
EU FP7 CogX
ICT-215181

May 1 2008 (52months)

DR 6.1:
Transparency in situated dialogue for interactive
learning (in human-robot interaction)

Geert-Jan M. Kruijff, Miroslav Janiček, Ivana Kruijff-
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A robot can use dialogue to try to learn more about the world. For this
to work, the robot and a human need to establish a mutually agreed-upon
understanding of what is being talked about, and why. Thereby it is par-
ticularly important for the human to understand what the robot is after.
The notion of transparency tries to capture this. It involves the relation
between why a question is asked, how it relates to private and shared be-
liefs, and how it reveals what the robot does or does not know. For year 1,
WP6 investigated means for establishing transparency in situated dialogue
for interactive learning. This covered two aspects: how to phrase questions
for knowledge gathering and -refinement, and how to verbalize knowledge.
Results include methods for verbalizing what the robot does and does not
know about referents and aspects of the environment, based on a mixture
of prior and autonomously acquired knowledge and basic methods for self-
understanding (Task 6.1); and, novel algorithms for determining content and
context for question subdialogues to gather more information to help resolve
misunderstandings or fill gaps (Task 6.2). WP6 also reports results on mak-
ing spoken situated dialogue more robust, employing probabilistic models
for using multi-modal information to reduce uncertainty in comprehension.
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Executive Summary

One of the objectives of CogX is self-extension. This requires the robot to
be able to actively gather information it can use to learn about the world.
One of the sources of such information is dialogue. But for this to work,
the robot needs to be able to establish with a human some form of mutually
agreed-upon understanding – they need to reach a common ground. The
overall goal of WP6 is to develop adaptive mechanisms for situated dialogue
processing, to enable a robot to establish such common ground in situated
dialogue.

WP6 primarily focuses on situated dialogue for continuous learning. In
continuous learning, the robot is ultimately driven by its own curiosity,
rather than by extrinsic motivations. The robot builds up its own under-
standing of the world – its own categorizations and structures, and the ways
in which it sees these instantiated in the world. While learning, the robot
can solicit help from the human, to clarify, explain, or perform something.
This is where situated dialogue can help the robot to self-extend – and which
is where transparency comes into play. The robot is acting on its own un-
derstanding, which need not be in any way similar to how a human sees
the world. There is therefore a need for the robot to make clear what it is
after: why the robot is requesting something from a human, what aspects
of a common ground it appeals to, and how the request is related to what
it does and does not know.

To achieve transparency in situated dialogue for continuous learning,
WP6 investigated two important aspects in year 1: Verbalization of knowl-
edge about classes and instances (Task 6.1), and phrasing questions as subdi-
alogues (Task 6.2). WP6 developed novel methods for context- and content-
determination in verbalizing knowledge about referents and aspects of the
environment, with the possibility to combine a priori and autonomously ac-
quired knowledge. As a result, the robot is capable to refer to instances in a
contextually appropriate way, phrase their description relative to knowledge
about other instances and classes, and talk about ontological knowledge it
has. We base some of these methods in simple ways for the robot to in-
trospect what it knows about an entity (self-understanding), and establish
gaps in its understanding of that entity relative to ontological categories.
Connected to these efforts, WP6 developed new algorithms for context- and
content-determination for question subdialogues, setting such determina-
tion against the background of context models of multi-agent beliefs and
intentions; and for realizing these dialogues with contextually appropriate
intonation. The robot can now plan for how to request information from
the user to clarify or extend its understanding. It does so in a manner
that appropriately reflects how this request relates to private and shared
beliefs, and intentions. In such a mixed-initiative dialogue, the robot can
dynamically adapt its plan to achieve its knowledge-gathering intention.
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In addition to the main focus on transparency, WP6 continued efforts
in making spoken situated dialogue more robust. Further improvements
in robustness were achieved by using context information in incremental,
distributed processing covering speech recognition, parsing, and dialogue
interpretation. This approach explicitly deals with the uncertainty in the
speech recogniser in a Bayesian way, which is part of our broader approach
in CogX to using probabilistic representations to capture uncertainty in
initial interpretations of sensory signals. By maintaining all the possible
hypotheses we can then use knowledge from other modalities to revise our
interpretation or to bias inference. This is an example of a simple kind of self-
understanding, since we are representing the possibilities and uncertainties
in our interpretations.

Role of (transparent) situated dialogue in CogX

CogX investigates cognitive systems that self-understand and self-extend.
In some of the scenarios explored within CogX such self-extension is done in
a mixed-initiative, interactive fashion (e.g. the George and Dora scenarios).
The robot interacts with a human, to learn more about the environment.
WP6 contributes situated dialogue-based mechanisms to facilitate such in-
teractive learning. Furthermore, WP6 explores several issues around the
problems of self-understanding and self-extension in the context of dialogue
processing. Dialogue comprehension and production is ultimately based in
a belief model the robot builds up. This belief model captures beliefs and
tasks, in a multi-agent fashion. We can attribute a belief/task to one agent
(private), multiple agents (shared), or have an agent attribute a belief/task
to another agent (private, attributed). Already at this level we thus see a
range of possible forms of self-understanding and self-extension. The goal
of transparency is to establish beliefs as shared, and thus, any belief that
should be shared but currently is not represents a gap of sorts. The differ-
entiation between private and shared status status is one aspect of context
that helps determine how we produce references to entities in the world,
and the way we produce questions about such entities. Furthermore, inter-
pretations leading up to these beliefs and tasks may be uncertain. We use
probabilistic models to help counter uncertainty in comprehension, fusing
information from multiple modalities to guide comprehension. Should this
fail, we can use clarification to overcome that uncertainty. Such clarification
can also be used to resolve uncertainty about situated understanding, or
in a more general way, to request information about entities in the world.
WP6 presents a first attempt at an algorithm for identifying gaps in terms
of unknown properties about an entity I relative to a category C. We use
these gaps as a basis for verbalizing what a robot does and does not know
about I, and to drive dialogue to gain more information about I.
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Contribution to the CogX scenarios and prototypes

WP6 contributes directly to the George and Dora scenarios, in relation to
work performed in WP 3 (Qualitative spatial cognition), WP 5 (Interactive
continuous learning of cross-modal concepts), and WP 7 (Scenario-based
integration). Robust dialogue processing, clarification, and verbalization
are in principle used in both scenarios. In George we provide the possibility
for the robot to ask about visual properties it is uncertain about, and to use
verbalization and referencing to describe what it sees:

• Human places a red box on the table

• Robot Vision recognizes the object as a box, but is unsure about the
color. A clarification request is triggered, handled by dialogue.

• Robot “Is that box red?” – dialogue provides indirect feedback it
has recognized the object as a box, while at the same time asking for
confirmation on the color.

• Human “Yes, this box is red.”

• Robot Vision is provided with the information that the box is indeed
red, and so can update its models.

In Dora we also explore the introspection on what the robot does and
does not know about an area, to drive information requests to the user.
(The method is in fact general enough to also drive active visual search in
the environment.)

• Human guides the robot to a new area, and says “Here we are in the
kitchen.” This the second kitchen the human and the robot visit.

• Robot Place categorization can determine the area as a kitchen, with
a particular size. Vision perceives a water cooker.

• Robot “Ok, this looks like a larger kitchen.” – the robot can compare
to other kitchen instances it has seen so far.

• Robot The robot can infer that kitchens typically have several objects,
not only a water cooker but also a coffee machine. It understands that
it does not know of a coffee machine here, though.

• Robot “I can see a water cooker. Is there also a coffee machine?” –
the robot indicates what it does and does not know, and uses this as
the background for extending its knowledge about the area.
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1 Tasks, objectives, results

1.1 Planned work

Robots, like humans, do not always know or understand everything. Situ-
ated dialogue is a means for a robot to extend or refine its knowledge about
the environment. For this to work, the robot needs to be able to establish
with a human some form of mutually agreed-upon understanding – they
need to reach a common ground. The overall goal of WP6 is to develop
adaptive mechanisms for situated dialogue processing, to enable a robot to
establish such common ground in situated dialogue.

WP6 primarily focuses on situated dialogue for continuous learning. In
continuous learning, the robot is ultimately driven by its own curiosity,
rather than by extrinsic motivations. The robot builds up its own under-
standing of the world – its own categorizations and structures, and the ways
in which it sees these instantiated in the world. While learning, the robot
can solicit help from the human, to clarify, explain, or perform something.
This is where transparency comes into play. The robot is acting on its own
understanding, which need not be in any way similar to how a human sees
the world. There is therefore a need for the robot to make clear what it is
after: why the robot is requesting something from a human, what aspects
of a common ground it appeals to, and how the request is related to what
it does and does not know. To achieve transparency in situated dialogue
for continuous learning, WP6 investigated two important aspects in year
1: Verbalization of knowledge about classes and instances (Task 6.1), and
phrasing questions as subdialogues (Task 6.2).

Task 6.1: Verbalising categorical knowledge The goal is to enable the
robot to verbalize its own categorical knowledge (or lack thereof) rela-
tive to a situation, and understand situated references. We will extend
existing methods for comprehending and producing referring expres-
sions to cover verbalization of relevant information from singular visual
categories (WP5) and contextual reference.

Task 6.2: Continual planning for clarification and explanation We
will extend strategies for planning clarification- and explanation dia-
logues using a continual planning approach. This offers the necessary
flexibility to adjust a plan when interactively setting up an appro-
priate context, and provides a model of common ground in dialogue.
These methods will be based in means for grounding the information
expressed by clarifications and explanations in situated understanding.

The intention behind Tasks 6.1 and 6.2 was to achieve that the robot
would be able to enter into a dialogue with a human, to clarify something
or to request more information. This could be either about dialogue itself,
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or regard the situated context being talked about – thus spanning the en-
tire range of Clark’s grounding levels [11]. The robot uses belief models to
represent private and shared beliefs, including private beliefs the robot at-
tributes to other agents, and ontologies to capture its categorical knowledge
about the world. Together, belief models and ontologies provide a rich epis-
temological background against which the robot can introspect what it does
or does not know (e.g. whether another agent does understand something,
or whether an observed instance is of a particular category). We use such
self-understanding to guide verbalization and clarification, two interrelated
functions to help the robot gather more information to self-extend. The role
of verbalization in this process is to ensure that the why what and how of
the question is clear to the human: why the robot asks, what it does and
does not know, and how that gap should be addressed. The planning part
is to take care of the planning and execution of the actual dialogue, to en-
sure human and robot eventually do achieve a common ground. In §1.2 we
describe how we achieved these goals.

1.2 Actual work performed

Below we succinctly describe the achievements for the individual tasks. The
descriptions refer to the relevant papers and reports in the annexes, for more
technical detail. In §1.3 we place these achievements in the context of the
state-of-the-art.

1.2.1 Verbalising categorical knowledge

The goal of Task 6.1 was to develop methods for the robot to verbalize its
own categorical knowledge, or lack thereof. We have achieved the following:

Context-determination, bi-directionality in referencing A robot typ-
ically acts in an environment larger than the immediately perceivable
situation. The challenge in referring to objects and places in such a
large environment is to ensure that the agents participating in the di-
alogue can identify the appropriate context against which the resolve
a reference. Zender et al (§2.1.1, §2.1.2) have developed novel meth-
ods for determining the appropriate context for comprehending and
producing referring expressions.

A typical example Zender et al address is when the robot needs to refer
to an object in a place other then where the robot currently is, talking to
a human. Or when it needs to understand such a reference. For example,
the robot has been sent to fetch a person to take a phone call in somebody
else’s office (e.g. GJ’s). If this person is currently in her office, it would
not do to say “there’s a call for you on the phone.” This could incorrectly
identify the phone on that person’s desk as the one to pick up, whereas the
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point is to go to the GJ’s office to take the call there. What Zender et al do
is to use topological structure of the environment, to –literally– determine
the appropriate context for identifying the object it needs to refer to. So,
instead of just saying ”the phone,” the robot is able to say “there is a call
for you on the phone on the desk in GJ’s office.” It uses the context to
direct the human’s attention to the appropriate location, where it can then
identify the intended referent.

Verbalization of acquired properties Typically a robot is provided with
an initial ontology, outlining the concepts and their relations consid-
ered relevant for understanding the environment in which the robot
is to act. Over time, the robot can extend this ontology, for example
with instances and properties that hold for these. Zender and Prono-
bis (§2.1.3) have developed a new method for verbalizing knowledge
about autonomously acquired scalar properties for instances and their
classes. The distributions of property values across instances, within
a class, and across classes help define contextual standards [34, 15]
against which the verbalization of scalar properties as comparatives
can be determined in a contextually appropriate manner.

A scalar property is, simply, a property with values that are on a scale
that makes them comparable. An example of a scalar property is size:
A room can be smaller or larger than some other room, or of the same
size. Scalars are typical material properties for the kinds of entities we
want the robot to talk about. And, they are properties for which the robot
can autonomously acquire quantitative models. The problem is, how to
then talk about them. We cannot simply verbalize such a property at face
value, e.g. as “the room is 14.67m2.” Humans prefer more qualitative
descriptions, like “large” or “smaller.” Such qualitative descriptions are
called vague scalar predicates. Their exact interpretation is left vague –
that is to say, their exact interpretation is relative to a particular contextual
standard which defines the scale along which comparisons are to be made.
Zender and Pronobis propose a method to make it possible for the robot to
introspect what variation it has perceived for a particular scalar property
among instances of a class, or among classes as such. This form of self-
understanding enables the robot to talk in a human-like, qualitative fashion
about scalar properties, while at the same time (indirectly) indicating to the
human what it considers as prototypical values (by comparison).

Verbalization of categorical knowledge Sometimes it is more impor-
tant for the robot to make clear what it does not understand, than
to say what it does know about. This helps the human to figure out
what the robot might be after. Zender and Kruijff (§2.1.4) discuss
a preliminary method for a robot to introspect the knowledge it has

EU FP7 CogX 3



DR 6.1: Transparency in situated dialogue for interactive learning Kruijff et al

about an entity in the world. The method establishes what the robot
does and does not know about that entity relative to one or more
categories in a known ontology. The resulting identified “gaps” are
those properties for the entity that the robot does not know about,
but which it would need to know to establish the entity as an instance
of a particular category. Zender and Kruijff subsequently discuss how
the robot can then verbalize this self-understanding, in terms of what
the category, the instance and its known properties, and the missing
properties identified as gaps.

Zender and Kruijff consider a simple, but often occurring form of “gap”:
namely, when a robot is lacking property information about an object or an
area to fully determine whether it is an instance of a particular category.
Consider again the example given earlier. A human and a robot enter a new
room, which the human indicates is a kitchen. The robot can categorize
the place as such, and even sees a water cooker. However, based on the
knowledge it has about kitchens, it would also expect a coffee machine to
be there. Zender and Kruijff show how the robot can determine such a
property of “having a coffee machine” as a gap in its knowledge about this
area (as being a kitchen). To convey this self-understanding, Zender and
Kruijff discuss how the robot can then verbalize this gap, together with a
description of what it does know about the area-as-a-kitchen. “Ok, this
looks like a larger kitchen. [... ] I can see a water cooker. Is there also a
coffee machine?”

The novelty in all these methods is the role context plays in determin-
ing how a robot should understand or verbalize a reference, or what it
knows about something (be that an instance or a class). Traditional meth-
ods focus primarily on content-determination, typically assuming a context
to be given. Our methods combine content-determination with context-
determination. Context-determination can thereby mean both situated con-
text (e.g. references in large-scale space) and epistemological context (e.g.
what beliefs a robot has, or attributes to other agents, or what it knows
about how to compare across classes). With that we go beyond the original
objectives of Task 6.1, which focused only on verbalizing knowledge about
visual objects in a current scene.

1.2.2 Clarification

The goal of Task 6.2 was to develop methods so a robot could clarify or
expand what it understands about the environment. These methods were to
be continual, in the sense that it should be possible to monitor the execution
of a plan, and where necessary adapt or expand it. We have achieved this
goal in the following ways.
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Determining epistemological context in questions Transparency and
scaffolding in dialogue for learning depend on epistemological context:
how questions appeal to common ground, what private beliefs they are
based in – and what answers an interlocutor would like to have. Kruijff
& Brenner (§2.2.1) explore methods for determining such appropriate
epistemological contexts, considering transparency and scaffolding ex-
plicitly as referential qualities of a question. These contexts are then
connected in a notion of question nucleus which reflects what is being
asked after, in reference to beliefs (aboutness, transparency) and in-
tentions (resolvedness, scaffolding). A question nucleus provides the
basis for formulating a question as a dialogue.

A robot should not just go and blurt out a question – this may not lead
to the human given the desired answer. A nice example of this is provided
by the former CoSy Explorer system [37]. The robot classified every narrow
passage it went through (< 70cm) as a door. Sometimes it would realize that
some previous passage probably wasn’t a door, just an artifact of driving
around in a cluttered environment. At that point of realization, the robot
would just ask “Is there a door here?” Out of the blue, without further
indication of where there ought to be a door, a human would typically say
“yes” – understanding the robot to mean, whether there would be a door to
this room. Which, of course, was not what the robot meant. But what it
failed to do was to properly take into account what the human would know
(she didn’t know that “here” was supposed to refer to that narrow passage),
and how to formulate its question accordingly. Kruijff and Brenner look
into how the robot could use its multi-agent belief models to determine how
to best pose a question. They start by formulating ways for the robot to
introspect its beliefs to determine what the human knows about something
the robot wants to ask a question about. This determines how to refer the
entity under discussion – making it transparent what the robot is talking
about. A second step is to use what the robot holds as private knowledge
and beliefs about the entity, to properly indicate what it would like to know
more about.

Continual comprehension and production of clarification Brenner et
al (§2.2.2) consider how a continual approach for planning and execut-
ing dialogues can be applied to human-robot interaction, in general.
Kruijff & Janiček (§2.2.3) combine these insights with weighted abduc-
tion. The approach covers comprehending and producing dialogue and
combines intention, attentional state, and multi-agent belief modeling.
Kruijff & Janiček focus on clarification dialogues, covering Clark-style
grounding from communicative levels to information requests concern-
ing situated understanding.
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Robots don’t always understand everything. Sometimes they realize
that, but sometimes they don’t, and attribute some property to an object
that is just plain wrong. Kruijff & Janiček try to capture such forms of
collaboration between a human and a robot, dealing explicitly with the
continual nature of such collaboration – things may go wrong and then need
to be corrected. A typical example that they try to capture is the following:

(1) Human places an object on the table

(2) Robot: ”That is a brown object.”

