where the expected number of
hypotheses goes to ≈ 1). We purposefully used only sparse
door features to create a symmetry along trajectory 1.

7.2 Example 2
In this example we highlight the re-localization capabil-

ities of the proposed algorithm. The robot initially travels
along trajectory 2 and detects only door features. At posi-
tion E2 the robot is then kidnapped and placed at position
S1. We expect to see the expected number of hypotheses
drop to zero and the re-localization sequence should be ini-
tiated. The estimation of the expected number of hypotheses
is shown in Figure 5 and verifies our expectations.

The robot is uniquely localized relatively early during the
transversal of trajectory 2 (as clearly seen in Figure 5). This
is because of the relatively little symmetry in the lower half
of the environment model. Then following the kidnapping,
we see the re-localization sequence proceed similarly to the
initial localization sequence examined in Example 1. The
robot is then uniquely re-localized just prior to E1.
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Figure 3: The expected number of hypotheses displayed in
the title is rounded to the nearest integer value. The number
of displayed hypotheses is the number of Gaussian compo-
nents with a weight above 0.5. The time step between itera-
tions is 100ms. The bearings to the measured features in the
map are drawn at the true robot pose.
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Figure 4: The expected number of hypotheses is displayed
on the left for the duration of the experiment. The maximum
Gaussian component weight scaled by the expected number
of hypotheses is shown on the scale on the right.

We used only doors again in this example to highlight
that the algorithm works on real data and to highlight again
the estimation of the expected number of hypotheses (which
should be greater than one initially and immediately follow-
ing the first feature detection after the kidnapping detection).
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The robot is kidnapped and
the expected number of
hypotheses drops to zero.

After the robot is kidnapped
the re−localization sequence
follows closely the localization

sequence depicted in Example 1

Figure 5: The expected number of hypotheses is displayed
on the scale on the left. The maximum Gaussian compo-
nent weight scaled by the expected number of hypotheses
is shown on the scale on the right. The robot is kidnapped
around iteration 940 from position E2 and placed at S1.

7.3 Example 3
This example is similar to Example 2 except we now use

simulated door and corner features. We expect the robot
to be localized much quicker (both initially and following
kidnapping) as a result of the reduced symmetry.
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Robot Kidnapped 
from E2 to S1

The Robot is Quickly
Re−Localized

Figure 6: The expected number of hypotheses is displayed
on the scale on the left. The maximum Gaussian compo-
nent weight scaled by the expected number of hypotheses is
shown on the scale on the right. The robot is kidnapped at
some point from position E2 and placed at position S1.

Note that following re-localization, the robot follows the
remainder of trajectory 1 as in the previous example (ex-
cept the number of hypotheses is fewer (indeed the robot is
uniquely localized) as a result of the extra corner features).

The speed at which we can detect a localization error (or
robot kidnapping) depends on the chosen model parameters.
We can trade robustness due to missed/false detections for
an increased speed of error recovery (kidnapped detection).
This trade off is inherent since in a single iteration, for ex-



ample, a kidnapped robot and a robot missing some true de-
tections while simultaneously detecting some false positives
are indistinguishable.

8 Conclusion
The problem of robot localization is certainly not

new. However, a true recursive Bayesian solution which
eliminates the data-association problem and incorporates
missed/false positive detections and hypothesis birth and
death etc has not been examined previously in the context
of random finite sets. We have outlined the first-order mo-
ment approximation of the integrated Bayesian solution (i.e.
the PHD filter) for a general class of localization problems.
The algorithm provided in this paper is based on rigorous
statistical analysis of random finite sets and accommodates
a very general measurement and robot motion model in an
integrated framework. We have presented experimental re-
sults using both real and simulated data to illustrate some of
the fundamental advantages of the integrated approach.
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Distributed Control of Triangular Formations with
Angle-Only Constraints

Meysam Basiri, Adrian N. Bishop and Patric Jensfelt

Abstract—This paper considers the coupled formation control
of three mobile agents moving in the plane. Each agent has only
local inter-agent bearing knowledge and is required to maintain
a specified angular separation relative to both neighbor agents.
Assuming the desired angular separation of each agent relative
to the group is feasible, then a triangle is generated. The control
law is distributed and accordingly each agent can determine their
own control law using only the locally measured bearings. A
convergence result is established in this paper which guarantees
global asymptotic convergence of the formation to the desired
formation shape.

I. INTRODUCTION

This paper presents a distributed control system for tri-
angular formation control based only on local bearing mea-
surements and relative angular constraints. The formations
considered are characterized entirely by the interior angles
subtended at each agent by two neighbor agents. The angle-
based formation control problem introduced in this paper is
a novel contribution in the field of multi-agent dynamical
systems and the control law proposed is provably globally
asymptotically stabilizing.

Distributed control of multi-agent formations has been ex-
plored extensively in different settings. For example, consen-
sus and flocking algorithms lead to formation-like steady-
state structures of multi-agent systems [1]–[8]. Similarly, so-
called aggregation and swarm control, which typically involves
potential functions [9], is also common in the robotics and
control literature [10]–[14]. A number of formation control
applications have been considered [15]–[20] which typically
involve formations of uninhabited aerial or underwater vehi-
cles or formations of satellites etc. The problem considered
in this paper follows closely the ideology put forth in [11],
[21]–[24]. Specifically we are concerned with the formation,
and subsequent maintenance, of specific inter-agent geometric
relationships using distributed algorithms. The majority of
existing algorithms consider only inter-agent distance mea-
sures. We differ from this in a novel way, by considering
only inter-agent bearing measures taken in local coordinates,
i.e. agents do not share a common heading. Our bearing-
only formation control problem is motivated by the problem
of optimal sensor arrangement for localization [1], [2] where
the relative configurations are typically given in terms of the
angular geometry.

