
EU FP7 CogX

ICT-215181

May 1 2008 (52months)

DR 4.4:

Planning for active learning of new actions and

concepts

Moritz Göbelbecker

University of Freiburg

〈goebelbe@informatik.uni-freiburg.de〉

Due date of deliverable: May 31 2012
Actual submission date: June 30 2012
Lead partner: ALU
Revision: final
Dissemination level: PU

The use of background knowledge can greatly improve the performance of
a robotic system, but is usually provided as static knowledge by a system
designer, or automatically generated by processes distinct from the system’s
usual operation. This document describes a software prototype that uses a
planner that integrates active learning of new concepts into its usual planning
process, allowing it to extend its background knowledge.

1

DR 4.4: Planning for active learning of new actions and concepts Göbelbecker

1 Installation and usage instructions 3
1.1 Installation . 3
1.2 Preparations . 4
1.3 Starting the system . 4
1.4 Stopping the system . 4
1.5 Compilation . 4

2 Scenario Descriptions 4
2.1 Learning existing knowledge 5
2.2 Learning new knowledge 1 . 5
2.3 Learning new knowledge 2 . 5
2.4 Learning new knowledge indirectly 6

References 7

EU FP7 CogX 2

DR 4.4: Planning for active learning of new actions and concepts Göbelbecker

Executive Summary

This deliverable presents the work done on creating a planning system that
can plan to augment its own background knowledge by using a number of
knowledge sources such as human knowledge as well as the environment
itself.

We evaluate the software using a set of scenarios in which the planner is
tasked with determining a piece of background knowledge, providing it with
different means to do so.

This work builds on the systems described in DR.4.3, which can ex-
ploit background knowledge to plan and act in uncertain environments and
DR.7.3 which introduces the ability to explain execution failures by assum-
ing that some knowledge may be incomplete or wrong. The system described
here goes one step further by being able to extend its knowledge and verify
whether the previously found explanations were correct.

Role in CogX

One of the objectives of the CogX project is to build a cognitive system that
can “self-extend”, i.e. autonomously gather new information, extending its
knowledge base.

Contribution to the CogX scenarios and prototypes

The work in this deliverable contributes directly to the Dora demonstrator.
The previous work on using background knowledge to facilitate goal-directed
exploration (e.g. using the knowledge that cereal boxes are commonly found
in kitchens to restrict search to rooms that are likely to be kitchens) and on
finding explanations for failures were used by the Dora system. The software
presented here continues to use the Dora scenario as its main use case and
is tightly integrated into the platform.

1 Installation and usage instructions

1.1 Installation

The prototype is delivered in a Ubuntu VirtualBox virtual machine (VM).

• Extract the VM image (either by using an archive manager or the
command tar xvzf dr44.tar.gz, uncompressed size is 4.2GB)

• Start VirtualBox

• Add the VM to VirtualBox (Machine→Add and select the file Ubuntu

CogX DR.4.4/Ubuntu CogX DR.4.4.vbox)

EU FP7 CogX 3

https://www.virtualbox.org/

DR 4.4: Planning for active learning of new actions and concepts Göbelbecker

• Start the VM.

1.2 Preparations

Log in as the default user (ubuntu) using the password “123”. Open two
terminal windows, change into the “dora” directory and start the CAST-
Viewer GUI with output/bin/display-server&.

1.3 Starting the system

Start the cast server in one of the terminal windows with the cast-server

command. Then, in the second window, start the client with cast-client

instantiations/CAST-FILE.cast. A list of .cast files with sample scenar-
ios is provided in section 2. You can view the planning progress in the
planner.tasks view of the CAST-Viewer. After a few seconds, the resulting
plan should show up here. The planner.state page can be used to view the
state that is visible to the planner.

1.4 Stopping the system

Simply stop cast-client from the terminal using the Ctrl-C shortcut and
wait a few seconds for the program to terminate. cast-server can be
stopped in the same way, but this is not requires between runs.

1.5 Compilation

The system can be run as it is, but it can be compiled from scratch with
the following commands (starting in the dora directory):

cd build

cmake ../cmake-caches/dora-dr.4.4.txt ..

make

make install

2 Scenario Descriptions

We included four sample planning scenarios in the prototype. They were
captured from simulated robot runs and can be started by running cast-client

with the specified cast-file. The associated planning problems in PDDL for-
mat can be found in the dora/subarchitectures/planner.sa/problems

directory.

EU FP7 CogX 4

DR 4.4: Planning for active learning of new actions and concepts Göbelbecker

2.1 Learning existing knowledge

• cast-file: dr4.4-sample1.cast

• pddl-file: problem-cerealbox-in-office.pddl

• pddl goal: (kval robot 0 c (dora inroom cerealbox office))

The goal of this task is to find out whether cereal boxes can be found in
offices. As this knowledge is already present in the initial state, the goal is
already satisfied and the planner returns with an empty plan.