(3) Human: ”It is a red object.”

(4) Robot: ”Ok. What kind of object is it?”

(5) Human: ”Yes.”

(6) Robot: ”Aha. But what KIND of object is it?”

(7) Human: ”It is a box.”

Kruijff & Janiček explicitly use the belief models of the robot, for the
robot to figure out how it could use beliefs and observations to establish
why a human may have said something, and how to best achieve what the
robot itself is after (in terms of updating its beliefs). They make it possible
for the robot to assert a belief (“this is a brown object”) but then having
to retract it when being corrected by a human (”it is a red object”) and
establishing the corrected belief as a shared belief about the scene (”ok”).
At the same time, using what it understands to be shared, the robot can
make safe assumptions about how it can refer to objects. Attributed beliefs
also make it possible for the robot to assume that the human may know
an answer to a question. In its reasoning the robot can then assert that
the human will provide it with that information (“what kind of object is
it?”). With that the robot first of all explicitly represents the gap in its
knowledge (what it would like to know). But this also provides a level at
which introspection can track the extent to which the gap has actually been
resolved. The robot checks the updates it can make to its belief model
in response to its question, and can use the “self”-understood failure to
do so to persist in trying to get an appropriate answer from the human.
Humans are not always fully cooperative, so when the human replies with
“yes” (as in “coffee or tea? yes please”) she does not provide an answer
to the question. (Non-cooperative behavior is a problem usually “assumed
away” in approaches to dialogue; Kruijff & Janiček don’t, dealing with it
in a continual way as argued for in Brenner et al, §2.2.2.) The robot can
figure this out (using the approach of Kruijff & Brenner, §2.2.1), repeat the
question, to then finally get the desired kind of answer (“it is a box.”).

Contextually appropriate intonation for questions Kruijff-Korbayová
et al (§2.2.4) develop new methods for determining information struc-
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ture and intonation for a range of utterance types, including com-
mands, assertions, and -most importantly- questions. Information
structure and its reflection through e.g. intonation can make it clear
to the hearer how the utterance relates to the preceding context, and
what it focuses on. As with assertions, where intonation can change
the dynamic potential of their interpretation, intonation in a ques-
tion indicates its dynamics in terms of what it is after: what type of
answers is expected. Kruijff-Korbayová et al outline experiments to
verify these theoretical insights in an empirical way.

There is more to saying something than simply uttering a sequence of
words. In English, the intonation of an utterance reflects what it is that
someone is talking about, and what she would like to focus on. There is a
marked difference between assertions like “this is a RED box” (capitalization
indicating stress) versus “this is a red BOX,” or questions like “is this a red
BOX?” or “is this is a RED box?” Getting this right is crucial for the robot
to convey what it is after. Kruijff-Korbayová et al (§2.2.4) describe how the
robot can use private and shared beliefs, and what is currently attended to,
to help drive how to formulate a contextually appropriate intonation for an
utterance. In combination with the previous achievements, this rounds it
all off: We can determine what beliefs and gaps play a role in formulating
e.g. a question, we can manage a dialogue around that question, we can
verbalize its content and references in a contextually appropriate way, and
formulate all that with the right intonation.

The novelty in all these methods is thus how they achieve to flexibly
combine intention, multi-agent beliefs and attentional state in continual pro-
cessing of dialogue. Based on existing approaches, these methods explore
how the robot can introspect the private and shared beliefs it entertains, sit-
uate beliefs and intentions, and then use that as a background against which
it can handle and overcome pervasive aspects such as uncertainty, and the
typically large-scale spatiotemporal nature of action and interaction.

1.2.3 Robust processing of spoken situated dialogue

The success of dialogue-based human-robot interaction ultimately stands or
falls with how well a robot understands what a human says. Unfortunately,
spoken dialogue is difficult to understand. Utterances are typically incom-
plete or contain disfluencies, they may be ungrammatical, or a speaker may
correct herself and restart part of an utterance. This requires processing of
spoken dialogue to be robust. At the same time, we cannot sacrifice deep
understanding for robustness, as is often done. In the end a robot needs to
understand what a human said, to be able to act on it. That is the whole
point of situated dialogue as we consider it here.

In addition to Tasks 6.1 and 6.2, we have continued our efforts in robust
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processing of spoken situated dialogue. These efforts started already in
CoSy; the results reported here build up on these previous efforts but have
been achieved entirely during year 1 in CogX.

Integration of context in speech recognition and incremental parsing
Lison & Kruijff (§2.3.1) present a novel approach in which context in-
formation is used in a process combining speech recognition and in-
cremental parsing. The approach considers the entire processing from
incoming audio signal to establishing a contextually appropriate in-
terpretation of an utterance. Lison & Kruijff show that substantial
improvements on robustness in processing can be achieved (measured
against a WoZ corpus) by including context information (e.g. salient
objects, actions). This information is used to bias lexical activation
probabilities in the language model for speech recognition, and to guide
discriminative models for parse ranking applied at the end of an in-
cremental parsing process.

Incremental contextual pruning in parsing Lison & Kruijff (§2.3.2) con-
sider the application of discriminative models during incremental pars-
ing. After each step, context-sensitive discriminative models are ap-
plied to rank analyses. Using a beam of width 30, Lison & Kruijff
show how parsing time can be reduced by 50% without suffering any
significant reduction in performance (measured on a WoZ corpus).

When a human processes visually situated dialogue, she uses what she
sees in the scene and how she knows that scene to help her understand what
someone else might be saying about that scene. Lison & Kruijff explore
how this idea can be used to make spoken dialogue processing in human-
robot interaction more robust. When a robot perceives objects in a scene,
it uses that information to activate expressions it could associate with such
objects. For example, if it sees a ball, it would activate expressions like
“round,” “pick up,” etcetera. These expressions are phrases the robot ex-
pects to hear. They help the robot to anticipate what a human is likely to
say, when talking about that scene. Lison & Kruijff show that the robot can
use this information to deal with the uncertainty inherent to speech recog-
nition. Doing it in a probabilistic way, it is part of the broader approach in
CogX to using probabilistic representations to capture uncertainty in initial
interpretations of sensory signals. By maintaining all the possible hypothe-
ses we can then use knowledge from other modalities to bias how the audio
signal is interpreted in terms of possible word sequences. This is an exam-
ple of a very simple kind of self-understanding, since we are representing
the possibilities and uncertainties in our interpretations. Lison & Kruijff
take this even further, by using the same information about the context
to then help parsing to discriminate between possible analyses, to end up
with a parse that represents the most likely semantic interpretation of the
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audio signal in the given context. Using this sort of discrimination-based-
on-context during parsing actually helps to reduce the time needed to parse
an utterance.

1.3 Relation to the state-of-the-art

Below we briefly discuss how the obtained results relate to the current state-
of-the-art. We refer the reader to the annexes for more in-depth discussions.

1.3.1 Verbalisation

Task 6.1 considered the use of methods for comprehending and producing
referring expressions to cover verbalization of knowledge, and contextual ref-
erence. For such expressions to appropriately refer to the intended referent,
they need to meet a number of constraints, to help a hearer identify what is
being talked about. First, an expression needs to make use of concepts that
can be understood by the hearer. This becomes an important considera-
tion when we are dealing with a robot which acquires its own models of the
environment and is to talk about the contents of these. Second, the expres-
sion needs to contain enough information so that the hearer can distinguish
the intended referent from other entities in the world or a belief state, the
so-called potential distractors. For this it is necessary that the robot takes
the differentiation between private and shared beliefs into account, as we
already saw earlier. Finally, this needs to be balanced against the third con-
straint: Inclusion of unnecessary information should be avoided so as not to
elicit false implications on the part of the hearer.

Zender & Pronobis (§2.1.3) particularly deal with the first aspect. Given
that a robot autonomously acquires knowledge about the world, how can
such properties be used to verbalize what the robot knows? Existing work
on modeling scalar properties considers the use of contextual standards, to
determine how to realize such properties as “vague” expressions involving
gradable adjectives [15, 34]. This research primarily focuses on instances
– in a given visual setting. Zender & Pronobis move beyond this, by con-
sidering how scalar properties can be modeled as probabilistic distributions
over their values – and then use these distributions to construct contextual
standards. This makes it possible to consider distributions solely across
observed instances (like [15]), and also across instances within a class (con-
sidering values to be prototypical values within a class), and across classes.
Within-class and across-class contextual standards are not considered (nor
immediately possible) in [15]. They are, however, necessary to generate
contextually appropriate verbalizations using comparatives. For example,
consider the average office to have 8m2. Talking about two offices, with
office1 measuring 12m2 and office2 18m2, it would be more appropriate to
talk about office1 as “the smaller office,” not as “the small office.” The rea-
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son being that it is still bigger than the average office. These ideas are based
on insights in categorization and prototypicality originating with Brown [7]
and Rosch [53]: some instances in a category are more prototypical of that
category than others.

Zender et al (§2.1.1, §2.1.2) focus on the second and third aspect, namely
the problem of including the right amount of information that allows the
hearer to identify the intended referent. According to the seminal work on
generating referring expressions (GRE) by Dale and Reiter [14], one needs
to distinguish whether the intended referent is already in the hearer’s focus
of attention or not. This focus of attention can consist of a local visual
scene (visual context) or a shared workspace (spatial context), but also
contains recently mentioned entities (modeled as beliefs in the belief model
associated with the dialogue context). If the intended referent is already
part of the current context, the GRE task merely consists of singling out the
referent among the other members of the context, which act as distractors.
In this case the generated referring expression (RE) contains discriminatory
information, e.g. “the red ball” if several kinds of objects with different
colors are in the current context. If, on the other hand, the referent is not
in the hearer’s focus of attention, an RE needs to contain what Dale and
Reiter call navigational, or attention-directing information. The example
they give is “the black power supply in the equipment rack,” where “the
equipment rack” is supposed to direct the hearers attention to the rack and
its contents.

While most existing GRE approaches assume that the intended referent
is part of a given scene model, the context set, very little research has inves-
tigated the nature of references to entities that are not part of the current
context. The domain of such systems is usually a small visual scene, e.g. a
number of objects, such as cups and tables, located in the same room, other
closed-context scenarios, including a human-robot collaborative table-top
scenario [14, 31, 35, 33]. What these scenarios have in common is that they
focus on a limited part of space, which is immediately and fully observable:
small-scale space.

In contrast, mobile robots typically act in more complex environments.
They operate in large-scale space, i.e. space “larger than what can be per-
ceived at once” [39]. At the same time they do need the ability to understand
and produce verbal references to things that are beyond the current visual
and spatial context. When talking about remote places and things outside
the current focus of attention, the task of extending the context becomes
key.

Paraboni et al. [46] are among the few to address this problem. They
present an algorithm for context determination in hierarchically ordered do-
mains, e.g. a university campus or a document structure. Their approach is
mainly targeted at producing textual references to entities in written docu-
ments (e.g. figures and tables in book chapters), and consequently they do
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not touch upon the challenges that arise in a physically and perceptually
situated dialogue setting. Nonetheless the approach presents a number of
contributions towards GRE for situated dialogue in large-scale space. An
appropriate context, as a subset of the full domain, is determined through
Ancestral Search. This search for the intended referent is rooted in the
“position of the speaker and the hearer in the domain” (represented as d),
a crucial first step towards situatedness. Their approach suffers from the
shortcoming that their GRE algorithm treats spatial relationships as one-
place attributes. For example a spatial containment relation that holds
between a room entity and a building entity (“the library in the Cockroft
building”) is given as a property of the room entity (building name = Cock-

roft), rather than a two-place relation (in(library,Cockroft)). Thereby
they avoid recursive calls to the GRE algorithm, which would be necessary
if the intended referent is related to another entity that needs to be properly
referred to. Zender et al argue that this imposes an unnecessary restriction
onto the design of the knowledge base. Moreover, it makes it hard to use
their context determination algorithm as a sub-routine of any of the many
existing GRE algorithms. They show how these shortcomings can be over-
come, in an approach that integrates context- and content-determination as
separate routines. The approach is furthermore bi-directional, meaning it
can be used for both producing and comprehending referring expressions.

Zender & Kruijff (§2.1.4) present preliminary research on a method that
enables a robot to introspect what it knows and doesn’t know about an
instance, relative to a given category. The method is based on the idea of
querying the robot’s ontological knowledge to retrieve the properties that
an entity would need to fulfill to be an instance of that given category. The
robot can then compare these properties to those that it already knows
for the instance. Working under an open world assumption, the robot can
then consider any remaining properties as gaps, indicating ignorance. This
basic idea is similar to slot-filling strategies in information states-based dia-
logue management [63]. An information state is a set of records of what we
would like to know, and what we already know. Any open records identify
“gaps” that we need to fill next – for example, if our state reflects book-
ing a train ticket, records may indicate departure, arrival, destination, etc.
A dialogue system for booking a ticket then will ask the user for all these
bits of information, to ensure it can get the user the right ticket. Here we
face something similar: obtain all the information for a set of properties so
that we can establish the entity as an instance of a given category. Hav-
ing said that, Zender & Kruijff indicate how the method has the potential
to go beyond a slot-filling strategy, in several ways. They argue how the
method can extended to deal with uncertainty in categorization, and use
weighted abduction of the kind proposed by Kruijff & Janiček (§2.2.3) to
provide a “lowest-cost” way of establishing the right category for the entity.
This again follows up on the general CogX perspective, integrating different
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sources of information to help overcome uncertainty in understanding (per-
ceptual data, ontological knowledge) to drive inferences towards establishing
an interpretation (weighted abduction). Zender & Kruijff extend a recent
method for verbalizing ontological structure [55] to properly reflect what the
robot knows about the category, the instance, and the gaps it has identified.

1.3.2 Clarification

Kruijff & Brenner (§2.2.1) propose the notion of question nucleus. This
notion captures the information pertaining to a question. A description
logic-like formalism is used to represent such information, as a conceptual
structure in which propositions have ontological sorts and unique indices,
and can be related through named relations. A question can then be repre-
sented as a structure in which we are querying one or more aspects of such a
representation [23, 36]. The formalism allows everything to be queried: re-
lations, propositions, sorts. The nucleus altogether comprises the situation
(the ”facts”) and the beliefs that have led up to the question, the question
itself, and the goal content which would resolve the question. The question
nucleus thus integrates Ginzburg’s notions of aboutness and (potential) re-
solvedness, and includes an explicit notion of what information is shared,
and what is privately held information (cf. [42, 26]). Intuitively, it thus
represents what the robot is asking about (aboutness), what it would like
to know (resolvedness), and how it can appeal to shared beliefs or needs to
make clear private beliefs when raising the question. The contributions the
approach aims for are, briefly, as follows. Purver and Ginzburg develop an
account for generating questions in a dialogue context [51, 50]. Their focus
was, however, on clarification for the purpose of dialogue grounding. A sim-
ilar observation can be made for recent work in HRI [41]. Kruijff & Brenner
are more interested in formulating questions regarding issues in building up
situation awareness, including the acquisition of new ways of understand-
ing situations (cf. also [36]). In issue-based (or information state-based)
dialogue systems [40], the problem of how to phrase a question is greatly
simplified because the task domain is fixed. There is little need for paying
attention to transparency or scaffolding, as it can be assumed the user un-
derstands the task domain. This is however an assumption that cannot be
made for our setting.

Kruijff & Janiček (§2.2.3) provide a model for capturing the continual
nature of collaborative activity. They base their approach on an algorithm
in which a form of weighted abduction plays a core role. Weighted abduction
is “inference to the best explanation” – meaning, in this context, the best
explanation for why someone is saying something, and formulating that ex-
planation in terms of an intention, an update to a belief model, and possible
updates to an attentional state. Using weighted abduction for interpreta-
tion of natural language was introduced by Hobbs et al in [30]. Kruijff &
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Janiček use an extended form, proposed by Stone & Thomason [60, 61, 62].
Stone & Thomason’s approach integrates attentional state, intention, and
beliefs. Their attentional state captures those entities that are currently “in
focus” or highly salient in the context. (Kruijff & Janiček turn this into
beliefs about such entities.) The approach is related to other collaborative
models of dialogue [27, 42, 26], and provides a single model for both compre-
hension and production. Stone & Thomason’s notion of “context” provides
for a more flexible way of resolving contextual references than classical dis-
course theories, though. Beliefs, intentions, and attentional state can all
co-determine the conditions on resolving a reference – rather than that res-
olution is solely determined by structural aspects of discourse (like in e.g.
SDRT [2]). This provides a suitable bridge to the continuum between action
and interaction, which Kruijff & Brenner have argued for, cf. Brenner et al
§2.2.2. Kruijff & Janiček propose to extend Stone & Thomason’s approach
with a more explicit notion of situated multi-agent belief models, and they
introduce assertions into proofs. An assertion is a statement whose “future
necessary truth” needs to be assumed for a proof to conclude. This notion
of assertion is taken from continual planning [6] where it is used to state the
necessity of a future observation. Depending on the verification of the obser-
vation, an assertion triggers explicit expanding or revision of a plan. Within
an abductive proof, an assertion turns the corresponding action plan into
a continual plan, to achieve the inferred update to the agent’s belief model
and attentional state. Assertions thus make Stone & Thomason’s intuitive
idea of “checkpoints” more precise. Kruijff & Janiček explore the use of as-
sertions in abductive proofs in the context of producing and comprehending
clarification dialogues.

Kruijff-Korbayová et al (§2.2.4) explore intonation in situated dialogue,
with a particular focus on intonation in questions like clarification requests.
Intonation of clarification requests has so far received relatively little atten-
tion in the literature. Previous work on controling accent placement and
type in dialogue system output based on information structure assigment
w.r.t. the context all concentrated on the assignment of intonation in state-
ments [49, 38, 4]. The seminal work of [51] which laid out a classification of
the forms and functions of clarification requests based on extensive corpus
analysis does not take intonation into account. Pioneering in this respect
is the study of CRs in German task-oriented human-human dialogues in
[52], who found that the use of intonation seemed to disambiguate clarifica-
tion types, with rising boundary tones used more often to clarify acoustic
problems than to clarify reference resolution. A series of production and
perception experiments with one-word grounding utterances in Swedish has
also shown differences in prosodic features depending on meaning (acknowl-
edgment vs. clarification of understanding or perception), and that sub-
jects differentiate between the meanings accordingly, and respond differently
[17, 58]. The work by Kruijff-Korbayová et al extends the use of information
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structure to control the intonation of dialogue system output beyond answers
to information-seeking questions: they include acknowledgments as well as
clarification requests, and ultimately other types of questions. They include
both fragmentary grounding feedback and full utterances, and address vary-
ing placement of pitch accents depending on context and communicative
intention.