The authors are with the Centre for Autonomous Systems (CAS) at the
Royal Institute of Technology (KTH), Stockholm Sweden. This work was
supported by the Swedish Foundation for Strategic Research (SSF) through
CAS and also via the EU FP7 project “CogX”.

There are two fundamental problems which need address-
ing. Firstly, the number and characteristics of the particular
constraints required has to be established. Obviously, defining
a complete distance constraint graph between a group of agents
will suffice in defining a unique formation. However, defining
a certain (well-chosen) subset of these distance constraints
can often (generically) define a unique formation, e.g. see
[21], [25]–[27]. Directed constraints can also be considered,
where some agents are tasked at maintaining a given distance
from another agent while the converse is not true, e.g. see
[26], [27]. Relative angular constraints can also be considered
[28]. Establishing the constraint leads to the second problem
of formation control, i.e. the design of control laws. The
control laws can either be distributed or centralized. Often,
distributed control lends itself naturally to the multi-agent
formation control problem and it is this form of control which
is considered in this paper. A distributed law for formation
control is implemented by individual agents in the formation.
Each agent attempts to achieve (and maintain) the desired
relevant constraints placed on it’s own position but does not
consider the constraints of any other agents (when planning
it’s own motion control).

The contribution of this paper is the development of a
distributed law for angular constrained formation control of
a multi-agent system taking only relative bearing measure-
ments. A large literature exists on bearing-only state estimation
and localization [29]–[31] making the angle-based formation
control problem particularly appealing. However, despite this
fact, angle-based formation control is not commonly addressed
in the literature; see [32], [33]. Instead, a large literature in
both robotics and control focuses on distance-based forma-
tion control and potential-function-based control laws. In this
paper, we introduce an angular constrained formation control
problem for a group of agents tasked at maintaining a specified
triangular formation. The control law introduced in this paper
is globally asymptotically stabilizing given any initial agent
configuration (assuming no agents are collocated initially). No
similar results on provably stable angle-only formation control
exist in the literature.

The paper is organized as follows. In Section II, the trian-
gular formation control problem is introduced along with the
distributed control law proposed in this paper. Subsequently,
the multi-agent system evolution is examined and global
stability of the desired formation shape is proved. In Section III
a number of illustrative examples are given. Some discussion
points are covered in Section IV and a conclusion is given in
Section V.
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II. BEARING-ONLY TRIANGULAR FORMATION CONTROL

Consider a group of n = 3 agents in R2 which interact via
an undirected topology G = {V , E} with V = {1, 2, 3} and
E = V × V . The position of each agent is

pi = [xi yi]T ∈ R2 (1)

where xi and yi denote agent i’s position in the x and y
directions respectively. The neighbor set N i ⊂ V denotes the
set of agents connected to agent i by a single (undirected)
edge. In this case Ni = {(i+ 1), (i− 1)} (modulo n).

Importantly, note that agents do not share a common head-
ing, i.e. they are not equipped with a compass of any kind.
Agent i measures only the bearing φij ∈ [−π, π), ∀j ∈ Ni

positive (negative) counter-clockwise (clockwise) from their
local xi-direction to agent j. Let αi denote the angle subtended
at agent i by the two agents in Ni. Then, the formation
shape (not scale) is completely characterized by α i, ∀i ∈ V .
Introduce the following angle

ϑi = |φi(i+1) − φi(i−1)| ∈ [0, 2π) (2)

which is the angle subtended at agent i by agents i + 1 and
i−1 which is measured positive from the min(φi(i+1), φi(i−1))
to max(φi(i+1), φi(i−1)) in agent i’s local coordinate frame.
Then, mathematically, the interior αi can be given by

αi =
{
ϑi if ϑi ≤ π
2π − ϑi otherwise (3)

with αi ∈ [0, π]. Note the difference between αi = 0 and
αi = π implies agent i can ascertain whether or not it is in
between agents i+1 and i−1 with all three collinear. Tacitly,
it can be assumed that αi is measured by agent i. The inter-
agent range has not been considered and plays no part in the
measurement of αi or the control law to be derived.

Define the desired steady-state angles α∗i ∈ [0, π], ∀i ∈ V .
The α∗i then completely characterize the shape (not scale)
of the desired triangle formation. The following standing
assumptions are adopted to hold through Sections II and III.

Assumption 1. The desired (i.e. control objective) interior
angular separations α∗i , obey α∗1 + α∗2 + α∗3 = π. The case
where α∗i = 0, α∗j �= 0 and α∗k = π − α∗j is excluded.

Assumption 2. The initial agent positions pi(0) are non-
coincident, i.e. pi(0) �= pj(0), ∀i �= j.

Assumption 1 ensures the desired steady-state triangle is
well-defined and the set of control objectives are simulta-
neously feasible. The case where α∗i = 0, α∗j �= 0 and
α∗k = π−α∗j would place agent i infinitely far from the other
two agents and this case will be discussed separately later. The
considered problem is now summarized.

Problem (Angle-Only Triangle Control). Design a distributed
control law for agent i that steers the measured angle α i to α∗i
given any initial triangle formation. Technically, as time t→∞
then we want αi → α∗i exponentially fast given any initial
configuration. Moreover, we want α i to be well-defined for
the entire motion of the formation, i.e. no two agent positions
should coincide during the formation motion.