2.2 Learning new knowledge 1

• cast-file: dr4.4-sample2.cast

• pddl-file: problem-cerealbox-in-magazine.pddl

• pddl goal: (kval robot 0 c (dora inobject cerealbox magazine

office))

The goal of this task is to find out whether cereal boxes can be found
inside magazines in offices. To humans, this is a quite unusual relation that
no one has yet included in the default knowledge, so the planner tries to
find a plan that results in knowing that information.

In this instance, the planner makes use of assumptions [1, 3], establish-
ing the facts that there is a person in this room and that the person is in a
specific place (place 0 b). A precondition to the look-for-people action
is that the room has to be fully explored, which is done by a series of move
and move direct actions. The look action, together with the assumptions,
establishes a state where a person’s location is known and the planner pro-
ceeds with engaging in a dialogue with that person and asking for the needed
information directly (engage, ask-for-bk-inobject).

2.3 Learning new knowledge 2

• cast-file: dr4.4-sample3.cast

• pddl-file: problem-container-in-office.pddl

• pddl goal: (kval robot 0 c (dora inroom container office))

Here the task is to find out if containers can be commonly found in offices.
Here the room is already explored, and the robot has already engaged with a
person. Consequently, the only thing left to do is to ask for the information
(ask-for-bk-inroom).

EU FP7 CogX 5

DR 4.4: Planning for active learning of new actions and concepts Göbelbecker

2.4 Learning new knowledge indirectly

• cast-file: dr4.4-sample4.cast

• pddl-file: problem-dr44.pddl

• pddl goal: (kval robot 0 c (dora inroom container meetingroom))

Here the task is to find out if containers can be commonly found in
meeting rooms. In contrast to the previous tasks, however, the environment
is already explored and it is known to the robot that there are no humans
present. The environment consists of four rooms: two offices, a corridor and
a meeting room, with the robot starting out in one of the offices.

In this case, direct knowledge gathering is impossible, so the planner
falls back to indirect gathering by searching for containers in rooms that
are likely to be meeting rooms. This is done in the planner by combining
assumptions with what we call knowledge actions. Whereas assumptive
actions describe how facts relate to each other, knowledge actions are derived
from assumptions and describe how knowledge about one fact may influence
knowledge about another fact.

The plan for this task will use three assumptions:

(__commit-category-room_2_61-meetingroom robot_0__c)

(__commit-object-existence-default-0 robot_0__c container room_2_61 meetingroom true)

(__commit-sample_object_location-0 robot_0__c visualobject0 container in room_2_61)

The first one assumes that room 2 61 is a meeting room and the sec-
ond one allows us to make the default assumption that a container exists
in the room, as no probability (dora inroom container meetingroom)

has been specified. Finally, the information that a “container exists in
room 2 61” is turned into a assumption for the location of a specific ob-
ject (visualobject0).

Then follow the physical actions of the plan: It will first move to room
2 61, create view points for object search and search for the container object
(visualobject0) in that room.

The result of these actions, together with the assumptions, result in the
fact that the robot knows the location of visualobject0. The planner then
applies two knowledge actions to get to the goal:

(__knowledge-inverse-sample_object_location-1 robot_0__c visualobject0 container in room_2_61)

(__knowledge-inverse-obj_in_room-1 robot_0__c container room_2_61 meetingroom)

The first action is derived from the commit-sample object location

assumption and allows the planner to infer from knowing the location of
visualobject0 to knowing whether a container exists in room 2 61. The
second one then allows knowledge transfer to the general “containers exist
in meeting rooms” case.

EU FP7 CogX 6

DR 4.4: Planning for active learning of new actions and concepts Göbelbecker

These knowledge actions are only heuristic rules and may fail, as ac-
tual knowledge inference is performed by components independent from the
planner. For this reason, we don’t want to allow the application of knowl-
edge actions if their preconditions are already true in the initial state – for
in that case the resulting knowledge should have already been inferred. To
implement this, we use the assertion mechanism by Brenner and Nebel [2],
which achieves exactly that.

References

[1] A. Aydemir, M. Göbelbecker, A. Pronobis, K. Sjöö, and P. Jensfelt. Plan-
based object search and exploration using semantic spatial knowledge in
the real world. In Proc. of the European Conference on Mobile Robotics
(ECMR 2011), Örebro, Sweden, sep 2011.

[2] M. Brenner and B. Nebel. Continual planning and acting in dynamic
multiagent environments. JAAMAS, 19(3):297–331, 2009.

[3] M. Göbelbecker, C. Gretton, and R. Dearden. A switching planner for
combined task and observation planning. In Proceedings of the Twenty-
Fifth Conference on Artificial Intelligence (AAAI 2011), page NA, 2011.

EU FP7 CogX 7

	Installation and usage instructions
	Installation
	Preparations
	Starting the system
	Stopping the system
	Compilation

	Scenario Descriptions
	Learning existing knowledge
	Learning new knowledge 1
	Learning new knowledge 2
	Learning new knowledge indirectly

	References