1.3.3 Robust processing of spoken situated dialogue

Lison & Kruijff’s work on robust processing (§2.3.1, §2.3.2) aims to address
two central issues in spoken dialogue processing: (1) disfluencies in verbal
interaction and (2) speech recognition errors.

We know from everyday experience that spoken language behaves quite
differently from written language. We do not speak the way we write. The
difference of communicative medium plays a major role in this discrepancy.
A speech stream offers for instance no possibility for “backtracking” – once
something has been uttered, it cannot be erased anymore. And, contrary
to written language, the production of spoken language is strongly time-
pressured. The pauses which are made during the production of an utterance
do leave a trace in the speech stream. As a consequence, spoken dialogue
is replete with disfluencies such as filled pauses, speech repairs, corrections
or repetitions [56]. A speech stream is also more difficult to segment and
delimitate than a written sentence with punctuation and clear empty spaces
between words. In fact, the very concepts of “words” and “sentences”, which
are often taken as core linguistic objects, are much more difficult to define
with regard to spoken language. When we analyse spoken language, we ob-
serve a continuous speech stream, not a sequence of discrete objects. Hence
the presence of many discourse markers in spoken dialogue, which play an
important role in determining discourse structure. A final characteristic of
spoken dialogue which is worth pointing out is that few spoken utterances
take the form of complete sentences. The most prototypical example is the
“short answer” in response to queries, but many other types of fragments or
non-sentential utterances can be found in real dialogues [19]. This is mainly
due to the interactive nature of dialogue – dialogue participants heavily rely
on what has been said previously, and seek to avoid redundancies. As a
result of all these factors, spoken language contains much more disfluent,
partial, elided or ungrammatical utterances than written language. The
question of how to accommodate these types of ill-formed input is a major
challenge for spoken dialogue systems.

A second, related problem is automatic speech recognition (ASR). Speech
recognition is the first step in comprehending spoken dialogue, and a very
important one. For robots operating in real-world, noisy environments, and
dealing with utterances pertaining to complex, open-ended domains, this
step is also highly error-prone. In spite of continuous technological advances,
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the performance of ASR indeed remains for most tasks at least an order
of magnitude worse than that of human listeners [44]. And contrary to
human performance, ASR accuracy is usually unable to degrade gracefully
when faced with new conditions in the environment (ambient noise, bad
microphone, non-native or regional accent, variations in voice intensity, etc.)
[12]. This less-than-perfect performance of ASR technology seriously hinders
the robustness of dialogue comprehension systems, and new techniques are
needed to alleviate this problem1.

The papers included in this deliverable present an integrated approach
to dealing with these problems. The approach has three defining character-
istics:

1. It is a hybrid approach, combining symbolic and statistical methods
to process spoken dialogue. The implemented mechanisms combine
fine-grained linguistic resources (a CCG lexicon) with statistical infor-
mation (the ASR language model and the discriminative model). The
resulting system therefore draws from the best of both worlds and is
able to deliver both deep and robust language processing.

2. It is also an integrated approach to spoken dialogue comprehension.
It goes all the way from the signal processing of the speech input
up to the logical forms and the pragmatic interpretation. The various
components involved in dialogue processing interact with each other in
complex ways to complement, coordinate and constrain their internal
representations.

3. Finally, it is also a context-sensitive approach. Contextual information
is used at each processing step, either as an anticipatory mechanism
(to guide expectations about what is likely to be uttered next), or as a
discriminative mechanism (to prune interpretations which are contex-
tually unlikely). These mechanisms are implemented by the dynamic
adaptation of the ASR language model and the use of contextual fea-
tures in the discriminative model for robust parsing.

This approach compares to the state of the art in robust processing of
spoken dialogue, as follows. Commercial spoken dialogue systems tradition-
ally rely on shallow parsing techniques such as “concept spotting”. In this
approach, a small hand-crafted, task-specific grammar is used to extract
specific constituents, such as locative phrases or temporal expressions, and
turn these into basic semantic concepts [65, 32, 3, 16, 1]. These techniques
are usually very efficient, but also present several important shortcomings,

1The speech recogniser included into our robotic platform – Nuance Recognizer v8.5
with statistical language models – yields for instance a word error rate (WER) of about
20 % when evaluated on real spoken utterances. Thus, more than one word out of five in
each utterance is actually misrecognised by the system.
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as they are often highly domain-specific, fragile, and require a lot of devel-
opment and optimisation effort to implement. In more recent years, several
new techniques emerged, mainly based on statistical approaches. In the
CHORUS system [47], the utterances are modeled as Hidden Markov Mod-
els [HMMs], in which hidden states correspond to semantic concepts and
the state outputs correspond to the individual words. HMMs are however
a flat-concept model – the semantic representation is just a linear sequence
of concepts with no internal structure. To overcome this problem, various
stochastic parsing techniques have been proposed, based either on Proba-
bilistic Context Free Grammars [43, 20], lexicalised models [13, 10], data-
oriented parsing [5, 57], or constrained hierarchical models [29]. A few recent
systems, such as the SOUP parser, also attempt to combine shallow pars-
ing with statistical techniques, based on a hand-crafted grammar associated
with probabilistic weights [22]. More rarely, we can also find in the literature
some descriptions of spoken dialogue systems performing a real grammatical
analysis, usually along with a “robustness” mechanism to deal with speech
recognition errors, extra-grammaticality [64, 9] or ill-formed inputs [66].

Compared to the state of the art, our approach is unique in the sense
that it is, to the best of our knowledge, the only one which attempts to
combine deep grammatical analysis together with statistical discriminative
models exploiting both linguistic and contextual information. This has ar-
guably several advantages. Using a deep processing approach, we are able
to extract full, detailed semantic representations, which can then be used
to draw inferences and perform sophisticated dialogue planning. This is not
possible with shallow or statistical methods. At the same time, due to the
grammar relaxation mechanism and the discriminative model, we do not
suffer from the inherent fragility of purely symbolic methods. Our parsing
method is particularly robust, both to speech recognition errors and to ill-
formed utterances. Finally, contrary to “concept spotting” techniques, our
approach is much less domain-specific: the parser relies on a general-purpose
lexicalised grammar which can be easily reused in other systems.

Our approach is also original in its tight integration of multiple knowl-
edge sources – and particularly contextual knowledge sources – all through
the utterance comprehension process. Many dialogue systems are designed
in a classical modular fashion, where the output of a component serves as
direct input for the next component, with few or no interactions other than
this pipelined exchange of data2. Our strategy, however, is to put the tight,
multi-level integration of linguistic and contextual information at the very
center of processing.

As a final note, we would like to stress that our dialogue comprehension
system also departs from previous work in the way we define “context”.

2Some interesting exceptions to this design include integrated approaches such as [45,
21].
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Many recent techniques have been developed to take context into account
in language processing (see e.g. [28]). But the vast majority of these ap-
proaches take a rather narrow view of context, usually restricting it to the
mere dialogue/discourse context. Our dialogue comprehension system is one
of the only ones (with the possible exceptions of [54, 8, 25]) to define context
in a multimodal fashion, with a special focus on situated context.
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2 Annexes

2.1 Verbalization

2.1.1 Zender et al. “A Situated Context Model for Resolution
and Generation of Referring Expressions” (ENLG’09)

Bibliography H. Zender, G.J.M. Kruijff, and I. Kruijff-Korbayová. “A
Situated Context Model for Resolution and Generation of Referring Ex-
pressions.” In: Proceedings of the 12th European Workshop on Natural
Language Generation (ENLG 2009). pp. 126–129. Athens, Greece. March
2009.

Abstract The background for this paper is the aim to build robotic assis-
tants that can naturally interact with humans. One prerequisite for this is
that the robot can correctly identify objects or places a user refers to, and
produce comprehensible references itself. As robots typically act in envi-
ronments that are larger than what is immediately perceivable, the problem
arises how to identify the appropriate context, against which to resolve or
produce a referring expression (RE). Existing algorithms for generating REs
generally by-pass this problem by assuming a given context. In this paper,
we explicitly address this problem, proposing a method for context determi-
nation in large-scale space. We show how it can be applied both for resolving
and producing REs.

Relation to WP The paper makes it possible for the robot to discuss
objects and places beyond the currently perceivable situation. That makes
it unnecessary for a robot and a human to be in the very place where there
is something a robot needs to be explained.
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2.1.2 Zender et al. “Situated Resolution and Generation of Spa-
tial Referring Expressions for Robotic Assistants.” (IJ-
CAI’09)

Bibliography H. Zender, G.J.M. Kruijff, and I. Kruijff-Korbayová. ”Situ-
ated Resolution and Generation of Spatial Referring Expressions for Robotic
Assistants.” In: Proceedings of the Twenty-first International Joint Confer-
ence on Artificial Intelligence (IJCAI-09). Pasadena, CA, USA. July 2009.

Abstract In this paper we present an approach to the task of gener-
ating and resolving referring expressions (REs) for conversational mobile
robots. It is based on a spatial knowledge base encompassing both robot-
and human-centric representations. Existing algorithms for the generation
of referring expressions (GRE) try to find a description that uniquely identi-
fies the referent with respect to other entities that are in the current context.
Mobile robots, however, act in large-scale space, that is environments that
are larger than what can be perceived at a glance, e.g. an office building
with different floors, each containing several rooms and objects. One chal-
lenge when referring to elsewhere is thus to include enough information so
that the interlocutors can extend their context appropriately. We address
this challenge with a method for context construction that can be used for
both generating and resolving REs two previously disjoint aspects. Our
approach is embedded in a bi-directional framework for natural language
processing for robots.

Relation to WP The paper further explores how a robot can discuss
objects and places outside the current situation (cf. also §2.1.1). The pa-
per shows how determining the appropriate context for a reference can be
integrated in a bi-directional approach, to enable the robot to both produce
and comprehend contextually appropriate references.
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2.1.3 Zender and Pronobis. “Verbalizing vague scalar predicates
for autonomously acquired ontological knowledge” (report)

Bibliography H. Zender and A. Pronobis. “Verbalizing vague scalar pred-
icates for autonomously acquired ontological knowledge” (report)

Abstract The paper reports on ongoing research in generating and under-
standing verbal references to entities in the robot’s environment. The paper
focuses on features of spatial entities that are commonly expressed as vague
scalar predicates in natural language, such as, e.g., size. The paper proposes
an approach for characterizing such features in terms of properties and dis-
tributions over their values. This leads to a basic notion of prototypicality
of property-values. Using this notion, the paper shows how different types
of contextual standards can be defined, which determine the contextually
appropriate use of a vague scalar predicate in linguistically describing a fea-
ture of a spatial entity. The approach goes beyond existing work in that it
allows for a variety of contextual standards (in class, across classes, across in-
stances) in describing features as vague scalar predicates, and by ultimately
basing these standards in models of the robot’s perceptual experience.

Relation to WP Typically a robot is provided with an initial ontology,
outlining the concepts and their relations considered relevant for understand-
ing the environment in which the robot is to act. Over time, the robot can
extend this ontology, for example with instances and properties that hold for
these. The report develops a new method for verbalizing knowledge about
autonomously acquired scalar properties for instances and their classes.
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2.1.4 Zender and Kruijff. “Verbalizing classes and instances in
ontological knowledge” (report)

Bibliography H. Zender and G.J.M. Kruijff. “Verbalizing classes and
instances in ontological knowledge” (report)

Abstract The paper reports preliminary research on verbalizing a robot’s
knowledge about an instance I of a particular category C. This covers both
what a robot knows, and what it does not (yet) know about the instance.
The paper considers a “gap” to be that information the robot misses to
establish a given property P for I, knowing that that property typically
applies to instances of C. The paper proposes a method for determining
which properties are classifiable as gaps for an instance relative to a cate-
gory. This method operates on the T- and A-box of an ontology. It provides
a general method for determining gaps, and is not specific to situated dia-
logue. The paper shows how the resulting characterization of available and
missing knowledge about I relative to C can then be verbalized, following
up an approach recently presented in [55]. The paper illustrates the method
on an example involving spatial entities, and discusses further research on
extending the method.

Relation to WP The report provides a first attempt at verbalizing on-
tological knowledge about classes and instances, with a particular focus on
verbalizing what a robot does not yet know about a particular instance (i.e.
a “gap”).
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2.2 Clarification

2.2.1 Kruijff and Brenner. “Phrasing Questions” (AAAI SS’09)

Bibliography G.J.M. Kruijff and M. Brenner. “Phrasing Questions.” In:
Proceedings of the AAAI 2009 Spring Symposium on Agents that Learn
from Human Teachers. Stanford, CA. March 2009.

Abstract In a constructive learning setting, a robot builds up beliefs
about the world by interacting – interacting with the world, and with other
agents. Asking questions is key in such a setting. It provides a mechanism
for interactively exploring possibilities, to extend and explain the robot’s
beliefs. The paper focuses on how to linguistically phrase questions in dia-
logue. How well the point of a question gets across depends on how it is put.
It needs to be effective in making transparent the agent’s intentions and be-
liefs behind raising the question, and in helping to scaffold the dialogue such
that the desired answers can be obtained. The paper proposes an algorithm
for deciding what to include in formulating a question. Its formulation is
based on the idea of considering transparency and scaffolding as referential
aspects of a question.

Relation to WP The paper considers what beliefs to use as context for
a question (considered as a subdialogue). The paper defines the notion of a
question nucleus. This structure identifies beliefs that provide a background
for the question, the expected answers to the question, and a plan for formu-
lating the question. The identified beliefs provide the basis for determining
how to achieve transparency in phrasing the question, by relating aspects of
the question nucleus to private and shared beliefs.
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2.2.2 Brenner et al. “Continual Collaborative Planning for Sit-
uated Interaction” (report)

Bibliography M. Brenner, G.J.M. Kruijff, I. Kruijff-Korbayová, and N.A.
Hawes. “Continual Collaborative Planning for Situated Interaction.”

Abstract When several agents are situated in a common environment
they usually interact both verbally and physically. Human-Robot Interac-
tion (HRI) is a prototypical case of such situated interaction. It requires
agents to closely integrate dialogue with behavior planning, physical ac-
tion execution, and perception. The paper describes a framework called
Continual Collaborative Planning (CCP) and its application to HRI. CCP
enables agents to autonomously plan and realise situated interaction that
intelligently interleaves planning, acting, and communicating. The paper
analyses the behavior and efficiency of CCP agents in simulation, and on
two robot implementations.

Relation to WP The paper argues for the continual nature of dialogue
processing, reacting to the dynamics of the collaborative activity encom-
passing the actions of the different agents, and their interaction.
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2.2.3 Kruijff and Janiček. “Abduction for clarification in situ-
ated dialogue” (report)

Bibliography G.J.M. Kruijff and M. Janiček. “Abductive inference for
clarification in situated dialogue” (report)

Abstract A robot can use situated dialogue with a human, in an effort
to learn more about the world it finds itself in. When asking the human
for more information, it needs to be clear to the human, what the robot
is talking about. The robot needs to make transparent what it would like
to know more about, what it does know (or doesn’t), and what it is after.
Otherwise, the human is less likely to provide a useful answer to the robot.
They need to establish a common ground in. The paper presents ongoing
research on developing an approach for comprehending and producing (sub-
)dialogues for clarifying or requesting information about the world in which
establishing common ground in beliefs, intentions, and attention plays an
explicit role. The approach is based on Stone & Thomason’s abductive
framework [60, 61, 62]. This framework integrates intention, attentional
state, and dynamic interpretation to abductively derive an explanation on
what assumptions and intentions communicated content can be interpreted
as updating a belief context. The approach extends the framework of Stone
& Thomason with assertions, to provide an explicit notion of checkpoint,
and a more explicit form of multi-agent beliefs [6]. The approach uses these
notions to formulate clarification as continual process of comprehension and
production set in dialogue as a collaborative activity.

Relation to WP The report details a continual approach for managing
clarification dialogues, based on an extended form of weighted abductive in-
ference. The inference process covers both comprehension and production,
in an interleaved fashion. The approach integrates intention, attentional
state, and multi-agent belief models in a continual way of dealing with dia-
logue as a collaborative activity.
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2.2.4 Kruijff-Korbayová et al. “Contextually appropriate into-
nation of clarification in situated dialogue” (report)

Bibliography I. Kruijff-Korbayová, R. Meena, and G.J.M. Kruijff. “Con-
textually appropriate intonation of clarification in situated dialogue.” Re-
port.

Abstract When in doubt, ask. This paradigm very much applies to au-
tonomous robots which self-understand and self-extend in the environment
they find themselves. For this, it is essentially for these systems to learn
continuously, driven mainly by their own curiosity about the surroundings.
Spoken dialogue is a means through which a robot can clarify or extend
the acquired knowledge about the situated environment. This ability to
self-initiate a dialogue to actively seek information or clarifications besides
adding autonomy to a robot’s behavior also allows the robot to connect its
belief system to that of its listener. This access to respective belief systems
in a dialogue helps the participating agents in dialogue grounding. However,
for conversational robots raising clarification requests to seeking information
is not only limited to contextually appropriate lexical selection and utter-
ance content planning, but extends further to the generation of contextually
appropriate intonation. In the absence of contextually appropriate into-
nation, dialogue participants might be lead to maintain incongruous belief
state in wake of situational ambiguities that may arise in situated dialogue.
Use of contextually appropriate intonation in clarification statements will
enable the robot to rightly express its intentions to the human interlocutor.
In this work we develop an approach for determining contextually appropri-
ate intonation in clarification statements, for resolving situated ambiguities.
Following the approaches [24, 50, 51] to clarification in human dialogue,
we develop clarification strategies in human-robot dialogue for continuous
and cross-modal learning. Working in the lines of Steedman’s theory of in-
formation structure [59, 48] and [18], we propose and develop the notion
of information packaging in our clarification statements. We evaluate our
approach to generation of contextually appropriate intonations using psy-
cholinguistically plausible experimental setup.

Relation to WP When a robot raises a question, or more in general
says something in a given context, it is important for it to be clear how
the utterance relates to the preceding context – and what it focuses on.
Intonation is one such means to indicate this relation to context.
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2.3 Robust processing of spoken situated dialogue

Increased robustness, ultimately reflected as an improvement in understand-
ing what the user has said, contributes to efficient and effective dialogue:
the better the understanding, the less need for corrective measures (e.g.
clarification).