This problem is novel since the controller uses only bearing
measurements taken by individual agents in local coordinates
and we are given only inter-agent angle constraints. Agents
do not share information and agent i does not consider the
constraints of any other agent when executing its own control
law.

A. The Proposed Control Law

The motion of agent i is governed by

ṗi = vi

[
cosβi

sinβi

]
(4)

where both vi and βi are control inputs to be determined. The
heading βi is defined positive (negative) counter-clockwise
(clockwise) from agent i’s local xi-direction. The control law
which determines vi and βi is truly distributed and determined
solely by α∗i and the measured angle αi subtended at agent i
by two agents j ∈ Ni. The speed control input of agent i is
defined as follows,

vi = (α∗i − αi)k (5)

where k > 0 is a constant (which in this paper is taken to be
k = 1). The heading of agent i is defined along the bisection
of αi ∈ [0, π] and toward the interior of αi so that

βi =
{

αi

2 + min(φi(i+1), φi(i−1)), if ϑi ≤ π
αi

2 + max(φi(i+1), φi(i−1)), if ϑi > π
(6)

where ϑi is given by (2). Actually, it is easier to visualize the
heading of agent i then to mathematically define it. Visually,
the heading of agent i is simply toward the interior of α i and
specifically along the bisection of αi. Of course, the speed
of agent i might be negative. By definition, if α i = π then
the bisection is well defined by αi

2 + min(φi(i+1), φi(i−1)). If
αi = 0 then the bisection is also well defined.

The control laws (5) and (6) imply that if α∗i > αi, so that
the angular separation subtended at agent i is too small, then
vi is positive and the agent moves toward the interior of and
along the bisection of αi. Clearly, the description of agent i’s
movement is coupled to the movements of agents (i+ 1) and
(i− 1).

B. Stability Analysis for the Proposed Control Law

The range rij = rji = ‖pi−pj‖ will be useful in analyzing
the evolution of the multi-agent system but is not included in
the implementation of the controller.

In addition to the formation stability results, we will show
later that if rij = rji > 0 at some time t0, for all i, j then
it remains strictly positive for all t ≥ t0, i.e. we prove that
collisions are avoided naturally by our formation control law
and thus αi is well-defined for all time.

Consider agent i with vi = α∗i −αi and heading βi defined
as before (6) and note that Ni = {(i+1), (i−1)}. Obviously,
agent i moves with a speed of α∗i − αi and with a heading
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along the bisection of αi. This (directly) affects how α̇i±1

evolves. If agents i+ 1 and i− 1 are static, then

α̇i+1 = − vi

ri(i+1)
sin(

αi

2
)

= − 1
ri(i+1)

sin(
αi

2
)(α∗i − αi) (7)

using the formula for the angular velocity in terms of the
cross-radial component of the velocity of agent i. The sign is
negative since if αi increases, i.e. if (α∗i −αi) > 0, then αi+1

decreases. Similarly

α̇i−1 = − 1
ri(i−1)

sin(
αi

2
)(α∗i − αi) (8)

In addition, α̇i is affected directly by α∗i − αi. Note that∑
i α̇i = 0. Thus, when agents i + 1 and i − 1 are static we

have

α̇i =
(α∗i − αi)
ri(i+1)

sin(
αi

2
) +

(α∗i − αi)
ri(i−1)

sin(
αi

2
)

=
ri(i+1) + ri(i−1)

ri(i+1)ri(i−1)
sin(

αi

2
)(α∗i − αi)

=
sin(αi+1) + sin(αi−1)
ri(i+1) sin(αi+1)

sin(
αi

2
)(α∗i − αi)

=
sin(αi+1) + sin(αi−1)
ri(i−1) sin(αi−1)

sin(
αi

2
)(α∗i − αi) (9)

where the last three lines of (9) are equivalent via the sine
rule. Now for future notational brevity let

fi(i+1) =
1

ri(i+1)
sin(

αi+1

2
) (10)

and let

gi =
ri(i+1) + ri(i−1)

ri(i+1)ri(i−1)
sin(

αi

2
) (11)

where we note gi ≥ 0 and fij ≥ 0 for all i, j ∈ {1, 2, 3} when
αi ∈ [0, π], ∀i. Now, assuming all agents move with a motion
governed by their individual control laws we have

α̇i = gi(α∗i−αi)−fi(i+1)(α∗i+1−αi+1)−fi(i−1)(α∗i−1−αi−1)
(12)

with αi ∈ [0, π]. The system of differential equations

α̇ =

⎡⎣ −g1 f12 f13
f21 −g2 f23
f31 f32 −g3

⎤⎦⎛⎝α−
⎡⎣ α∗1
α∗2
α∗3

⎤⎦⎞⎠ (13)

where
α =

[
α1 α2 α3

]T
(14)

is defined on a 2-simplex in α-space with vertices α =
[π 0 0]�, α = [0 π 0]� and α = [0 0 π]�. We denote this
manifold by Mα.

Define the control error ei = (αi − α∗i ) ∈ [−π, π] for each
agent i. Then the following differential system is obtained

ėi = − sin(αi+1) + sin(αi−1)
ri(i+1) sin(αi+1)

sin(
αi

2
)ei +

1
ri(i+1)

sin(
αi+1

2
)ei+1 +

1
ri(i−1)

sin(
αi−1

2
)ei−1 (15)

Using both (10) and (11), then the system of differential
equations (15) can be written succinctly as

ėi = −giei + fi(i+1)ei+1 + fi(i−1)ei−1 (16)

Note that ėi is a nonlinear differential equation since, for
example, αi = α∗i + ei is dependent on the known constant
α∗i and also the error ei. Stacking the system of differential
equations (15) or (16) leads to

ė = F(e)e (17)

where
e =

[
e1 e2 e3

]T
(18)

and where

F(e) =

⎡⎣ −g1 f12 f13
f21 −g2 f23
f31 f32 −g3

⎤⎦ (19)

where e is defined on a 2-simplex in e-space with vertices
e = [π − α∗1 − α∗2 − α∗3]�, e = [−α∗1 π − α∗2 − α∗3]� and
e = [−α∗1 − α∗2 π − α∗3]

�. We denote this manifold by Me.
In fact, Me is obtained directly from Mα via a translation
by −[α∗1 α

∗
2 α

∗
3]
�. Again, F(e) is (significantly) nonlinear in

e since αi = α∗i + ei.
Figure 1 depicts the error manifold and shows six distinct

error regions, Ri±, with i ∈ {1, 2, 3}. The index conventions
will become clear subsequently.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5
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2.5
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e
1

Error Regions

e 2 α
3
=0

α
1
=0

α
2
=0

e
3
=0

R1+

R1−
R2+

R2−

R3+

R3−

Fig. 1. A plot of the open error manifold showing six distinct regions and
the boundaries of the manifold.

Note the regions are taken without boundary such that, for
example, we can define R3+ by

e ∈ R3+ ⇐⇒
⎡⎣ 0 < e1 < π − α∗1

0 < e2 < π − α∗2
−α∗3 < e3 < 0

⎤⎦ (20)

For distinct i, j, k ∈ {1, 2, 3}, we chose the individual error
regions to exhibit the following useful properties

Ri+ ⇒ {ej > 0, ek > 0, ei < 0, ėi > 0} (21)

or

Ri− ⇒ {ej < 0, ek < 0, ei > 0, ėi < 0} (22)
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where ei ∈ [−α∗i , π − α∗i ] ⊂ [−π, π], ∀i and
∑

i ei = 0
must be enforced. The sign of the errors is taken directly
from the definition of the region while the sign of a particular
error velocity can be determined using the signs of the error
and (17). The inequalities are strict. Note importantly that the
simplex, or manifold Me shifts in the error space depending
on the desired configuration angles α∗i . As such, error regions,
Ri±, can grow or shrink, and can disappear altogether. For
example, take the case where α∗1 = α∗2 = 0 such that α∗3 = π,
then the only region in existence is R3+.

Theorem 1. The manifoldMe is a positively invariant set.

Proof: To show that Me is positively invariant we show
that for any ei ∈ Me, then it is impossible for ei to escape
Me. Note that ei ∈ [−α∗i , π − α∗i ] ⊂ [−π, π]. Thus, let us
consider the right-sided limit,

lim
ei→−α∗i

+
ėi =

1
ri(i+1)

sin(
α(i+1)

2
)ei+1 +

1
ri(i−1)

sin(
α(i−1)

2
)ei−1

=
ei+1

ri(i+1)
if ei+1 → (π − α∗i+1)

−

ei−1 → −α∗i−1
+

=
ei−1

ri(i−1)
if

ei+1 → −α∗i+1
+

ei−1 → (π − α∗i−1)
−

> 0 (23)

which implies ei cannot escapeMe in one direction. A similar
computation shows that ei cannot escape Me in the other
direction, i.e. by following ei → π−α∗i through the boundary
of the manifold. That is

lim
ei→(π−α∗i )−

ėi = −ri(i+1) + ri(i−1)

ri(i+1)ri(i−1)
ei

< 0 (24)

which completes the proof.
Note that technically, once inside Me, there are only three

possible escape routes. In the proof of Theorem 1 we show
that none of these routes can be taken. Given that Me is a
positively invariant set, we state the following result which
ensures the formation is well-defined for all time t, i.e. the
angles αi are well defined for all time.

Theorem 2. Suppose that pi(t0) �= pj(t0) for i �= j at some
time t0. Then, pi(t) �= pj(t) for i �= j for all t ≥ t0, i.e. for all
t ≥ t0 we have ‖pi(t)− pj(t)‖ > 0.

Proof: In order for pi(t) = pj(t) at some time t > t0
there must exist a time interval [t − ε, t] with t − ε ≥ t0 on
which βi = φij and/or βj = φji for any ε ≥ dt. We now show
that no such time interval can exist. We consider now, with no
loss of generality, that βi = φij . Note that βi = φij on [t−ε, t]
then implies αi = 0 which implies αj = 0 or αj = π on the
entire interval [t− ε, t]. If αj(t− ε) = π then at time t− ε+dt
we immediately have βi �= φij since αj(t − ε + dt) < π. To
see this note that αj(t− ε) = π implies

α̇j = −gj(αj − α∗j ) on [t− ε, t− ε+ dt] (25)

which is strictly negative unless α∗j = π which according to
Assumption 1 would imply that both agents i, k �= j are also
at equilibrium. Similarly, if αj = 0 then at time t− ε+ dt we
immediately have βi �= φij since αj(t− ε+ dt) > 0.

The previous result ensures collisions are avoided naturally
by the formation. The following result characterizes the equi-
librium points of the system.

Theorem 3. The system (17) is at equilibrium ė = 0 if and
only if e = 0.

Proof: The sufficiency of e = 0 is obvious. To prove
necessity, suppose firstly that the state of the system is in one
of the six distinct regions Ri+ or Ri− defined using (21) or
(22). Using (21) or (22) it is clear ė i �= 0 for at least one i,
i.e. the system is not at equilibrium.