2.3.1 Lison and Kruijff. “An integrated approach to robust pro-
cessing of situated spoken dialogue.” (SRSL’09)

Bibliography P. Lison and G.J.M. Kruijff. “An integrated approach to
robust processing of situated spoken dialogue.” In: Proceedings of the Sec-
ond International Workshop on the Semantic Representation of Spoken Lan-
guage (SRSL’09). Athens, Greece. April 2009

Abstract Spoken dialogue is notoriously hard to process with standard
NLP technologies. Natural spoken dialogue is replete with disfluent, par-
tial, elided or ungrammatical utterances, all of which are difficult to accom-
modate in a dialogue system. Furthermore, speech recognition is known to
be a highly error-prone task, especially for complex, open-ended domains.
The combination of these two problems - ill-formed and/or misrecognised
speech inputs - raises a major challenge to the development of robust dia-
logue systems. We present an integrated approach for addressing these two
issues, based on an incremental parser for Combinatory Categorial Gram-
mar. The parser takes word lattices as input and is able to handle ill-formed
and misrecognised utterances by selectively relaxing its set of grammatical
rules. The choice of the most relevant interpretation is then realised via
a discriminative model augmented with contextual information. The ap-
proach is fully implemented in a dialogue system for autonomous robots.
Evaluation results on a Wizard of Oz test suite demonstrate very significant
improvements in accuracy and robustness compared to the baseline.

Relation to WP The paper describes an approach in which context in-
formation (salient entities, properties, and actions) is used to anticipate
likely word sequences (biasing the lexical activations of words in a language
model), and to discriminate (complete) parses. This yields improvements in
robustness, resulting in a lower word error rate (WER) and an improvement
in partial- and exact-matches of semantic representations against a WoZ
corpus.
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2.3.2 Lison and Kruijff, “Efficient parsing of spoken inputs for
human-robot interaction” (RO-MAN’09)

Bibliography P. Lison and G.J.M. Kruijff. “Efficient parsing of spoken
inputs for human-robot interaction.” In: Proceedings of the 18th IEEE
International Symposium on Robot and Human Interactive Communication
(RO-MAN’09). Toyama, Japan. September 2009.

Abstract The use of deep parsers in spoken dialogue systems is usually
subject to strong performance requirements. This is particularly the case
in human-robot interaction, where the computing resources are limited and
must be shared by many components in parallel. A real-time dialogue sys-
tem must be capable of responding quickly to any given utterance, even
in the presence of noisy, ambiguous or distorted input. The parser must
therefore ensure that the number of analyses remains bounded at every pro-
cessing step. The paper presents a practical approach to address this issue
in the context of deep parsers designed for spoken dialogue. The approach
is based on a word lattice parser combined with a statistical model for parse
selection. Each word lattice is parsed incrementally, word by word, and a
discriminative model is applied at each incremental step to prune the set of
resulting partial analyses. The model incorporates a wide range of linguis-
tic and contextual features and can be trained with a simple perceptron.
The approach is fully implemented as part of a spoken dialogue system for
human-robot interaction. Evaluation results on a Wizard-of-Oz test suite
demonstrate significant improvements in parsing time.

Relation to WP Whereas the (SRSL’09) paper only considers the uses
of discriminative models at the end of the parsing process, the current paper
employs discriminative models after each incremental step during parsing.
A discriminative models ranks all partial analyses, after which the top-30
ranked analyses are selected for further processing. The paper shows a 50%
improvement in parsing time, without any significant loss in performance
(partial/exact match). Improvements in processing time make it possible
for the system to have a faster response-time.
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Abstract

The background for this paper is the aim
to build robotic assistants that can “natu-
rally” interact with humans. One prereq-
uisite for this is that the robot can cor-
rectly identify objects or places a user
refers to, and produce comprehensible ref-
erences itself. As robots typically act
in environments that are larger than what
is immediately perceivable, the problem
arises how to identify the appropriate con-
text, against which to resolve or produce
a referring expression (RE). Existing al-
gorithms for generating REs generally by-
pass this problem by assuming a given
context. In this paper, we explicitly ad-
dress this problem, proposing a method for
context determination in large-scale space.
We show how it can be applied both for re-
solving and producing REs.

1 Introduction

The past years have seen an extraordinary increase
in research on robotic assistants that help users
perform daily chores. Autonomous vacuum clean-
ers have already found their way into people’s
homes, but it will still take a while before fully
conversational robot “gophers” will assist people
in more demanding everyday tasks. Imagine a
robot that can deliver objects, and give directions
to visitors on a university campus. This robot must
be able to verbalize its knowledge in a way that is
understandable by humans.

A conversational robot will inevitably face sit-
uations in which it needs to refer to an entity (an
object, a locality, or even an event) that is located
somewhere outside the current scene, as Figure 1
illustrates. There are conceivably many ways in
which a robot might refer to things in the world,
but many such expressions are unsuitable in most

Where is the 

IT Help desk? It is on the 

1st floor in 

building 3b.

it is at
<45.56, -3.92, 10.45>

Where is the 
IT help desk? It is on the 1st 

floor in building 
3B.

It is at

Figure 1: Situated dialogue with a service robot

human-robot dialogues. Consider the following
set of examples:

1. “position P = 〈45.56,−3.92, 10.45〉”
2. “Peter’s office no. 200 at the end of the cor-

ridor on the third floor of the Acme Corp.
building 3 in the Acme Corp. complex, 47
Evergreen Terrace, Calisota, Earth, (...)”

3. “the area”
These REs are valid descriptions of their respec-
tive referents. Still they fail to achieve their com-
municative goal, which is to specify the right
amount of information that the hearer needs to
uniquely identify the referent. The next REs might
serve as more appropriate variants of the previous
examples (in certain contexts! ):

1. “the IT help desk”
2. “Peter’s office”
3. “the large hall on the first floor”

The first example highlights a requirement on the
knowledge representation to which an algorithm
for generating referring expressions (GRE) has ac-
cess. Although the robot needs a robot-centric rep-
resentation of its surrounding space that allows it
to safely perform actions and navigate its world,
it should use human-centric qualitative descrip-
tions when talking about things in the world. We



do not address this issue here, but refer the inter-
ested reader to our recent work on multi-layered
spatial maps for robots, bridging the gap between
robot-centric and human-centric spatial represen-
tations (Zender et al., 2008).

The other examples point out another impor-
tant consideration: how much information does the
human need to single out the intended referent
among the possible entities that the robot could be
referring to? According to the seminal work on
GRE by Dale and Reiter (1995), one needs to dis-
tinguish whether the intended referent is already
in the hearer’s focus of attention or not. This focus
of attention can consist of a local visual scene (vi-
sual context) or a shared workspace (spatial con-
text), but also contains recently mentioned entities
(dialogue context). If the referent is already part
of the current context, the GRE task merely con-
sists of singling it out among the other members
of the context, which act as distractors. In this
case the generated RE contains discriminatory in-
formation, e.g. “the red ball” if several kinds of ob-
jects with different colors are in the context. If, on
the other hand, the referent is not in the hearer’s fo-
cus of attention, an RE needs to contain what Dale
and Reiter call navigational, or attention-directing
information. The example they give is “the black
power supply in the equipment rack,” where “the
equipment rack” is supposed to direct the hearers
attention to the rack and its contents.

In the following we propose an approach for
context determination and extension that allows a
mobile robot to produce and interpret REs to enti-
ties outside the current visual context.

2 Background

Most GRE approaches are applied to very lim-
ited, visual scenes – so-called small-scale space.
The domain of such systems is usually a small vi-
sual scene, e.g. a number of objects, such as cups
and tables, located in the same room), or other
closed-context scenarios (Dale and Reiter, 1995;
Horacek, 1997; Krahmer and Theune, 2002). Re-
cently, Kelleher and Kruijff (2006) have presented
an incremental GRE algorithm for situated di-
alogue with a robot about a table-top setting,
i.e. also about small-scale space. In all these cases,
the context set is assumed to be identical to the
visual scene that is shared between the interlocu-
tors. The intended referent is thus already in the
hearer’s focus of attention.

In contrast, robots typically act in large-scale
space, i.e. space “larger than what can be per-
ceived at once” (Kuipers, 1977). They need the
ability to understand and produce references to
things that are beyond the current visual and spa-
tial context. In any situated dialogue that involves
entities beyond the current focus of attention, the
task of extending the context becomes key.

Paraboni et al. (2007) present an algorithm for
context determination in hierarchically ordered
domains, e.g. a university campus or a document
structure. Their approach is mainly targeted at
producing textual references to entities in written
documents (e.g. figures, tables in book chapters).
Consequently they do not address the challenges
that arise in physically and perceptually situated
dialogues. Still, the approach presents a num-
ber of good contributions towards GRE for situ-
ated dialogue in large-scale space. An appropriate
context, as a subset of the full domain, is deter-
mined through Ancestral Search. This search for
the intended referent is rooted in the “position of
the speaker and the hearer in the domain” (repre-
sented as d), a crucial first step towards situated-
ness. Their approach suffers from the shortcom-
ing that spatial relationships are treated as one-
place attributes by their GRE algorithm. For ex-
ample they transform the spatial containment re-
lation that holds between a room entity and a
building entity (“the library in the Cockroft build-
ing”) into a property of the room entity (BUILDING
NAME = COCKROFT) and not a two-place relation
(in(library,Cockroft)). Thus they avoid
recursive calls to the algorithm, which would be
needed if the intended referent is related to another
entity that needs to be properly referred to.

However, according to Dale and Reiter (1995),
these related entities do not necessarily serve as
discriminatory information. At least in large-scale
space, in contrast to a document structure that is
conceivably transparent to a reader, they function
as attention-directing elements that are introduced
to build up common ground by incrementally ex-
tending the hearer’s focus of attention. Moreover,
representing some spatial relations as two-place
predicates between two entities and some as one-
place predicates is an arbitrary decision.

We present an approach for context determina-
tion (or extension), that imposes less restrictions
on its knowledge base, and which can be used as a
sub-routine in existing GRE algorithms.



3 Situated Dialogue in Large-Scale Space

Imagine the situation in Figure 1 did not take place
somewhere on campus, but rather inside building
3B. Certainly the robot would not have said “the
IT help desk is on the 1st floor in building 3B.”
To avoid confusing the human, an utterance like
“the IT help desk is on the 1st floor” would have
been appropriate. Likewise, if the IT help desk
happened to be located on another site of the uni-
versity, the robot would have had to identify its lo-
cation as being “on the 1st floor in building 3B on
the new campus.” The hierarchical representation
of space that people are known to assume (Cohn
and Hazarika, 2001), reflects upon the choice of
an appropriate context when producing REs.

In the above example the physical and spatial
situatedness of the dialogue participants play an
important role in determining which related parts
of space come into consideration as potential dis-
tractors. Another important observation concerns
the verbal behavior of humans when talking about
remote objects and places during a complex dia-
logue (i.e. more than just a question and a reply).
Consider the following example dialogue:

Person A: “Where is the exit?”
Person B: “You first go down this corridor.
Then you turn right. After a few steps you
will see the big glass doors.”
Person A: “And the bus station? Is it to the
left?”

The dialogue illustrates how utterances become
grounded in previously introduced discourse ref-
erents, both temporally and spatially. Initially,
the physical surroundings of the dialogue partners
form the context for anchoring references. As a di-
alogue unfolds, this point can conceptually move
to other locations that have been explicitly intro-
duced. Discourse markers denoting spatial or tem-
poral cohesion (e.g. “then” or “there”) can make
this move to a new anchor explicit, leading to a
“mental tour” through large-scale space.

We propose a general principle of Topological
Abstraction (TA) for context extension which is
rooted in what we will call the Referential Anchor
a.1 TA is designed for a multiple abstraction hier-
archy (e.g. represented as a lattice structure rather
than a simple tree). The Referential Anchor a, cor-
responding to the current focus of attention, forms
the nucleus of the context. In the simple case, a

1similar to Ancestral Search (Paraboni et al., 2007)
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Figure 2: Incremental TA in large-scale space
corresponds to the hearer’s physical location. As
illustrated above, a can also move along the “spa-
tial progression” of the most salient discourse en-
tity during a dialogue. If the intended referent is
outside the current context, TA extends the context
by incrementally ascending the spatial abstraction
hierarchy until the intended referent is an element
of the resulting sub-hierarchy, as illustrated in Fig-
ure 2. Below we describe two instantiations of the
TA principle, a TA algorithm for reference gener-
ation (TAA1) and TAA2 for reference resolution.

Context Determination for GRE TAA1 con-
structs a set of entities dominated by the Referen-
tial Anchor a (and a itself). If this set contains the
intended referent r, it is taken as the current utter-
ance context set. Else TAA1 moves up one level
of abstraction and adds the set of all child nodes to
the context set. This loop continues until r is in the
context set. At that point TAA1 stops and returns
the constructed context set (cf. Algorithm 1).

TAA1 is formulated to be neutral to the kind of
GRE algorithm that it is used for. It can be used
with the original Incremental Algorithm (Dale and
Reiter, 1995), augmented by a recursive call if a
relation to another entity is selected as a discrim-
inatory feature. It could in principle also be used
with the standard approach to GRE involving re-
lations (Dale and Haddock, 1991), but we agree
with Paraboni et al. (2007) that the mutually qual-
ified references that it can produce2 are not easily
resolvable if they pertain to circumstances where
a confirmatory search is costly (such as in large-
scale space). More recent approaches to avoid-
ing infinite loops when using relations in GRE
make use of a graph-based knowledge represen-
tation (Krahmer et al., 2003; Croitoru and van
Deemter, 2007). TAA1 is compatible with these
approaches, as well as with the salience based ap-
proach of (Krahmer and Theune, 2002).

2An example for such a phenomenon is the expression
“the ball on the table” in a context with several tables and
several balls, but of which only one is on a table. Humans
find such REs natural and easy to resolve in visual scenes.



Algorithm 1 TAA1 (for reference generation)
Require: a = referential anchor; r = intended referent

Initialize context: C = {}
C = C ∪ topologicalChildren(a) ∪ {a}
if r ∈ C then

return C
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
if r ∈ C then

return C
end if

end for
return failure

end if

Algorithm 2 TAA2 (for reference resolution)
Require: a = ref. anchor; desc(x) = description of referent

Initialize context: C = {}
Initialize possible referents: R = {}
C = C ∪ topologicalChildren(a) ∪ {a}
R = desc(x) ∩ C
if R $= {} then

return R
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
R = desc(x) ∩ C
if R $= {} then

return R
end if

end for
return failure

end if

Resolving References to Elsewhere Analogous
to the GRE task, a conversational robot must be
able to understand verbal descriptions by its users.
In order to avoid overgenerating possible refer-
ents, we propose TAA2 (cf. Algorithm 2) which
tries to select an appropriate referent from a rel-
evant subset of the full knowledge base. It is ini-
tialized with a given semantic representation of the
referential expression, desc(x), in a format com-
patible with the knowledge base. Then, an appro-
priate entity satisfying this description is searched
for in the knowledge base. Similarly to TAA1,
the description is first matched against the current
context set C consisting of a and its child nodes. If
this set does not contain any instances that match
desc(x), TAA2 increases the context set along the
spatial abstraction axis until at least one possible
referent can be identified within the context.

4 Conclusions and Future Work
We have presented two algorithms for context de-
termination that can be used both for resolving and
generating REs in large-scale space.

We are currently planning a user study to evalu-
ate the performance of the TA algorithms. Another
important item for future work is the exact nature
of the spatial progression, modeled by “moving”
the referential anchor, in a situated dialogue.
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Abstract
In this paper we present an approach to the task
of generating and resolving referring expressions
(REs) for conversational mobile robots. It is based
on a spatial knowledge base encompassing both
robot- and human-centric representations. Existing
algorithms for the generation of referring expres-
sions (GRE) try to find a description that uniquely
identifies the referent with respect to other enti-
ties that are in the current context. Mobile robots,
however, act in large-scale space, that is, environ-
ments that are larger than what can be perceived at a
glance, e.g., an office building with different floors,
each containing several rooms and objects. One
challenge when referring to elsewhere is thus to in-
clude enough information so that the interlocutors
can extend their context appropriately. We address
this challenge with a method for context construc-
tion that can be used for both generating and resolv-
ing REs – two previously disjoint aspects. Our ap-
proach is embedded in a bi-directional framework
for natural language processing for robots.

1 Introduction
The past years have seen an extraordinary increase in research
on robotic assistants that help the users perform their daily
chores. Although the autonomous vacuum cleaner “Roomba”
has already found its way into people’s homes and lives, there
is still a long way until fully conversational robot “gophers”
will be able to assist people in more demanding everyday
tasks. For example, imagine a robot that can deliver objects
and give directions to visitors on a university campus. Such a
robot must be able to verbalize its knowledge in a way that is
understandable by humans, as illustrated in Figure 1.

A conversational robot will inevitably face situations in
which it needs to refer to an entity (e.g., an object, a locality,
or even an event) that is located somewhere outside the cur-
rent scene. There are conceivably many ways in which a robot
might refer to things in the world, but many such expressions
are unsuitable in most human-robot dialogues. Consider the
following set of examples:

∗Supported by the EU FP7 Project “CogX” (FP7-ICT-215181).

Where is the 

IT Help desk? It is on the 

1st floor in 

building 3b.

it is at
<45.56, -3.92, 10.45>

Where is the 
IT help desk? It is on the 1st 

floor in building 
3B.

It is at

Figure 1: Situated dialogue with a campus service robot

1. “position P = 〈45.56,−3.92, 10.45〉”
2. “the area”
3. “Peter’s office at the end of the corridor on the third floor

of the Acme Corp. building 7 in the Acme Corp. com-
plex, 47 Evergreen Terrace, Calisota, Earth, (...)”

Clearly, these REs are valid descriptions of the respec-
tive entities in the robot’s world representation. Still they
fail to achieve their communicative goal, which is to specify
the right amount of information so that the hearer can easily
uniquely identify what is meant. The following expressions
might serve as more appropriate variants of the previous ex-
amples (in certain situations! ):

1. “the IT help desk”
2. “the large hall on the first floor”
3. “Peter’s office”
However, the question remains how a natural language pro-

cessing (NLP) system can generate such expressions which
are suitable in a given situation. In this paper we identify
some of the challenges that an NLP system for situated dia-
logue about large-scale space needs to address. We present
a situated model for generating and resolving REs that ad-
dresses these issues, with a special focus on how a conver-
sational mobile robot can produce and interpret such expres-
sions against an appropriate part of its acquired knowledge
base (KB). One benefit of our approach is that most com-
ponents, including the situated model and the linguistic re-
sources, are bi-directional, i.e., they use the same representa-



tions for comprehension and production of utterances. This
means that the proposed system is able to understand and cor-
rectly resolve all the REs that it is able to generate.