Now it remains to show that on the manifold Me there are
no equilibrium points on the boundaries in between the error
regions. Denote such a boundary via

Σi+j− = {∂Ri+ ∩ ∂Rj−}/{0} = Σj−i+ (26)

and note we consider only boundaries with strictly positive
length, i.e. a strictly positive 1-d Hausdorff measure. Now
following our derivation of the error regions R i+ we find that

e ∈ Σi+j− ⇐⇒
⎡⎣ −α∗i < ei < 0

0 < ej < π − α∗j
ek = 0

⎤⎦ (27)

which implies, using (16), that ėi > 0 and ėj < 0 and thus
ė �= 0. This completes the proof.

We introduce the following theorem which will form the
basis of our subsequent stability proof.

Theorem 4 (Poincare-Bendixson [34]). Let M ⊂ R2 be a
compact, positively invariant two-manifold containing a finite
number of fixed points. Let x ∈ M and consider the ω-limit
set ω(x). Then one of the following possibilities holds:

1) ω(x) is an equilibrium point;
2) ω(x) is a closed orbit;
3) ω(x) consists of a finite number of fixed points x1, . . .,

xm and orbits γ with α(γ) = xi and ω(γ) = xj ,

where α(γ) means the α-limit set of every point γ.

The intuition behind the Poincare-Bendixson theorem is that
all bounded trajectories in a planar region (or two-manifold)
must converge to an equilibrium point, a limit cycle, or a union
of fixed points and the trajectories connecting them, i.e. so-
called homoclinic or heteroclinic orbits.

We know there is only a single equilibrium and that Me is
positively invariant. We now show there are no closed orbits.

Theorem 5. The system (17) has no closed orbits in Me.

Proof: Consider the arc between adjacent regions given
by

Σi+j− = {∂Ri+ ∩ ∂Rj−}/{0} = Σj−i+ (28)

with strictly positive length, i.e. a strictly positive 1-d Haus-
dorff measure. There are six such ‘well-defined’ sets Σ i+j− =
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Σj−i+. Now define

Σ = Σ3+1− ∪ Σ1−2+ ∪ Σ2+3− ∪
Σ3−1+ ∪ Σ1+2− ∪Σ2−3+ (29)

and note for clarity that Σ ∩ {0} = ∅. Note that any closed
orbit must enclose the origin [34] and thus intersect every well-
defined boundary Σi+j−. As a consequence, if the origin is on
a vertex of the manifold Me, i.e. if the desired configuration
is a line formation, then obviously no closed orbits exist.
Otherwise, the strategy is to show that any positive orbit
ψ+(e) of (17) intersects Σ in a strictly monotone sequence
approaching the origin (if it intersects it in more than a point).
That is, we show that if em+1 is the (m + 1)th intersection
of Σ then ‖em+1‖ < ‖em‖. Note that

e ∈ Σi+j− ⇒ ėi > 0, ei < 0 and ėj < 0, ej > 0
⇒ ek = 0 and ‖e‖ = |ej | (30)

using the definition of regions where i, j, k ∈ {1, 2, 3} are
distinct indices. We proceed using an inductive-like argument.
Suppose that em is the mth intersection of Σ (which also
intersects Σi+j−) for the positive orbit ψ+

t (em) starting at t =
tm. Define a time tm+1 and mark em+1 as the (m + 1)th

intersection of Σ with em+1 = ψ+
tm+1

(em). There exists a time
tm+ ∈ (tm, tm+1] at which ψ+

tm+
(em) is in (i) Σi+j− or (ii)

Ri+ or (iii) Rj−. We ignore the trivial case ψ+
tm+

(em) ∈ {0}
for some tm+ ∈ (tm, tm+1).

(Case i): If ψ+
tm+

(em) is in Σi+j− then tm+ = tm+1 and
0 < ej(tm+1) < ej(tm) using (30). It follows that ‖em+1‖ <
‖em‖ . We restart the argument at time t = tm+1.

(Case ii): If ψ+
tm+

(em) is in Ri+ then ej > 0, ek > 0 and
ėi = −ėj − ėk > 0 which implies −ėj > ėk. The relevant
boundaries of Ri+ are Σi+j− and Σi+k− for distinct i, j, k ∈
{1, 2, 3}. Now if em+1 ∈ Σi+j− then∫ tm+1

tm

ėk(τ)dτ = 0 ⇒
∫ tm+1

tm

ėj(τ)dτ < 0 (31)

which immediately implies |ej(tm+1)| < |ej(tm)|. Using (30)
it follows that ‖em+1‖ < ‖em‖ and we can then restart the
argument at time t = tm+1. Now if instead em+1 ∈ Σi+k−
then −ėj > ėk implies∫ tm+1

tm

ėj(τ)dτ = −ej(tm) ⇒
∫ tm+1

tm

ėk(τ)dτ < ej(tm)

(32)
and since ek(tm) = 0 we have |ek(tm+1)| < |ej(tm)|. The
consequence of this last fact is that ‖em+1‖ < ‖em‖ and we
can then restart the argument at time t = tm+1.

(Case iii): If ψ+
tm+

(em) is in Rj− then the argument follows
similarly to that given in case (ii).

Note that Theorem 5 could be interpreted as a proof of
asymptotic convergence of any solution of (17) to the origin.
The following result makes this convergence precise.

Theorem 6 (The Main Result). The equilibrium e = 0 of the
error system (17) is globally asymptotically stable.

Proof: We use the Poincare-Bendixson theorem. Consider
M−

e = cl(Me) where cl(·) denotes set closure. Note thatM−
e

is now compact with a single equilibrium and no closed orbits,
via Theorems 3 and 5. Clearly, e(0) must be in Me ⊂ M−

e

and Me acts as a positively invariant set, via Theorem 1. The
Poincare-Bendixson theorem then states the ω-set of any initial
error in M−

e contains only e = 0. Global asymptotic stability
is assured.

The previous result is our main result and concerns the
global asymptotic formation stability for all desired config-
urations. Using a linearization argument, we can comment on
the convergence rate for almost all desired formations.

Theorem 7. If α∗i ∈ (0, π) then solutions of (17) with any
initial condition in Me will converge asymptotically to the
origin and there exists a neighbourhood U of the origin within
which solutions converge at an exponential rate.

Proof: The asymptotic stability of the origin for all
desired configurations, i.e. α∗i ∈ [0, π], and all initial positions
follows from the main result, Theorem 6. Now note that
ek = −ei − ej for distinct i, j, k ∈ {1, 2, 3}. We then reduce
the dimension of (17) and obtain

ėij = Fij(e)eij

˙[
ei

ej

]
=

[ −(gi + fik) (fij − fik)
(fji − fjk) −(gj + fjk)

] [
ei

ej

]
(33)

with gi > 0 and fij > 0 when αi ∈ (0, π) and gi = fji + fki.
Linearization of (33) about the point e = 0 leads to

ė = Aij(α∗)e (34)

where Aij(α∗) is a constant matrix and denotes the gradient
of Fij(e)eij with respect to e and evaluated at e = 0. Note
that Aij(α∗) = Fij(e)|αi=α∗i . It is then easy to verify that

tr(Aij(α∗)) < 0 (35)

det(Aij(α∗)) > 0 (36)

for all α∗i ∈ (0, π). Now it follows that Aij(α∗) is stable,
i.e. Aij(α∗) has negative real eigenvalues, for all α∗i ∈ (0, π).
Now within a neighborhood of the origin U it follows from
the Hartman-Grobman theorem [34] that solutions of (17)
converge at an exponential rate when α∗i ∈ (0, π).

When the desired formation is a line then linearization is
inconclusive with one negative real eigenvalue and one zero
eigenvalue (and additional tests would be required).

We conjecture that if the desired formation is a line then e =
0 is also locally exponentially stable (we know it is globally
asymptotically stable from Theorem 6). However, we do not
explore this particular case further.

The neighborhood U can be made large by considering
certain Lyapunov functions explicitly but the value in doing
so is limited given the existence of Theorem 6. In addition,
as discussed in the next subsection, we could not find a
suitable Lyapunov function to show global stability. Also, the
simulation results indicate an exponential convergence rate for
the entire formation trajectory.

Finally, we make the following useful remark.

Remark 1. Denote a formation of agents at equilibrium, i.e.
with αi = α∗i , as an equilibrium formation which is defined by
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the agent positions p∗i at equilibrium. An equilibrium formation
is invariant to scale, rotation and translation of the formation
as a whole or reflection of any agent i about the triangle edge
formed by agents i+ 1 and i− 1.

This last remark is given for completeness and illustrates
the simple fact that transforming an equilibrium formation in
any of the referred to ways does not change the equilibrium
status of the formation. However, it is of course still true that
given pi(0) for all i, the desired formation p∗i is unique (given
the standard uniqueness theorem [34]).

C. Discussion on the Method of Proof

Note that we could not find a suitable Lyapunov func-
tion that would prove global stability for all desired for-
mations given any initial configuration. In particular, testing
the negative-definiteness of the time-derivative for various
candidates was a significant hurdle. Variations on a number of
quadratic-type candidate functions failed the negative-definite
test in simulation. Indeed, Fij in (33) is not negative definite
for αi ∈ [0, π]. However, it was clear to us that the system
evolved on a positively-invariant set and that there was only a
single equilibrium. Moreover, we suspected that no limit cycles
were present. As such, given the dimension of the system
manifold, we know the Poincare-Bendixson theorem provides
a rigorous statement concerning the asymptotic behaviour of
the system trajectories. Thus, we chose to seek a globally
asymptotic convergence proof through the Poincare-Bendixson
theorem. An alternative route we considered was via lin-
earization (which does lead to local exponential stability for
almost all desired configurations). The disadvantage of using
only linearization is that global stability does not follow (and
even local exponential stability does not follow for desired
line configurations using linearization alone). In any case, we
believe the analysis given in this paper provides a deep insight
into the nature of the proposed vector field on the manifold
of interest.

III. EXAMPLES

In this section we demonstrate the algorithm developed in
this paper for distributed formation control with bearing-only
measurements and relative angular constraints.

1) Triangle to Triangle Formation: The first example illus-
trates how the formation converges to an arbitrarily specified
triangle (so long as the triangle is feasible) given a random
initial triangle configuration. The desired triangle formation
in this case is characterized by α∗1 = π/6, α∗2 = π/4 and
α∗3 = 7π/12. The formation motion is illustrated in Figure 2
along with the convergence of |e i| to zero.

The initial position of the three agents are randomly dis-
tributed inMα and the figure illustrates the trajectories of each
agent as the formation converges upon the desired shape. This
example illustrates that the control law can generate arbitrary
triangle formations.

2) Line to Triangle Formation: Consider now the case
involving three agents initially collinear. The desired formation
is a triangle characterized by α∗1 = π/3, α∗2 = π/6 and
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Fig. 2. The motion of the formation with a desired terminal constraint of
α∗1 = π/6, α∗

2 = π/4 and α∗3 = 7π/12.
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Fig. 3. The motion of a triangular formation consisting of three mobile agents
initially in a collinear position with desired terminal constraints α∗1 = π/3,
α∗2 = π/6 and α∗3 = π/2.