The rest of the paper is organized as follows. We first
briefly discuss relevant existing approaches to comprehend-
ing and producing REs (Section 2). We then motivate our
approach to context determination for situated interaction in
large-scale space (Section 3), and describe its implementation
in a dialogue system for an autonomous robot (Section 4). We
conclude in Section 5.

2 Background
The main purpose of an RE is to enable a hearer to correctly
and uniquely identify the target entity to which the speaker
is referring, the so-called intended referent. The GRE task is
thus to produce a natural language expression for a KB entity
that fulfills this purpose.

As can be seen from the examples in the previous section,
an RE needs to meet a number of constraints in order to be
successful. First, it needs to make use of concepts that can be
understood by the hearer. This becomes an important consid-
eration when we are dealing with a robot which acquires its
own models of the environment and is to talk about the con-
tents of these. Second, it needs to contain enough information
so that the hearer can distinguish the intended referent from
other entities in the world, the so-called potential distractors.
Finally, this needs to be balanced against the third constraint:
Inclusion of unnecessary information should be avoided so as
not to elicit false implications on the part of the hearer.

We will only briefly mention how to address the first chal-
lenge, and refer the reader to our recent work on multi-
layered conceptual spatial maps for robots that bridge the gap
between robot-centric representations of space and human-
centric conceptualizations [Zender et al., 2008].

The focus in this paper lies on the second and third aspect,
namely the problem of including the right amount of infor-
mation that allows the hearer to identify the intended refer-
ent. According to the seminal work on GRE by Dale and
Reiter [1995], one needs to distinguish whether the intended
referent is already in the hearer’s current context or not. This
context can consist of a local visual scene (visual context) or a
shared workspace (spatial context), but also contains recently
mentioned entities (dialogue context). If the intended refer-
ent is already part of the current context, the GRE task merely
consists of singling out the referent among the other members
of the context, which act as distractors. In this case the gen-
erated RE contains discriminatory information, e.g., “the red
ball” if several kinds of objects with different colors are in the
current context. If, on the other hand, the referent is not in the
hearer’s focus of attention, an RE needs to contain what Dale
and Reiter call navigational, or attention-directing informa-
tion. The example they give is “the black power supply in the
equipment rack,” where “the equipment rack” is supposed to
direct the hearers attention to the rack and its contents.

While most existing GRE approaches assume that the in-
tended referent is part of a given scene model, the context set,
very little research has investigated the nature of references
to entities that are not part of the current context.

The domain of such systems is usually a small visual scene,
e.g., a number of objects, such as cups and tables, located
in the same room, other closed-context scenarios, includ-
ing a human-robot collaborative table-top scenario [Dale and
Reiter, 1995; Horacek, 1997; Krahmer and Theune, 2002;
Kelleher and Kruijff, 2006]. What these scenarios have in
common is that they focus on a limited part of space, which
is immediately and fully observable: small-scale space.

In contrast, mobile robots typically act in more complex
environments. They operate in large-scale space, i.e., space
“larger than what can be perceived at once” [Kuipers, 1977].
At the same time they do need the ability to understand and
produce verbal references to things that are beyond the cur-
rent visual and spatial context. When talking about remote
places and things outside the current focus of attention, the
task of extending the context becomes crucial.

Paraboni et al. [2007] are among the few to address this
problem. They present an algorithm for context determi-
nation in hierarchically ordered domains, e.g., a university
campus or a document structure. Their approach is mainly
targeted at producing textual references to entities in writ-
ten documents (e.g., figures and tables in book chapters),
and consequently they do not touch upon the challenges that
arise in a physically and perceptually situated dialogue set-
ting. Nonetheless their approach presents a number of con-
tributions towards GRE for situated dialogue in large-scale
space. An appropriate context, as a subset of the full domain,
is determined through Ancestral Search. This search for the
intended referent is rooted in the “position of the speaker and
the hearer in the domain” (represented as d), a crucial first
step towards situatedness. Their approach suffers from the
shortcoming that their GRE algorithm treats spatial relation-
ships as one-place attributes. E.g., a spatial containment re-
lation that holds between a room entity and a building entity
(“the library in the Cockroft building”) is given as a property
of the room entity (BUILDING NAME = COCKROFT), rather than
a two-place relation (in(library,Cockroft)). Thereby
they avoid recursive calls to the GRE algorithm, which are
necessary for intended referents related to another entity that
needs to be properly referred to. We claim that this imposes
an unnecessary restriction onto the KB design. Moreover, it
makes it hard to use their context determination algorithm as
a sub-routine of any of the many existing GRE algorithms.

3 Situated Dialogue in Large-Scale Space
Imagine the situation in Figure 1 did not take place some-
where on campus, but rather inside building 3B. It would have
made little or no sense for the robot to say that “the IT help
desk is on the 1st floor in building 3B.” To avoid confusion,
an utterance like “the IT help desk is on the 1st floor” would
be appropriate. Likewise, if the IT help desk happened to be
located on another site of the university, the robot would have
had to identify its location as being, e.g., “on the 1st floor in
building 3B on the new campus”. This illustrates that the hi-
erarchical representation of space that humans adopt [Cohn
and Hazarika, 2001] reflects upon the choice of an appropri-
ate context when producing referential descriptions that in-
volve attention-directing information.



Thus, the physical and spatial situatedness of the dialogue
participants plays an important role when determining which
related parts of space come into consideration as potential dis-
tractors. Another important observation concerns the verbal
behavior of humans when talking about remote objects and
places in a complex dialogue (i.e., more than just a question
and a reply). E.g., consider the following dialogue:

Person A: “Where is the exit?”
Person B: “First go down this corridor. Then turn right.
After a few steps you’ll see the big glass doors.”
Person A: “And the bus station? Is it to the left?”

As can be seen, an utterance in such a collaborative dia-
logue is usually grounded in previously introduced discourse
referents, both temporally and spatially. Initially, the physi-
cal surroundings of the dialogue partners form the context to
which references are related. Then, as the dialogue unfolds,
this point can conceptually move to other locations that have
been explicitly introduced. Usually, a discourse marker de-
noting spatial or temporal cohesion (e.g., “then” or “there”)
establishes the last mentioned referent as the new anchor, cre-
ating a “mental tour” through large-scale space.

3.1 Context Determination Through Topological
Abstraction

To keep track of the correct referential context in such a di-
alogue, we propose a general principle of Topological Ab-
straction1 (TA) for context extension. TA is applied when-
ever a reference cannot be generated or resolved with respect
to the current context. In such a case TA incrementally ex-
tends the context until the reference can be established. TA
is designed to operate on a spatial abstraction hierarchy; i.e.,
a decomposition of space into parts that are related through
a tree or lattice structure in which edges denote a contain-
ment relation (cf. Figure 2a). Originating in the Referential
Anchor a, TA extends the context by incrementally ascend-
ing the spatial abstraction hierarchy until the intended refer-
ent is in the resulting sub-hierarchy (cf. Figure 2b). When no
other information, e.g., from a preceding dialogue, is present,
a is assumed to correspond to the spatio-visual context that
is shared by the hearer and the speaker – usually their physi-
cal location and immediate surroundings. During a dialogue,
however, a corresponds to the most salient discourse entity,
reflecting how the focus of attention moves to different, even
remote, places, as illustrated in the example dialogue above.

Below we describe two instantiations of the TA principle,
a TA algorithm for reference generation (TAA1) and one for
reference resolution (TAA2). They differ only minimally,
namely in their use of an intended referent r or an RE desc(x)
to determine the conditions for entering and exiting the loop
for topological abstraction. The way they determine a context
through topological abstraction is identical.
Context Determination for GRE TAA1 (cf. Algorithm 1)
constructs a set of entities dominated by the Referential An-
chor a (including a itself). If this set contains the intended
referent r, it is taken as the current utterance context set. Else
TAA1 moves up one level of abstraction and adds the set of
all child nodes to the context set. This loop continues until r

1similar to Ancestral Search [Paraboni et al., 2007]
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(a) Example for a hierarchical representation of space

(b) Illustration of the TA principle: starting from the Referential An-
chor (a), the smallest sub-hierarchy containing both a and the in-
tended referent (r) is formed incrementally

Figure 2: Topological Abstraction in a spatial hierarchy

Algorithm 1 TAA1 (for reference generation)
Require: a = referential anchor; r = intended referent

Initialize context: C = {}
C = C ∪ topologicalChildren(a) ∪ {a}
if r ∈ C then

return C
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
if r ∈ C then

return C
end if

end for
return failure

end if

is in the thus constructed set. At that point TAA1 stops and
returns the constructed context set.

TAA1 is formulated to be neutral to the kind of GRE al-
gorithm that it is used for. It can be used with the orig-
inal Incremental Algorithm [Dale and Reiter, 1995], aug-
mented by a recursive call if a relation to another entity is
selected as a discriminatory feature. It could in principle also
be used with the standard approach to GRE involving rela-
tions [Dale and Haddock, 1991], but we agree with Paraboni
et al. [2007] that the mutually qualified references that it
can produce2 are not easily resolvable if they pertain to cir-
cumstances where a confirmatory search is costly (such as
in large-scale space). More recent approaches to avoiding
infinite loops when using relations in GRE make use of a
graph-based knowledge representation [Krahmer et al., 2003;
Croitoru and van Deemter, 2007]. TAA1 is compatible with
these approaches, as well as with the salience based approach
of Krahmer and Theune [2002].

2Stone and Webber [1998] present an approach that produces
sentences like “take the rabbit from the hat” in a context with several
hats and rabbits, but of which only one is in a hat. Humans find such
REs natural and easy to resolve in visual scenes.



Algorithm 1 TAA1 (for reference generation)
Require: a = referential anchor; r = intended referent

Initialize context: C = {}
C = C ∪ topologicalChildren(a) ∪ {a}
if r ∈ C then

return C
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
if r ∈ C then

return C
end if

end for
return failure

end if

Algorithm 2 TAA2 (for reference resolution)
Require: a = ref. anchor; desc(x) = description of referent

Initialize context: C = {}
Initialize possible referents: R = {}
C = C ∪ topologicalChildren(a) ∪ {a}
R = desc(x) ∩ C
if R $= {} then

return R
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
R = desc(x) ∩ C
if R $= {} then

return R
end if

end for
return failure

end if

Context Determination for Reference Resolution A con-
versational robot must also be able to understand verbal de-
scriptions by its users. In order to avoid overgenerating possi-
ble referents, we propose TAA2 (cf. Algorithm 2) which tries
to select an appropriate referent from a relevant subset of the
full KB. It is initialized with a given semantic representation
of the referential expression, desc(x), in a format compatible
with the KB. We will show how this is accomplished in our
framework in Section 4.1. Then, an appropriate entity sat-
isfying this description is searched for in the KB. Similarly
to TAA1, the description is first matched against the current
context set C consisting of a and its child nodes. If this set
does not contain any instances that match desc(x), TAA2 en-
larges the context set along the spatial abstraction axis until
at least one possible referent can be identified within C.

4 Implementation
Our approach for resolving and generating spatial referring
expressions has been fully integrated with the dialogue func-
tionality in a cognitive system for a mobile robot [Zender et
al., 2008; Kruijff et al., 2009]. The robot is endowed with
a conceptual spatial map [Zender and Kruijff, 2007], which
represents knowledge about places, objects and their relations
in an OWL-DL3 ontology. We use the Jena reasoning frame-
work4 with its built-in OWL reasoning and rule inference fa-
cilities. Internally, Jena stores the facts of the conceptual map
as RDF5 triples, which can be queried through SPARQL6

queries. Figure 3 shows a subset of such a KB.
Below, we use this example scenario to illustrate our ap-

proach to generating and resolving spatial referring expres-
sions in the robot’s dialogue system. We assume that the
interaction takes place at the reception on the ground floor
(“floor0”), so that for TAA1 and TAA2 a =reception.

3http://www.w3.org/TR/owl-guide/
4http://jena.sourceforge.net
5http://www.w3.org/RDF
6http://www.w3.org/TR/rdf-sparql-query

floor0

reception

floor1

kitchen1 kitchen2 office1 office2

floor2

kitchen3 office3 office4

building 3B

(a) Topological abstraction hierarchy

(kitchen1 rdf:type Kitchen), (...)
(office1 rdf:type Office), (...)
(kitchen2 size big), (...)
(bob rdf:type Person), (bob name Bob),
(bob owns office1), (...)
(floor1 contains kitchen1), (...)
(floor2 contains office3), (...)
(floor1 ordNum 1), (floor2 ordNum 2), (...)
(b) RDF triples in the conceptual map (namespace URIs omitted)

Figure 3: Part of a representation of an office environment

4.1 The Comprehension Side
In situated dialogue processing, the robot needs to build up an
interpretation for an utterance which is linked both to the di-
alogue context and to the (referenced) situated context. Here,
we focus on the meaning representations.

We represent meaning as a logical form (LF) in a descrip-
tion logic [Blackburn, 2000]. An LF is a directed acyclic
graph (DAG), with labeled edges, and nodes representing
propositions. Each proposition has an ontological sort, and a
unique index. We write the resulting ontologically sorted, re-
lational structure as a conjunction of elementary predications
(EPs): @idx:sort(prop) to represent a proposition prop with
ontological sort sort and index idx, @idx1:sort1〈Rel〉(idx2 :
srt2) to represent a relation Rel from index idx1 to index
idx2, and @idx:sort〈Feat〉(val) to represent a feature Feat
with value val at index idx. Representations are built compo-
sitionally, parsing the word lattices provided by speech recog-
nition with a Combinatory Categorial Grammar [Lison and
Kruijff, 2008]. Reversely, we use the same grammar to real-
ize strings (cf. Section 4.2) from these meaning representa-
tions [White and Baldridge, 2003].

An example is the meaning we obtain for “the big kitchen
on the first floor,” (folding EPs under a single scope of @).
It illustrates how each propositional meaning gets an index,
similar to situation theory. “kitchen” gets one, and also mod-
ifiers like “big,” “on” and “one.” This enables us to single out
every aspect for possible contextual reference (Figure 4a).

Next, we resolve contextual references, and determine the
possible dialogue move(s) the utterance may express. Con-
textual reference resolution determines how we can relate the
content in the utterance meaning, to the preceding dialogue
context. If part of the meaning refers to previously mentioned
content, we associate the identifiers of these content represen-
tations; else, we generate a new identifier. Consequently, each
identifier is considered a dialogue referent.

Once we have a representation of utterance meaning in
dialogue context, we build a further level of representation
to facilitate connecting dialogue content with models of the
robot’s situation awareness. This next level of representation
is essentially an a-modal abstraction over the linguistic as-
pects of meaning, to provide an a-modal conceptual structure



@l1:e−place(kitchen∧
〈Delimitation〉unique∧
〈Num〉sg ∧ 〈Quantification〉specific∧
〈Modifier〉(b1 : q − size ∧ big)∧
〈Modifier〉(o1 : m − location ∧ on ∧
〈Anchor〉(f1 : thing ∧ floor ∧
〈Delimitation〉unique ∧
〈Num〉sg ∧ 〈Quantification〉specific ∧
〈Modifier〉(n1 : number − ordinal ∧ 1))))

(a) Logical form

Concept: {"kitchen"}

Size: {"big"}

Concept: {"floor"}

OrdNumberTag: {"1"}

RelationLabel: {"On"}

(b) A-modal directed acyclic graph

SELECT ?x0 ?x1 WHERE {
?x0 rdf:type Kitchen.
?x0 size big.
?x1 rdf:type Floor.
?x1 ordNum 1.
?x0 containedIn ?x1.

(c) SPARQL query
In the previous example this would
resolve ?x0 to kitchen2

Figure 4: Logical form, a-modal DAG and corresponding SPARQL query for “the big kitchen on the first floor”

[Jacobsson et al., 2008]. Abstraction is a recursive translation
of DAGs into DAGs, whereby the latter (conceptual) DAGs
are typically flatter than the linguistic DAGs (Figure 4b).

The final step in resolving an RE is to construct a query
to the robot’s KB. In our implementation we construct a
SPARQL query from the a-modal DAG representations (Fig-
ure 4c). This query corresponds to the logical description of
the referent desc(r) in TAA2. TAA2 then incrementally ex-
tends the context until at least one element of the result set of
desc(r) is contained within the context.

4.2 The Production Side
Production covers the entire path from handling dialogue
goals to speech synthesis. The dialogue system can itself pro-
duce goals (e.g., to handle communicative phenomena like
greetings), and it accepts goals from a higher level planner.
Once there is a goal, an utterance content planner produces
a content representation for achieving that goal, which the
realizer then turns into one or more surface forms to be syn-
thesized. Below we focus on utterance content planning.

A dialogue goal specifies a goal to be achieved, and any
content that is associated with it. A typical example is to
convey an answer to a user: the goal is to tell, the content is
the answer. Content is given as a conceptual structure, proto
LF, abstracting away from linguistic specifics, similar to the
a-modal structures we produce for comprehension.

Content planning turns this proto LF into an LF which
matches the specific linguistic structures defined in the gram-
mar we use to realize it. “Turning into” means extending the
proto LF with further semantic structure. This may be non-
monotonic in that parts of the proto LF may be rewritten, ex-
panding into locally connected graph structures.

Planning is agenda-based, and uses a planning domain de-
fined as a (systemic) grammar network alike [Bateman, 1997;
Kruijff, 2005]. A grammar network is a collection of systems
that define possible sequences of operations to be performed
on a node with characteristics matching the applicability con-
ditions for the system. A system’s decision tree determines
which operations are to be applied. Decisions are typically
context-sensitive, based on information about the shape of the
(entire) LF, or on information in context models (dialogue or
otherwise). While constructing an LF, the planner cycles over
its nodes, and proposes new agenda items for nodes which
have not yet been visited. An agenda item consists of the
node, and a system which can be applied to that node.