α∗3 = π/2. The formation motion is illustrated in Figure 3
along with the control error for each agent.

The convergence of the three agents is illustrated in Figure 3
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along with the convergence of |e i| to zero for all i ∈ {1, 2, 3}.
This example illustrates that the control law is not affected by
initial agent collinearity.

3) Triangle to Line Formation: This example shows the
convergence of an initially random triangle formation to a
desired line formation. The desired formation is characterized
by α∗1 = α∗2 = 0 and α∗3 = π.
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Fig. 4. The motion of a triangular formation consisting of three mobile agents
starting in a random triangle and given a desired collinearity condition.

The convergence of the three agents is illustrated in Figure 4
along with the convergence of |e i| to zero for all i ∈ {1, 2, 3}.
This example illustrates that we can steer an arbitrary initial
triangle formation to a collinear formation.

4) Line to Line Formation: Finally, we consider the case of
changing from an initial line formation with α1 = 0, α2 = π
and α3 = 0 to another (desired) line formation with α∗1 = 0,
α∗2 = 0 and α∗3 = π. The order of the agents along the line
changes from the initial formation to the desired formation.
The formation motion is illustrated in Figure 5 along with the
control error for each agent.

The convergence of the three agents is illustrated in Figure 5
along with the convergence of |e i| to zero for all i ∈ {1, 2, 3}.
Note that agents 2 and 3 do not collide but do indeed swap
places in the formation configuration.

5) A Phase Portrait for the System: For illustrative pur-
poses, we plot the phase portrait of the reduced system (33)
when the desired formation is an equilateral triangle, i.e. when
α∗1 = α∗2 = α∗3 = π/3.

In Figure 6 we see the manifold Me and the behaviour
of the vector field on this manifold for a particular desired
formation.
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Fig. 5. The motion of a triangular formation consisting of three mobile
agents initially in a collinear position with a desired condition specified by
another collinear formation with a different agent ordering.
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Fig. 6. Phase portrait of the reduced error system (33) when the desired
formation is an equilateral triangle.

IV. DISCUSSION

The case where α∗i = 0, α∗j �= 0 and α∗k = π−α∗j is a special
case where, in the desired configuration, agent i must be placed
infinitely far from the other two agents. Applying the derived
control law in this case leads to agent j and agent k becoming
coincident in the limit as t→∞. We note that our control law
is applicable when α∗i = ε, α∗j �= 0 and α∗k = π − α∗j − ε for
an arbitrarily small ε > 0 and that inter-agent collisions are
naturally avoided in such cases. In practice this is generally
sufficient. We also believe an extension to the control law to
account for such cases is also possible but the benefits of doing
so are rather superficial.

An extension to the problem of formation control with an
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arbitrary number of sensors is the next step and requires one
to specify the form of the agent interaction graph which in
turn specifies the constraint network for the formation. In
addition, proving global stability is likely to be non-trivial
as the Poincare-Bendixson theorem employed in this paper is
limited to scenarios involving only three agents.

V. CONCLUSION

This paper introduced a solution to the distributed bearing-
only triangular formation control problem with angle-only
inter-agent constraints. While the distance-based formation
control problem has been extensively considered in the liter-
ature, the problem of bearing-only formation control is less
studied. The solution provided in this paper requires only
that each agent measure the bearing to the remaining two
agents in a local coordinate system. Then, if each agent is
given a desired interior angle subtended at itself by the other
two agents, and assuming the set of desired interior angles is
feasible, then the group of agents is shown to converge to the
desired formation from any initial position.

VI. ACKNOWLEDGEMENT

The authors would like to thank the reviewers and editors for
their insightful comments which have significantly improved
the presentation of our work.

REFERENCES

[1] A.N. Bishop, B. Fidan, B.D.O. Anderson, K. Dogancay, and P.N.
Pathirana. Optimality analysis of sensor-target geometries in passive
localization: Part 1 - Bearing-only localization. In Proc. of the 3rd
International Conference on Intelligent Sensors, Sensor Networks, and
Information Processing, Melbourne, Australia, December 2007.

[2] A.N. Bishop, B. Fidan, B.D.O. Anderson, P.N. Pathirana, and K. Do-
gancay. Optimality analysis of sensor-target geometries in passive
localization: Part 2 - Time-of-arrival based localization. In Proc. of the
3rd International Conference on Intelligent Sensors, Sensor Networks,
and Information Processing, Melbourne, Australia, December 2007.

[3] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions on
Automatic Control, 48(6):9881001, June 2003.

[4] A.V. Savkin. Coordinated collective motion of groups of autonomous
mobile robots: Analysis of vicsek’s model. IEEE Transactions on
Automatic Control, 49(6):981–983, June 2004.

[5] J.A. Fax and R.M. Murray. Information flow and cooperative control
of vehicle formations. IEEE Transactions on Automatic Control,
49(9):1464–1476, September 2004.

[6] L. Moreau. Stability of multiagent systems with time-dependent commu-
nication links. IEEE Transactions on Automatic Control, 50(2):169–182,
February 2005.

[7] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms
and theory. IEEE Transactions on Automatic Control, 51(3):401–420,
March 2006.

[8] N. Moshtagh and A. Jadbabaie. Distributed geodesic control laws for
flocking of nonoholonomic agents. IEEE Transactions on Automatic
Control, 52(4):681–686, April 2007.