A system can explicitly trigger the generation of an RE
for the node on which it operates. It then provides the dia-

logue system with a request for an RE, with a pointer to the
node in the (provided) LF. The dialogue system resolves this
request by submitting it to GRE modules which have been
registered with the system. (Registration allows us to plug-
and-play with content-specific GRE algorithms.) Assuming a
GRE module produces an LF with the content for the RE, the
planner gets this LF and integrates it into the overall LF.

For example, say the robot in our previous example is to
answer the question “Where is Bob?”. We receive a commu-
nicative goal (see below) to inform the user, specifying the
goal as an assertion related to the previous dialogue context
as an answer. The content is specified as an ascription e of
a property to a target entity. The target entity is t which is
specified as a person called “Bob” already available in the di-
alogue context, and thus familiar to the hearer. The property
is specified as topological inclusion (TopIn) within the entity
k, the reference to which is to be produced by the GRE algo-
rithm (hence the type “rfx” and the “RefIndex” which is the
address of the entity).

@d:dvp(c − goal∧
〈SpeechAct〉assertion ∧
〈Relation〉answer ∧
〈Content〉(e : ascription ∧
〈Target〉(t : person ∧ Bob ∧
〈InfoStatus〉familiar) ∧

〈TopIn〉(p : rfx ∧ RefIndex)))

The content planner makes a series of decisions about the
type and structure of the utterance to be produced. As it is an
assertion of a property ascription, it decides to plan a sentence
in indicative mood and present tense with “be” as the main
verb. The reference to the target entity makes up the copula
restriction, and a reference to the ascribed property is in the
copula scope. This yields an expansion of the goal content:

@e:ascription(be ∧
〈Tense〉pres ∧
〈Mood〉ind ∧
〈Cop − Restr〉(t : entity ∧

Bob ∧ 〈InfoStatus〉familiar) ∧
〈Subject〉(t : entity) ∧
〈Cop − Scope〉(prop : m − location ∧

in ∧ 〈Anchor〉(p : rfx ∧ RefIndex)))

The next step consists in calling the GRE algorithm to pro-
duce an RE for the entity p. In our NLP system we use a
slightly modified implementation of the Incremental Algo-
rithm [Dale and Reiter, 1995]. The context set C is deter-
mined using TAA1. Let’s assume that Bob is currently in



kitchen3. In our example (a =reception) the GRE algorithm
hence produces the following result, which is then returned to
the planner and inserted into the proto LF created so far:

@p:entity(kitchen ∧
〈TopOn〉(f : entity ∧

floor ∧ 〈Unique〉true ∧
〈Number〉(n : quality ∧ 2)))

The planner then makes further decisions about the realiza-
tion, expanding this part of the LF to the following result:

@p:entity(kitchen ∧
〈Delimitation〉unique ∧
〈Num〉sg ∧ Quantification〉specific ∧
〈Modifier〉(o1 : m − location ∧ on ∧
〈Anchor〉(f : thing ∧ floor ∧
〈Delimitation〉unique ∧
〈Num〉sg ∧ 〈Quantification〉specific ∧
〈Modifier〉(t1 : number − ordinal ∧ 2))))

Once the planner is finished, the resulting overall LF is pro-
vided to a CCG realizer [White and Baldridge, 2003], turning
it into a surface form (“Bob is in the kitchen on the second
floor”). This string is synthesized to speech using the MARY
TTS software [Schröder and Trouvain, 2003].

5 Conclusions and Future Work
We have presented an algorithm for context determination
that can be used both for resolving and generating referring
expressions in a large-scale space domain. We have presented
an implementation of this approach in a dialogue system for
an autonomous mobile robot.

Since there exists no suitable evaluation benchmark for sit-
uated human-robot dialogue to compare our results against,
we are currently planning a user study to evaluate the perfor-
mance of the TA algorithm. Another important item for future
work is the exact nature of the spatial progression in situated
dialogue, modeled by “moving” the referential anchor.
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Verbalization of Vague Scalar Predicates
Based on Autonomously Acquired Models

(preliminary report)

Hendrik Zender and Andrzej Pronobis

Abstract— The paper reports on ongoing research in gen-
erating and understanding verbal references to entities in the
robot’s environment. The paper focuses on features of spatial
entities that are commonly expressed as vague scalar predicates
in natural language, such as, e.g., size. The paper proposes an
approach for characterizing such features in terms of properties
and distributions over their values. This leads to a basic notion
of prototypicality of property-values. Using this notion, the
paper shows how different types of contextual standards can
be defined, which determine the contextually appropriate use
of a vague scalar predicate in linguistically describing a feature
of a spatial entity. The approach goes beyond existing work in
that it allows for a variety of contextual standards (in class,
across classes, across instances) in describing features as vague
scalar predicates, and by ultimately basing these standards in
models of the robot’s perceptual experience.

I. INTRODUCTION

Robotic assistants are no longer simply a product of our
imagination. Advances in related fields in robotics, AI and
computer vision make it nowadays possible to develop highly
autonomous robotic systems. Robots are already able to
perform a wide variety of tasks while exhibiting a high
degree of adaptivity to new environments.

When it comes to building “talking robots,” though, we
still face major challenges. These arise primarily from the
variability and unpredictability of the kinds of dialogues they
need to engage in. This sets talking robots apart from more
standard dialogue systems, the development of which has
matured over the last couple of years. Computer- or web-
based conversational agents can usually talk about confined
objective domains, like for example soccer, or pop star trivia
[1]. Robots on the other hand have to talk about the environ-
ments they share with their users. And unlike location aware
personal navigational assistants (e.g., [2]), which usually
combine external localization (e.g., through RFID or GPS)
with existing maps and information bases, these robots rely
on autonomously built maps and knowledge acquired through
their own interaction with their environment.

So how could a robot talk about what it knows? A robot’s
knowledge base contains facts about “things” in the world.
These facts include properties of entities (e.g., color, size,
age, name, etc.) and relations between entities (e.g., location,
ownership). Some of this knowledge might be explicitly

H. Zender is with the Language Technology Lab, German Re-
search Center for Artificial Intelligence (DFKI), Saabrücken, Germany,
zender@dfki.de

A. Pronobis is with the Centre for Autonomous Systems, Royal Institute
of Technology (KTH), Stockholm, Sweden, pronobis@csc.kth.se

represented, some of it might be inferable when necessary,
and some of it might only be implicitly accessible.

In this paper, we address the question of how a robot can
verbalize what it knows about certain properties of things.
We focus on those properties that correspond to a scalar
feature space (e.g., size, length), and on their contextually
appropriate verbalization. We address this issue from two
viewpoints. For one, we propose a method for acquiring and
evaluating categorical models for such properties in terms
of a robot’s perceptual capabilities. Secondly we investigate
how these models can serve as a basis for situated natural
language generation and comprehension.

The rest of the paper is organized as follows. Section II
presents related work that serves as background for this re-
port. In Section III we introduce the assumptions underlying
our approach. In the subsequent section we then give the
details on the acquired categorical models (Section IV) and
on the verbalization methods (Section V). We conclude in
Section VI.

II. BACKGROUND

Given that a robot autonomously acquires knowledge
about the world, how can such properties be appropriately
verbalized for human-robot communication? Conversational
robots and their users interact in situated dialogues. Such
situated language typically involves things and persons in
the environment or facts that are relevant for the current
task at hand [3]. It relies on situationally and contextually
appropriate expressions. In the case of a conversational
robot these expressions are generated from the robot’s own
knowledge base. Such knowledge bases, often being hybrid
models that contain symbolic and probabilistic layers [4] are
not immediately useful for spoken human-robot interaction.

Moreover, both the robot’s and the human’s perceptual
abilities are limited and may be subject to noise or in-
complete observability. Therefore unnecessary precision in
verbalizing known properties of things should be avoided.
Instead of referring to “the 18m2-large office,” vague ex-
pressions involving gradable adjectives (such as “the largest
office”) should be used [5], [6], [7]. This research primarily
focuses on instances – in a given visual setting. Our approach
moves beyond this, by considering how scalar properties can
be modeled as probabilistic distributions over their values
– and then use these distributions to construct contextual
standards. This makes it possible to consider distributions
solely across observed instances (like [5]), and also across



instances within a class (considering values to be prototypical
values within a class), and across classes. Within-class and
across-class contextual standards are not considered (nor
immediately possible) in [5]. They are, however, necessary
to generate contextually appropriate verbalizations using
comparatives. For example, consider the average office to
have 8m2. Talking about two offices, with office1 measuring
12m2 and office2 18m2, it would be more appropriate to talk
about office1 as “the smaller office,” not as “the small office.”
The reason being that it is still bigger than the average
office. These ideas are based on insights in categorization
and prototypicality originating with Brown [8] and Rosch
[9].

The approach presented in this paper is consistent with the
structure of the spatial knowledge representation developed
in the CogX EU project [10]. The representation divides
spatial knowledge into low level categorical models based
on robot’s sensory information, discrete, bottom-up models
representing a map of the robot’s environment as well
as conceptual models attaching semantics to the low-level
representations. Moreover, the method is compatible with the
existing approaches to topological mapping (e.g. [4], [11])
and place categorization (e.g. [12], [13]).

Finally, the approach takes us beyond earlier methods
for relating language to “the world.” For example, Steels
et al (cf. e.g. [14]) propose semiotic networks. A semiotic
network is an associative network in which a perceptual
layer is connected with a category layer, which in turn
associates categories with words. A robot is able to acquire
such networks online, establishing nodes within layers, and
associations within and across layers. The resulting network
captures how words can be related to categories – but does
so in an absolute way. We take this a step further. Predi-
cations (”words” in a semiotic network) are not determined
directly through association with a category. We perform an
intermediary interpretation step, which establishes how best
to express a property (a “category”) within a given context.
Such expression may vary, obviously; but it is a variation
not possible on the current formulation of semiotic networks.
(Similar observations can be made for approaches proposed
by Roy et al.)

III. THE APPROACH

In our approach, we assume that the robot is able to
perceive the world through its sensors and internally grounds
its spatial knowledge upon features extracted from the sen-
sory input. Moreover, we distinguish between three separate
layers of the knowledge representation: the spatial layer, the
categorical layer, and the linguistic layer. The spatial layer
represents the knowledge about the environment in which
the robot operates, i.e., its world map. We assume that the
environment, can be segmented into areas, where each area
corresponds to a single spatial unit of certain semantics, e.g.,
a room. As a result, the map stored in the spatial layer
consists of a finite number of models, each representing a
single area in terms of the observed feature values. This
is consistent with the mapping framework presented in [4],

which builds on the concepts of discrete places and scenes
expressed in terms of arbitrary, possibly complex features
and local spatial relations.

The categorical layer contains categorical models grouping
the robot’s sensory information expressed in terms of feature
values. The knowledge represented in this layer is not
specific to any particular location in the robot’s environment.
Instead, it represents a general knowledge about the world at
the sensory level. The categorical models stored in this layer
give rise to certain properties of the spatial units (areas).
These properties can either be continuous or discrete and
usually correspond to human concepts, such as size, shape
or type of a room. The categorical layer could practically
be implemented by using a set of classifier models trained
in a supervised manner as in case of the existing place
categorization approaches [12], [13].

The linguistic layer, finally, contains specialized algo-
rithms for turning such properties into logical predicates,
which then are realized as natural language expressions.
It is important to note that the categorical models do not
maintain linguistic labels for properties of the spatial units.
The linguistic layer maintains interpretation functions, which
query the categorical models for relevant information when-
ever needed. This explicit interpretation step guarantees the
formation of contextually appropriate semantic predicates for
verbalization.

In the following, we present concise definitions of the
terms used. A feature fi is a function that provides a
potentially complex interpretation of robot’s sensor input.
The role of features is to provide a new representation of
the sensory input that is less sensitive to noise and usually
more compact. The quality of a given feature observation is
a feature value, which is positioned with respect to one or
multiple dimensions Fi ∈ Rn. Thus, each function fi maps
sensory observations S onto a certain range Fi:

fi : S → Fi (1)

The values of all features correspond to a single point in the
so-called feature space F = F1 × F2 × . . .× FN .

A property pi of an entity x ∈ U is a function that
maps entities onto a certain property value v ∈ Pi, e.g.,
the property of having a given size, or being of a given type.

pi : U → Pi (2)

size : U → R+ (3)

type : U → {Room,Office,Kitchen,Corridor, . . .} (4)

If there additionally is a (partial) order specified over the
values of Pi, we speak of scalar properties. Entities can
hence be sorted in a partial order with respect to such a
scale.

(1) size(office1) = 12m2

size(office2) = 18m2

size(office3) = 7m2

(2) office3 ≤size office1 ≤size office2



In our approach, the properties of entities are determined
and updated on the basis of spatio-temporally integrated
feature value observations. Due to the uncertainty and noise
involved in robotic perception, our approach represents prop-
erties as probability distributions over a range of values
instead of a crisp numerical value, cf. Section IV. The scalar
order of entities is determined dynamically when needed,
cf. Section V.

Logical predicates express propositions about entities.
Such propositions can be either true or false or non-sensical.
Predicates are the basis for forming semantic representations
that can then be realized as natural language descriptions.
The following list contains examples for predicates along
with natural language paraphrases:

(3) Size(office1, 12m2) : ‘The size of office1 is 12m2.’
(4) Type(fido,Bird) : ‘Fido is a bird.’
(5) Small(fido) : ‘Fido is small.’
(6) Bigger(fido, dido) : ‘Fido is bigger than Dido.’

There is a close link between properties and predicates.
The important distinction is that properties encode the agent’s
knowledge about entities in the world, while predicates
express propositions about entities. The truth value of a
proposition is determined by evaluating an interpretation
function against a given knowledge base. In this paper, we
want to focus on vague scalar predicates that correspond to
gradable adjectives, like the ones in Examples 5 and 6. When
verbalizing the robot’s knowledge, only true propositions
are to be considered. The truth value of a vague predicate
cannot be established in absolute terms. Their meaning is
highly context-dependent [6], and moreover needs to take
into account a given standard [5]. A vague predicate must
hence be interpreted against a precise property with respect
to a given context c.

Following Kennedy, a predicate ϕ that corresponds to
a gradable adjective “can then be analyzed as a function
that induces a tripartite partitioning of its (ordered) domain
into: (i) a positive extension posc(ϕ), which contains objects
above some point in the ordering (. . . ), (ii) a negative
extension negc(ϕ), which contains objects below some point
in the ordering (. . . ), and (iii) an ‘extension gap’ gapc(ϕ),
which contains objects that fall within an indeterminate
middle (. . . )” [15].

[[ϕ(x)]]c =






T iff x ∈ posc(ϕ)
F iff x ∈ negc(ϕ)
undef iff x ∈ gapc(ϕ)

[15] further discusses the partitioning of the domain into
posc(ϕ), negc(ϕ) and gapc(ϕ) with respect to a comparison
class. We will however focus on another aspect, which is
left out in [15], namely the context-dependent transformation
from precise properties to vague predicates, and the deter-
mination of a comparison class.

As explained earlier, a scalar property is a derivation from
one or many feature observations. Several vague predicates
can correspond to different dimensions in the feature space,

such as, e.g., “large” and “small”, which correspond to
the opposite poles of the size scale. The challenge lies
thus in defining appropriate functions posc(ϕ), negc(ϕ)
and gapc(ϕ) for constructing the positive, negative, and
indeterminate extensions respectively of a predicate ϕ from
an underlying property p.

We will proceed with illustrating how autonomously ac-
quired categorical models represent features; how these mod-
els are used in the task of determining properties of entities in
the world; and finally how a context dependent interpretation
of these properties yields a situationally appropriate vague
expression to describe an entity.

IV. THE SPATIAL CATEGORICAL MODELS

As already mentioned, in our approach, the representation
of spatial knowledge is divided into three separate layers.
Here, we focus on the spatial and categorical layers. The
spatial layer maintains models representing areas in the
environment in terms of the observed feature values. The
dependency between the area and the feature values likely
to be observed in that area is captured by a probability distri-
bution pA,F (a, f), where the random variable A represents
an area, and the random variable F the values of all features.
Similarly, the categorical layer encodes the dependency be-
tween the observed values of area properties and the observed
values of features as a distribution pP,F (p, f). In the rest of
this section, we show how the knowledge represented in the
spatial and categorical layers is acquired and used to perform
inferences about the properties of areas in the environment.

A. Model Acquisition

Despite the fact that the models stored in both the spatial
and categorical layers represent the knowledge in terms of
values of features extracted from the sensory input, they
differ in the way that knowledge is acquired. The models
representing the instances of areas that the robot visited,
stored in the spatial layer, are built as the robot explores
the environment, in an unsupervised fashion. The continuous
space is segmented and models are build separately for each
of the segments. On the other hand, the categorical models
need to encode human concepts corresponding to the proper-
ties of areas. These concepts must be transferred to the robot
during a supervised learning stage. A learning algorithm is
employed and provided with sets of training sensory data
annotated by a human with ground truth indicating the values
of properties of areas where the data were acquired. The
training data are acquired while the robot is guided by a
user through several different environments. Moreover, one
of the available robotic databases, such as [16], can be used
to provide the initial spatial knowledge for training. The task
of the algorithm is to build universal models encoding the
correspondence between values of area properties and values
of features extracted from the sensory data acquired in the
area. At the same time, during the guided tour, the robot
builds models of the areas stored within the spatial layer.
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Fig. 1: Graphical model representing the dependencies be-
tween values of features, areas and values of area properties.

B. Inferences About Properties of Areas
In order to generate referring expressions, we need to inte-

grate the knowledge represented in the spatial and categorical
layers and obtain dependencies between areas and values of
properties for those areas. Let’s take the example of a size
of an area. In such case, the categorical models are trained
using sensory data annotated with the correct size of the
areas where the data were acquired. As a result, a model is
be build that maps the features extracted from the sensory
data into the values of the size property. Below, we show
how those models could be integrated with the models of
the visited areas.

We assume the that the dependency between observed
values of features, areas and values of area properties can be
expressed through the graphical model presented in Figure 1.
The model allows to express the joint probability distribution
p(f, a, p1, . . . , pM ) as follows:

p(f, a, p1, . . . , pM ) = p(p1|f) · . . . · p(pM |f) ·
p(a|f) · p(f) (5)

In other words, random variables representing the area and
the area properties are independent given the values of all
features extracted from the sensory input. Such formulation,
allows to make inferences about properties of areas by
integrating the models of properties in the categorical layer
with the models of areas in the spatial layer. For instance, in
order to obtain a distribution over the values of a property
pi for an area a, we use the formula given below:

p(pi|a) =
∫ ∞

−∞
p(f, pi|a) df

=
∫ ∞

−∞
p(pi|f) p(f |a) df (6)

Similarly, to obtain a distribution over areas described by a
certain value of a property pi, we calculate

p(a|pi) =
∫ ∞

−∞
p(f, a|pi) df

=
∫ ∞

−∞
p(f |pi) p(a|f) df (7)

In practice, the integration can be performed as the robot
explores the environment and builds the models of areas. In

some cases, the models of areas might be based on different
features than those required to perform the integration. In
such cases, the integration is performed with the features
calculated from immediate observations only for the area
where the robot is currently located.

V. VERBALIZATION

In this section we are addressing the question how an
autonomous robot can verbalize what it knows about its
environment such that it can be correctly understood by
human hearers. Here, we especially focus on verbalizing
spatial properties of areas in the known environment. Con-
sider the following set of examples (with an emphasis on
the italicized parts), which illustrate two separate but related
phenomena. In Example 7 the task is to produce a unique
Referring Expression, while Example 8 concerns categorical
descriptions.

(7) “The toolbox is in the largest office.”
“The kitchen is the smallest room on the third floor.”

(8) “Restrooms are small rooms.”
“Meeting rooms are usually larger than offices.”

Although the focus here is on verbalization, it is important
to note that this work is embedded in a larger dialogue
system for situated spoken human-robot interaction [17].
Our approach is thus in principle bi-directional (like [18],
[19]). The same mechanisms can be used both for natural
language generation and comprehension. While this is true
and conceivable for generating and resolving referring ex-
pressions, a “real” understanding of human descriptions and
explanations would require feeding back the conveyed facts
into the robot’s categorical models. This is still an open issue
and remains as a possibility for future work.

A. Referring Expressions
A Referring Expression (RE) is a (complex) noun phrase

(NP) that contains enough information to identify an intended
referent, while avoiding ambiguities with potential distrac-
tors [20]. [19] illustrates how an appropriate context for
references in large-scale space can be constructed, and how
referring expressions to entities (including areas) in large-
scale space can be generated by expressing spatial relations
between such entities.

Here, we assume a similar structure of the spatial knowl-
edge base in order to construct an appropriate context. We
furthermore make use of the same GRE algorithm in order
to narrow down the distractor set through the inclusion of
navigational information in complex referring expressions.
The contribution of this work lies in allowing a GRE (and
also RRE) algorithm to include properties, such as, e.g.,
size, to further qualify the intended referent by ruling out
remaining distractors.

Although, strictly speaking, such properties could be ver-
balized by expressing a numerical value (e.g., “the room with
size 18m2” or “the 12m2 large office”), such a level of detail
is commonly avoided in human-human dialogues. Not only
is such specific information not easy to verify with human



perceptual capabilities, it might as well be hard to determine
given a robot’s knowledge base. As discussed previously
(Section IV), the robot’s representation of a property usually
is not a crisp number, but rather a probability distribution
over a range of values.

Previous existing work propose the use of vague scalar
predicates as “qualitative linguistic expressions of quantita-
tive information” [5]. Size is widely used as an example for
a property that needs to be expressed by vague predicates,
namely the adjectives “small” and “large”, as well as their
comparative (i.e., “smaller”, “larger”) and superlative (i.e.,
“smallest”, “largest”) forms [6].

B. Vague Scalar Predicates

As said previously, one way of avoiding unnecessary
precision in verbal interaction is to make use of vague
expressions. One intricacy with vague expressions is that they
are highly context dependent. For instance, what is called
a “large restroom” in one situation could be appropriately
described as “the smallest room on the second floor” under
different circumstances.1 A crucial notion is the scale of
the underlying property. The applicability of different vague
predicates corresponding to that property is then determined
on the basis of the referent’s position on that scale in
comparison to where the distractors are on that scale. A
simple ordering of the referent and its distractors on such
a scale can give rise to a predication that consists of a
superlative form.

r <size distractor−set→ Smallest(r) (8)

r >size distractor−set→ Largest(r) (9)

A stronger proposition is expressed by the corresponding
positive forms. The applicability such predicates is further-
more determined by the position of the referent on that scale
with respect to a given standard [5], [15].

r #size standard→ Small(r) (10)

r $size standard→ Large(r) (11)

In the following we’ll explain how these conditionals can
be established in our probabilistic approach.

C. Evaluating Against a Set of Distractors

A typical example could be finding places that correspond
to “the largest kitchen”. In such case, we could define a new
random variable

L =






1 − the value of the size property for an area
is larger than the value of the size property
for other areas being kitchens

0 − otherwise

1The task of re-identifying “the large restroom” later, however, is a task
of correctly retrieving the previous mention and its referent from dialogue
history or from a long-term memory. This issue is beyond the scope of this
paper.

Then, similarly as for properties, we can calculate pL|A(l|a)
as follows:

pL|A(1|a) =
∫ ∞

0
pPS |A(s1|a) (12)

∫ s1

0

∑

a2

pPS ,A|PT
(s2, a2|kitchen) ds2 ds1

pL|A(0|a) = 1− pL|A(1|a)

where PS is a random variable representing the size property
and PT is a random variable representing the type property.
The probability distribution pPS ,A|PT

(s2, a2|kitchen) can be
factored as follows:

pPS ,A|PT
(s2, a2|kitchen) ∝ pPS ,PT |A(s2, kitchen|a2) ·

pA(a2) (13)

and the prior pA(a2) can be used to specify the context, i.e.
which other areas should be taken into consideration, e.g. all
areas except the area a.

Now, in order to obtain pA|L,PT
(a|1, kitchen), we use the

Bayes rule:

pA|L,PT
(a|1, kitchen) ∝ pL|A,PT

(1|a, kitchen) ·
pPT |A(kitchen|a). (14)

The probability pL|A,PT
(1|a, kitchen) can be calculated as

shown in Eq. 12, by replacing the factor pPS |A(s1|a) with
pPS |A,PT

(s1|a, kitchen).

D. Evaluating Against a Standard

A purely contextual standard (as in [5]) might be ap-
propriate for abstract entities for which there is neither an
objective standard nor a standard based on prior experience.
For spatial entities, however, people have expectations and
standards based on their previous knowledge. Still there
exists a contextual bias to which people can adapt their
expectations under varying circumstances.

We propose a standard that takes into account both the
given context and abstract world knowledge. We establish an
evaluation standard on the basis of a prototypical property
value. The prototypical quality is determined by averaging
across the property values of a given set of entities. We hence
propose an extensional definition of prototypicality.

An a priori prototypical standard can be computed after
the dedicated learning step (cf. Section IV). Later on, this
standard is modified by also taking into account all new in-
stances of a given class. This allows our system to gradually
adjust its standard to the environment in which it operates. By
this self-extension we ensure the production of contextually
appropriate expressions.

As shown in the previous section, we can define a new
random variable

L =






1 − the value of the size property for an area
is larger than the expected value of the size
property for areas being kitchens

0 − otherwise



Then, again, we can calculate pL|A(l|a) as follows:

pL|A(1|a) =
∫ ∞

E[PS |PT =kitchen]
pPS |A(s1|a)

pL|A(0|a) = 1− pL|A(1|a)

These equations provide an interpretation for the applica-
bility of the stronger positive predications. The expression
“the small kitchen” is hence only generated if the referent
is not only the smallest kitchen in the context, but also if it
generally belongs to the class of small kitchens as defined
by being considerably smaller than a prototypically-sized
kitchen.

VI. CONCLUSIONS AND FUTURE WORK

This work presents a robot that autonomously acquires a
notion of prototypical appearance and intra-class variation.
It starts with a model that is learned off-line. It can use this
model right away for verbalizing descriptions and referring
expressions. It also constantly extends its models and its
instance knowledge and thus shapes its verbalization to better
reflect its experience in the operating environment.
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Verbalization of Ontological Knowledge
for Communication about Properties and Gaps

(preliminary report)

Hendrik Zender and Geert-Jan M. Kruijff

Abstract— The paper reports preliminary research on verbal-
izing a robot’s knowledge about an instance I of a particular
concept C. This covers both what a robot knows, and what it
does not (yet) know about the instance. The paper considers
a “gap” to be that information the robot misses to establish a
given property P for I , knowing that that property typically
applies to instances of C. The paper proposes a method for
determining which properties are classifiable as gaps for an
instance relative to a concept. This method operates on the
TBox and ABox of an ontology. It provides a general method for
determining gaps, and is not specific to situated dialogue. The
paper shows how the resulting characterization of available and
missing knowledge about I relative to C can then be verbalized,
following up an approach recently presented in [1]. The paper
illustrates the method on an example involving spatial entities,
and discusses further research on extending the method.

I. INTRODUCTION

A robot typically does not come equipped with all there is
to know about the world it operates in. More often than not,
it is uncertain about what it perceives, or how to understand
what it perceives. It needs to learn more. Which is exactly
the point of the argument for continuous learning.

But there is more to this. A passive strategy, waiting
until suitable learning examples present themselves deus ex
machina, is unlikely to help the robot much. The world
presents a robot with a wealth of perceptual information –
and at the same time, each perception is unique. Experience
is sparse, making it necessary for the robot to employ an
active strategy in learning. It needs to figure out what it
needs to learn. Which is why a robot needs introspection.

On introspection, the robot determines for a particular
context what it knows, and what it doesn’t know. Intuitively,
“what it doesn’t know” represents a (potential) gap in the
robot’s knowledge. The basic idea in the CogX project is
to use such gaps to drive further learning. The robot can
actively engage with the environment, or enter into dialogue
with other agents, to fill in its gaps. Which raises the question
how a robot could identify what it doesn’t know.

In this paper, we present a method for determining a
specific type of gaps. We are interested in the following ques-
tion: Given an individual I , and a concept C in an ontology,
what information about I is lacking to establish it as an
instance of C? We assume that we can express “information
about I” as a list of properties. Lacking information then

H. Zender and G.J. Kruijff are with the Language Technology Lab,
German Research Center for Artificial Intelligence (DFKI), Saabrücken,
Germany {zender, gj}@dfki.de

is a list of those properties P ? that together with a list of
known properties P+ for I , would provide the necessary and
sufficient facts to establish I as an instance of C.

The basic idea behind the method is to use query mech-
anisms for checking whether an individual I fulfills the
definitions for being an instance of a given concept. This
basic idea is similar to the type of slot-filling we find in
information state-based dialogue management [2]. Where the
methods diverge is that the method we discuss here provides
a natural way for integrating with uncertainty in (perceptual)
categorization. Given a distribution over possible concepts
C1, ..., Cn, the method can query the ontology for fulfillment
of I against each of these concepts. The result is a set of
property lists P ?

i , one for each concept Ci. Which provides
us with the possibility to do more than just slot-filling. In a
manner akin to generating or resolving referring expressions
[3], [4], we can determine what minimal set of properties
P δwould provide a way for optimally dividing C1, ..., Cn

into two subsets of concept descriptions that are mutually
exclusive along P δ . This is a strategy we use in meta-
learning to actively select samples to divide a category search
space [5]. In our setting it provides the possibility to select
a “gap” the answer to which can help to efficiently narrow
down the scope of possible concepts for I .

We return to this idea at the end of the paper. What
interests us here is the use of gaps P ? and a description of
the concept to verbalize the robot’s knowledge about I . Such
verbalization plays a fundamental role in situated dialogue
between a human and a robot that wants to learn more. By
telling the human what it does and doesn’t know, the robot
makes its internal belief state transparent to the human. And
this sets up the background for another important aspect
of dialogue for learning, namely scaffolding [6]. By telling
the human what it doesn’t know, the robot indicates what it
would like to know.

An overview of the paper is as follows. Section II dis-
cusses Schütte’s algorithm for verbalizing conceptual struc-
tures. The verbalization method we use in this paper is
based on that algorithm. Furthermore, we briefly outline the
scenario in which we work. Section III describes description
logics, and their use in formulating ontologies. Section IV
explains the different aspects of our proposed approach in
terms of verbalization, introspection, and knowledge gap
generation. We close the paper with a discussion of future
research in Section V.



II. BACKGROUND

Schütte [1] presents an approach for verbalizing concept
descriptions from ontologies. In this work, we generate
concept and individual descriptions and use the same mecha-
nisms to identify such missing pieces of information that can
be discovered by an agent’s knowledge gathering behaviors.
We will call these pieces knowledge gaps. The domain we are
interested in in this work is a spatial knowledge base for an
autonomous robot, more specifically the robot’s conceptual
spatial map of its environment, cf. [7]. The verbalization
mechanisms are part of a dialogue system for such a robot
[8].

III. ONTOLOGY-BASED KNOWLEDGE REPRESENTATION

Description Logics (DL) based ontologies make a dis-
tinction between a conceptual taxonomy of concepts (the
TBox T , for terminological knowledge) and the knowledge
about individuals in the domain of discourse (the ABox A,
for assertional knowledge) [9]. Additionally DL-ontologies
contain a set of roles that can hold between individuals,
and which are defined over concepts. While some call
this the RBox, we will assume that role definitions and
role restrictions that are used in concept definitions belong
to the TBox. Those roles that represent relations between
individuals are part of the ABox. Another common name
for concept is class. This gives rise to a more extensional
perspective – in which a concept can be represented as the
set of its member individuals.

An important distinction which we will later get back
to is the distinction between atomic concepts and concept
descriptions [10]. Atomic concepts can be defined in terms
of complex concepts, which are expressed by other concepts,
concept constructors and role restrictions, cf. [10], [11] for
a more complete account. Here is an example of such a
concept definition in our robotic spatial map domain (TBox
Tr, cf. Figure 1), which defines kitchens as all those rooms
that contain at least one kitchen object:

(1) Kitchen ≡ Room " ∃hasObject.KitchenObject ∈ Tr

The task of DL reasoners is to perform certain kinds of
inferences in both the TBox and the ABox. The most basic
TBox inference – and the one that is relevant for this work
– is subsumption checking between concepts. This inference
turns a set of concept definitions into a hierarchical taxonomy
in which concepts are related with a subclass/superclass
relation. Given the example above, a DL reasoner could infer
that Kitchen is a subclass of Room.

(2) |=Tr Kitchen % Room

In the ABox a DL reasoner establishes class membership
of individuals, the so-called instance checking mechanism
[10]. Continuing our example, we could assert the following
facts about our domain:

(3) The example ABox Aex:
Room(AREA1)

Fig. 1: Visualization of the named-class hierarchy of the
example TBox Tr. owl:Thing is the OWL equivalent of
the top level concept & in abstract DL formalisms.

Oven(OBJ1)
hasObject(AREA1,OBJ1)

The reasoner would then infer that OBJ1 is also an
instance of KitchenObject and hence AREA1 is an instance
of Kitchen1:

(4) Aex |=Tr KitchenObject(OBJ1)
Aex |=Tr Kitchen(AREA1)

At the core of our system is an OWL-DL ontology2 that
represents a robotic conceptual spatial map [12], which
represents knowledge about places and objects in the envi-
ronment, as well as relations between them. For the present
work, we are using the “Jena” reasoning framework3 with
its built-in OWL reasoning and rule inference facilities.
Internally, Jena stores the facts of the ABox and the TBox
of the ontology reasoner as RDF4 triples. The knowledge
base can be queried through SPARQL5 queries. We will later
use the abstract DL syntax (see above) and the concrete
OWL/RDF syntax interchangeably wherever one is more
appropriate.

IV. VERBALIZATION AND INTROSPECTION

In terms of verbalization and knowledge introspection,
DL-based ontologies afford a number of interesting tasks;
verbalizing conceptual knowledge, i.e., turning TBox defini-
tions into natural language descriptions [1] being one. An-
other opportunity for verbalization is to talk about individuals

1Of course, an OWL-DL reasoner would establish the full type hierarchy
for both individuals along the transitive subsumption axis (cf. Figure 1. This
is left implicit here for ease of reading.

2http://www.w3.org/TR/owl-guide/
3http://jena.sourceforge.net
4http://www.w3.org/RDF
5http://www.w3.org/TR/rdf-sparql-query



in a knowledge base, e.g., generating referring expressions
to ABox instances [3]. A task which is closely related to
the aforementioned tasks is knowledge introspection, put
differently, determining gaps in an agent’s knowledge.

A. Verbalizing Ontological Knowledge
Ontologies encode knowledge of concepts and their rela-

tionships in a specific domain. They are designed to support
different inference mechanisms and in order to describe
intensional and extensional knowledge about the involved
concepts. Ontologies thus contain many concepts that don’t
have a clear one-to-one correspondence with a lexical item.
They hence typically don’t straightforwardly afford generat-
ing natural language descriptions of concepts and instances.
Following Schütte [1], we annotate those concepts in the
TBox that correspond to words in natural language.

(5) Definition of the AnnotationProperty lexicalWord,
and annotation of the concept Kitchen in Tr:

<owl:DatatypeProperty rdf:ID="lexicalWord">
<rdf:type rdf:resource=
"&owl;AnnotationProperty"/>

<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:Class rdf:ID="Kitchen">
<rdfs:subClassOf rdf:resource="#Room"/>
<lexicalWord rdf:datatype="&xsd;string">
@p:entity(kitchen)

</lexicalWord>
</owl:Class>

His approach relies on the distinction between atomic
concepts and concept definitions, cf. Section III, which
is reflected in the choice of the subject and the subject
complement in the introductory sentence.

(6) “A kitchen is a room that has at least one kitchen
object, like an oven or a coffee machine.”

Atomic concepts are named classes whereas concept def-
initions are expressed as complex restrictions over roles
(i.e., relations). Schütte clusters individual restrictions to
property groups. He then iterates over these groups in order
to generate messages for verbalization. What it essentially
does is it generates a list of properties PC that constitute
necessary and/or sufficient conditions for C.

This approach can be extended for verbalizing ABox indi-
viduals. This task is related to the task of generating referring
expressions (GRE) to the individual I . The difference is that
a GRE algorithm iterates over a fixed list of properties in
order to (a) find out whether a property holds for I and (b)
whether it does not hold for a non-empty subset D ∈ A of
remaining distractors – in other words: a referring expression
should include only true information about the intended
referent that helps distinguish the referent from potential
distractors in the context – cf. [13] for a more complete
account of the matter.

Now, in order to verbalize a description of an individual I ,
of course, only true statements about I should be included.

The restriction to discriminatory information, however, must
be left out. Querying the ontology for all properties that
hold for I yields a list P+

I that can be verbalized using
a mixture between concept lexicalization (see above) and
referring expression generation for all individuals that are
involved as relatees in P+

I . In the following we will illustrate
how P+

I and PC together can be used in formalizing absent
information.