[9] V. Gazi. Stability analysis of swarms. IEEE Transactions on Automatic
Control, 48(4):692–697, April 2003.

[10] E. Rimon and D.E. Koditschek. Exact robot navigation using artificial
potential functions. IEEE Transactions on Robotics and Automation,
8(5):501–518, October 1992.

[11] R. O. Saber and R. M. Murray. Distributed cooperative control of
multiple vehicle formations using structural potential functions. In
Proceedings of the 15th IFAC World Congress, pages 1–7, Barcelona,
Spain, July 2002.

[12] C. Belta and V. Kumar. Abstractions and control policies for a swarm
of robots. IEEE Transactions on Robotics, 20(5):865–875, May 2004.

[13] Z. Lin, M.E. Broucke, and B.A. Francis. Local control strategies for
groups of mobile autonomous agents. IEEE Transactions on Automatic
Control, 49(4):622–629, April 2004.

[14] V. Gazi. Swarm aggregations using artificial potentials and sliding-mode
control. IEEE Transactions on Robotics, 21(6):1208–1214, December
2005.

[15] V. Kumar, N.E. Leonard, and A.S. Morse (Editors). Cooperative Control,
volume 309 of Lecture Notes in Control and Information Sciences.
Springer-Verlag, New York, NY, 2004.

[16] W. Ren and R.W. Beard. A decentralized scheme for spacecraft
formation flying via the virtual structure approach. AIAA Journal of
Guidance, Control and Dynamics, 27(1):73–82, 2004.

[17] P. Ogren, E. Fiorelli, and N.E. Leonard. Cooperative control of
mobile sensor networks: Adaptive gradient climbing in a distributed
environment. IEEE Transactions on Automatic Control, 49(8):1292–
1302, August 2004.

[18] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for
mobile sensing networks. IEEE Transactions on Robotics, 20(2):243255,
February 2004.

[19] E. Fiorelli, N.E. Leonard, P. Bhatta, D.A. Paley, R. Bachmayer, and D.M.
Fratantoni. Multi-AUV control and adaptive sampling in Monterey Bay.
IEEE Transactions on Oceanic Engineering, 31(4):935–948, October
2006.

[20] N.E. Leonard, D.A. Paley, Lekien F., R. Sepulchre, Fratantoni D.M., and
R.E. Davis. Collective motion, sensor networks and ocean sampling.
Proceedings of the IEEE, 95(1):48–74, January 2007.

[21] R. O. Saber and R. M. Murray. Graph rigidity and distributed formation
stabilization of multi-vehicle systems. In Proceedings of the 41st IEEE
Conference on Decision and Control, pages 2965–2971, Las Vegas,
Nevade, USA, 2002.

[22] J. Baillieul and A. Suri. Information patterns and hedging Brockett’s
theorem controlling vehicle formations. In Proceedings of the 42nd IEEE
Conference on Decision and Control, pages 556–563, Maui, Hawaii,
USA, December 2003.

[23] Z. Lin, B.A. Francis, and M. Maggiore. Necessary and sufficient graph-
ical conditions for formation control of unicycles. IEEE Transactions
on Automatic Control, 50(1):121–127, January 2005.

[24] B.D.O Anderson, C. Yu, S. Dasgupta, and A.S. Morse. Control of a
three-coleader formation in the plane. Systems and Control Letters,
56:573–578, 2007.

[25] T. Eren, D.K. Goldenberg, W. Whiteley, Y.R. Yang, A.S. Morse, B.D.O.
Anderson, and P.N. Belhumeur. Rigidity, computation, and randomiza-
tion in network localization. In Proceedings of the International Joint
Conference of the IEEE Computer and Communications Societies, pages
2673–2684, Hong Kong, March 2004.

[26] J.M. Hendrickx, B.D.O. Anderson, J-C. Delvenne, and V.D. Blondel. Di-
rected graphs for the analysis of rigidity and persistence in autonomous
agents systems. International Journal of Robust and Nonlinear Control,
17(10-11):960–981, 2006.

[27] C. Yu, J.M. Hendrickx, B. Fidan, B.D.O Anderson, and V.D. Blondel.
Three and higher dimensional autonomous formations: Rigidity, persis-
tence and structural persistence. Automatica, 43(3):387–402, 2007.

[28] T. Eren, W. Whiteley, and P. N. Belhumeur. Using angle of arrival
(bearing) information in network localizationn. In Proceedings of the
45th IEEE Conference on Decision and Control, San Diego, California,
USA, December 2006.

[29] A.G. Lindgren and K.F. Gong. Position and velocity estimation via
bearing observations. IEEE Transactions on Aerospace and Electronic
Systems, 14(4):564–577, July 1978.

[30] S.C. Nardone, A.G. Lindgren, and K.F. Gong. Fundamental properties
and performance of conventional bearings-only target motion analysis.
IEEE Transactions on Automatic Control, 29(9):775–787, 1984.

[31] M. Gavish and A.J. Weiss. Performance analysis of bearing-only target
location algorithms. IEEE Transactions on Aerospace and Electronic
Systems, 28(3):817–827, 1992.

[32] S.G. Loizou and V. Kumar. Biologically inspired bearing-only navigation
and tracking. In Proceedings of the 46th IEEE Conference on Decision
and Control, pages 1386–1391, New Orleans, LA, December 2007.

[33] N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis. Vision-based,
distributed control for motion coordination of nonholonomic robots.
IEEE Transactions on Robotics, 25(4):851–860, August 2009.

[34] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and
Chaos. Springer-Verlag, New York, NY, 1990.