B. Identifying Knowledge Gaps
Under an open-world assumption every individual I in

the ABox might be an instance of every concept C. The
mere ignorance of facts that would support such an inference
is not interpreted as negative information. Only positive
inferences are drawn by a reasoner that operates with open-
world semantics. Everything else is considered a lack of
knowledge. However, equating this with knowledge gaps,
as relevant in the present work as well as in the CogX
project as a whole, is impractical. Many of the concepts
in a typical ontology in our domain (for instance [7], [12])
serve a predominantly structural purpose (i.e., they give
structure to the ordered concept taxonomy), while offering
little information that is directly linked to phenomena that
are observable by the robot. Furthermore considering the
typical size of such an ontology (e.g., > 200 concepts and
> 10 individuals in a running system like [14]), a purely
combinatorial approach to establishing gaps would lead to
a massive over-generation that would be intractable for the
robot. Within the project CogX we are thus identifying
knowledge gaps as absent knowledge which can be gathered
and established by the robot itself. Our notion of knowledge
gap is hence inherently linked to the notion of gap filling.

In the present work, we make use of a crucial distinction
in DL-based knowledge representations and formalisms. We
distinguish individuals into asserted and inferred instances
of a concept. This dichotomy corresponds to the difference
between user-given knowledge and self-acquired knowledge
of the robot. Presence of both kinds of knowledge is a
typical characteristic of a robot’s knowledge base after it
was given a guided tour by its human user through their
shared environment [15]. After such a tour, a robot might
have acquired a spatial map whose units correspond to Room
instances in the knowledge base, augmented with the user-
given information that one of these rooms is a kitchen. The
respective individual (say, e.g., AREA5) is what we call an
asserted instance of the concept Kitchen. Put differently,
during the tour the ABox Atour is filled with the following
facts:

(7) Part of Atour:
Room(AREA1), Room(AREA2),
Room(AREA3), Room(AREA4),
Room(AREA5), Kitchen(AREA5),
Room(AREA6)

AREA5 is thus asserted to be an instance of the named
concept Kitchen, that is, it satisfies the left-hand side of the
concept definition (1) above. At the same time Atour does



not contain enough facts to satisfy the concept description
given on the right-hand side. The reasoner cannot prove that
the individual is an inferred instance of that concept. The
asserted-inferred dichotomy thus provides a first interpreta-
tion of a relevant knowledge gap: the presence of facts that
can be subsumed by a right-hand side of a concept definition
would allow the reasoner’s instance checking mechanism to
infer a fact. Of course, the reasoner is a priori indifferent to
whether a piece of information is asserted or inferred, as long
as it can be assumed to be true. Such a case, on the other
hand, provides an interesting opportunity for a robot to gather
knowledge in a goal-directed way. The rationale behind this
is the assumption that there exist objective facts that (a) lead
the human user to make such an assertive statement, and (b)
can be verified by the robot, such as, e.g., the presence of
an object that is typical for kitchens.

Such a knowledge gap can be determined through intro-
spection. The reasoning behind this is a sort of abduction:
given that the robot knows C(I), it can assume that it must be
possible to satisfy a set of facts FC′ = F1, . . . , Fn that can be
subsumed by the right-hand side C ′ of the concept definition
C ≡ C ′ such that these facts give rise to the inference C ′(I).

(8) A ∪ (
⋃n

i=1 Fi) |=T C ′(I).

To get back to our earlier descriptions, for every individual
I and for all concepts C1, . . . , Cn that I instantiates –
Ci(I) ∈ A – one needs to determine the properties PCi

that correspond to C ′
i. The next step is then to check the

known properties P+
I of I parallel to the verbalization

task (cf. Section IV-A). For each Ci(I) the list of lacking
properties P ?

i (I) can then be calculated as follows.

(9) P ?
Ci

(I) = PCi\P+
I

C. Verbalizing Knowledge Gaps
Once lacking properties have been identified through in-

trospection, it is possible to verbalize this missing informa-
tion. The method is similar to the verbalization approaches
presented above. Verbalization of knowledge gaps can be
useful for eliciting new verbal information from the user
in tutoring settings. However, it would require a concise
interaction model in which to embed such verbalizations.
The exact choice of words must of course also be carefully
matched to the intended scenario. In this report we focus
on informative verbalizations, which are not supposed to
elicit human feedback. We rather propose a way of verbal-
izing knowledge gaps that can accompany an autonomous
knowledge gathering behavior of an autonomous robot. For
example consider a robot “gopher” that has just been taken
on a guided tour through a user’s apartment. At the end of
the tour, the robot is left with a knowledge base like Atour

in example Example (7). The robot then decides to acquaint
itself with the environment “on his own hook.” The first plan
it comes up with is to navigate to the kitchen and look out
for important objects, such as the oven, the microwave, the
coffee machine etc. In order to not intimidate its user with
unpredictable behavior, the robot is programmed to inform
her about its plans in order to establish transparency.

(10) “The kitchen is supposed to have typical objects like
an oven or a coffee machine. I will go and check.”

After informing the user, the robot turns around and
heads for the kitchen to find and locate those objects. It
is important to note that from a behavioral point of view,
such an informative message only makes sense if the robot
will then also execute the respective action. In architectural
terms this means that the robot’s planning module must first
be presented with a possible goal, then it needs to check
which action steps could have the desired outcome. Only
if there is a sequence of action steps that yields the goal
state, the planner can then decide to try to achieve the goal,
executing one action at a time. As a first step, the planner
should then initiate the verbalization action in order to inform
the user about its plans. We will illustrate how such a gap
filling behavior can be initiated in the next section (Section
IV-D. Diverging from the above order of plan formation and
instead following the chronology of the observable behavior,
we will first have a look at how to generate and verbalize
such an informative message.

Every non-empty set of lacking properties P ?
i (I) $= ∅

qualifies for such a verbalization task V (P ?
i (I)). First the

robot should make clear which entity in the world it will talk
about. This is done by using a referring expression REI to
the respective individual I as subject of the generated sen-
tence. The rest of the informative utterance can then take one
of two forms, depending on whether REI already contains
the lexicalization L(Ci) of the concept Ci in question. The
most important part is the verbalization V (P ?

i ) of the lacking
properties P ?

i . This is achieved using a modified version of
Schütte’s algorithm, which gets only a subset of properties
for verbalization P ?

i ⊆ PCi .

(11) if L(Ci) ∈ REI :
V (P ?

i (I)) = REI ◦ “is supposed to” ◦ V (P ?
i )

(12) otherwise:
V (P ?

i (I)) = REI ◦ “is a” ◦ L(Ci) ◦ “, which is
supposed to” ◦ V (P ?

i )

In our example above, this individual I is AREA5. A
referring expression REI “the kitchen” is then generated
using our existing GRE algorithms [3], [13]. Since REI

already contains the concept Ci in question, we can avoid
generating the tautological “the kitchen is a kitchen, which
is supposed to have typical objects like (. . . )” and instead
produce a short informative sentence (cf. Example (10)).

D. Initiating Gap Filling Behavior
We start from the assumption that only those “blank

spots” in an agent’s knowledge should be considered as
proper knowledge gaps for which there exist knowledge
gathering actions that can potentially fill those gaps. Usually,
these actions are provided by different modules of a robotic
cognitive architecture. An introspective mechanism that is to
present opportunities for knowledge gathering actions needs
hence to be informed from the outside about such possible
actions. This can be done by enforcing that each module



registers the kinds of actions and reasoning facilities it can
provide with a central planning and motivation module [14].

We can thus postulate that the module containing the on-
tology reasoner and the introspection procedures be informed
about the kinds of facts that can be established through
knowledge gathering actions. One such action is active visual
search (AVS), in which the robot efficiently locates one
or more distinct objects in its environment. AVS benefits
from a restricted search space, both in terms of spatial
extent and number of object classes. An abductive reasoning
over ontological knowledge can provide hypotheses for AVS,
such as searching a given spatial area (e.g., “the kitchen”)
for a limited set of objects (e.g., coffee machines, ovens,
microwaves, etc.). Just as ontology verbalization requires an
additional layer of annotation, the ontology must contain
information about which objects an AVS behavior can detect.
In our case, those concepts that represent objects which can
be detected visually are subsumed by the concept Visually-
Detectable.

(13) {VisuallyDetectable ! ",
Coffeemachine ! VisuallyDetectable,
Oven ! VisuallyDetectable,
Microwave ! VisuallyDetectable} ⊂ Tr

The semantics of the concept VisuallyDetectable is that
AVS can populate the ontology with individuals that instan-
tiate this concept. The task of presenting knowledge gaps
that can be filled by AVS now consists of identifying the
set of facts FC′ (as defined above) that are part of the
post-condition of an AVS action. AVS can be defined as an
action that takes as parameters a spatial location Iloc (e.g., an
instance of Room) and a set of objects (object concepts, that
is) Cobj = C1, . . . , Cn ⊆ VisuallyDetectable to search for
in that location (e.g., {Oven, Coffeemachine}). The post-
conditions of AVS can then be represented as a set of facts
Fp.

(14) Fp(Iloc, Cobj) = {hasObject(Iloc Iobj%C(Iobj)|C ∈
Cobj}

As introduced above, P ?
Ci

(I) corresponds to all potential
lacking properties to establish Ci(I). The intersection of
all possible facts Fp that can be produced by a knowledge
gathering action and P ?

Ci
(I) then yields the set of relevant

facts FC′
i

that could give rise to an inference Ci(I). It is this
FC′

i
, which is then presented to the planner as a potential

goal state – thus denoting a fillable knowledge gap.

V. CONCLUSIONS AND FUTURE WORK

The paper discussed ongoing research on developing meth-
ods for (a) introspecting a robot’s ontological knowledge, (b)
determining gaps in knowledge about a specific individual
I relative to one or more concepts C1, ..., Cn, and (c)
verbalizing what the robot does and does not know about
I relative to these concepts. The paper operated with a
limited notion of “gap,” defined as a property of a known
concept C but unknown for I if instantiated as C. The
proposed method used queries on an ontology to establish

the conditions under which I could be an inferred instance
of C, and determined gaps P ? from the extent to which I did
not yet fulfill these conditions. Verbalization then combined
concept description with the known properties of I , P+ and
the gaps P ?, extending the approach proposed by Schütte
[1].

There are several directions for future research we intend
to follow. These concern the introspection mechanisms them-
selves, and the subsequent use of introspection in carrying
out a situated dialogue for learning more about the environ-
ment.

a) Uncertainty over categories and properties: We are
not considering an individual I , nor the ontologies against
which we want to interpret I , in logical isolation. Concepts
their instances are anchored in the perceptual and propri-
oceptive experience of a robot, over time and space. As
uncertainty is inherent to a robot’s experience, we need a
way to deal with ’that’ – uncertainty in the actual concepts an
individual can instantiate, uncertainty about what properties
can be recognized for the individual, and uncertainty about
what values any of the recognized properties may take. As
we already indicated in Section I, there are natural ways in
which we can extend our method to deal with various sources
of uncertainty. Given a set of alternative concepts C1, ..., Cn

for I , ranked by (un)certainty, the method can retrieve a
multiset of unknown properties, one P ?

i for each concept
Ci (1 ≤ i ≤ n). We assume that each P ?

i is finite, and each
property p?

h ∈ P ?
i has a finite, discrete (or discretizable)

range. Then, given u the number of unique properties in
P ?

1 , ..., P ?
n we have O(u ∗n ∗ (n− 1)) comparisons between

concepts to establish which properties are shared between
C1, ..., Cn. For Shared = {p1, ..., pm} the set of shared
properties we can subsequently determine, how each property
(by presence) would help split the set of concepts into evenly
balanced subsets. We can directly determine this by a linear
computation over the findings in the comparison matrix
constructed in the previous step. Given a cost function over
observing particular properties, and the uncertainty in having
(or not having) observed that property for I , we want to
investigate how ranking gaps in order of cost/uncertainty can
help us establish what would be the most suitable sequence
for querying the environment or a human about these gaps,
to establish the correct concept for I .

b) Weighted abduction for lowest-cost proofs of cate-
gorical identity: A cost-based ranking over gaps provides
a direct connection with cost-based planning or inferencing
for dealing with gaps. Kruijff & Janiček [16] present a form
of weighted abduction based on [17], [18], [19], among
others extending it with a notion of assertion alike [20].
This kind of abduction helps us to establish the lowest-
cost proof for making an update to the robot’s belief model.
Weights in this form of abduction represent uncertainty in
knowledge [21]. We can use this to reflect uncertainty in an
observation (the cost of making the right assumption) or the
actual cost of making an observation (as per above). Kruijff
& Janiček introduce assertions to identify propositions that
are included in an abductive proof, but which are in need



of future validation. We intend to investigate how we can
see establishing concept membership of an individual I as a
weighted abductive proof. Given the costs of “deciding” be-
tween alternative concepts, and given the (un)certainties for
the observations about I , which concept C would establish
the lowest-cost proof for I instantiating C? Using a form of
inference like abduction would also enable us to take into
account any logical structure over the interrelations between
properties for a concept (as often explored in inferential
forms of knowledge discovery).

c) From verbalization to information requests: Another
interesting use of a ranking over gaps that are discriminative
between potentially applicable concepts, is to drive verbaliza-
tion and dialogue planning for information requests. Realized
gaps provide a focus – they are the properties we are after
when asking for more information. This helps us to structure
a dialogue for getting more information. We would like to
investigate how the abductive view on continual collaborative
activity, explored by Kruijff & Janiček, can provide a basis
for comprehending, deliberating, and producing such (sub-
)dialogues for information requests to help resolve gaps.

Finally, we will need to generalize from the notion of gap
used in this paper, to more general notions. In this paper we
only focus on understanding an individual at the ABox level
in an ontology. We are not dealing with extending existing
concepts in the TBox, or even establishing new concept
classes. It currently remains an open question within CogX
how to define such more general gaps, how to ground them in
perceptual and proprioceptive models (i.e. in “experience”),
and how to use them in self-extension.
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Abstract

In a constructive learning setting, a robot builds up be-
liefs about the world by interacting – interacting with
the world, and with other agents. Asking questions is
key in such a setting. It provides a mechanism for in-
teractively exploring possibilities, to extend and explain
the robot’s beliefs. The paper focuses on how to linguis-
tically phrase questions in dialogue. How well the point
of a question gets across depends on how it is put. It
needs to be effective in making transparent the agent’s
intentions and beliefs behind raising the question, and
in helping to scaffold the dialogue such that the desired
answers can be obtained. The paper proposes an al-
gorithm for deciding what to include in formulating a
question. Its formulation is based on the idea of consid-
ering transparency and scaffolding as referential aspects
of a question.

Introduction
Robots are slowly making their entry into ”the real world.”
And it is slowly becoming an accepted fact of life that we
cannot possibly provide such robots will all there is to know,
out-of-the-box. So they need to learn. The point of socially
guided (machine) learning (Thomaz 2006) is that some of
that learning can be done effectively through social interac-
tion with other agents in the environment.

This paper focuses on how a robot should phrase its ques-
tions, considering a social learning setting in which situ-
ated dialogue is the main interactive modality (Kruijff et
al. 2006a; Jacobsson et al. 2007). The robot and a human
use spoken dialogue to discuss different aspects of the envi-
ronment. We consider learning to be driven by the robot’s
own, perceived learning needs. This requires dialogue to be
mixed-initiative. Both the human and the robot can take the
initiative in driving this ”show-and-tell-then-ask” dialogue.
Questions play a fundamental role in such dialogues. As-
suming a robot has the ability to raise issues in need of clari-
fication or learning for any modality, (e.g. (Kruijff, Brenner,
and Hawes 2008)), the problem thus becomes how to prop-
erly phrase a question.

Typically, a question is represented as an abstraction
over the argument of a predicate. For example, assuming

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

?x.P (x) to indicate that a question regards a parameter x
of some predicate P (x), a question about the color of a ball
could be phrased as ?x.(ball(y) ∧ has−color(y, x)). How-
ever, more aspects need to be taken into account, for a ques-
tion to be posed in such a way that the addressee is likely
to understand the question and provide a suitable answer
(Ginzburg 1995b).

First of all, the phrasing needs to make transparent how
a question arises from an agent’s beliefs, what beliefs – and
what gaps in an agent’s beliefs – it refers to. It should make
clear what a question is about. Furthermore, there is a rea-
son behind raising the question. The agent has a specific
goal, it intends to obtain a particular kind of answer. Not
just any answer will do. Raising a question also needs to set
up, scaffold, the right context for answering it. This is the
why of a question, pointing to how the agent would like to
see the question resolved.

An example in (Kruijff et al. 2006b; 2007b) provides an
interesting illustration.1 The robot is capable of figuring out
when it might have mistakenly classified a particular passage
in the environment as a door. At the point where it realizes
this, it asks, ”Is there a door here?” Unfortunately, the place
where it asks this is not related to the location ”here” refers
to. To anyone but a developer-acting-as-user it is not trans-
parent what the ”here” means. This often leads to the user
giving the wrong answer, namely ”yes this room has a door”
rather than, ”no, there is no door between the trash bin and
the table.” The way the question was phrased lacked both in
transparency (location reference) and in scaffolding (specific
location, not the room as such).

The paper presents an approach to generating a content
representation for a question. These representations reflect
what is being asked after, in reference to beliefs (about-
ness, transparency) and intentions (resolvedness, scaffold-
ing). The approach explicitly regards transparency and scaf-
folding as referential qualities of a question. This way their
referential nature in the larger dialogue- and situated con-
text can be considered. Following out that idea, the ap-
proach bases its content determination algorithm on Dale &
Reiter’s incremental algorithm for generating referring ex-
pressions (Dale and Reiter 1995), in combination with algo-

1See also the video at the CoSy website’s Explorer page, at
http://cosy.dfki.de/www/media/explorer.y2.html.



rithms for referential context determination (Zender, Kruijff,
and Kruijff-Korbayová 2009; Paraboni, van Deemter, and
Masthoff 2007).

Central to the approach is establishing the information
pertaining to the question. A description logic-like formal-
ism is used to represent such information, as a conceptual
structure in which propositions have ontological sorts and
unique indices, and can be related through named relations.
A question can then be represented as a structure in which
we are querying one or more aspects of such a representa-
tion (Ginzburg 1995b; Kruijff, Brenner, and Hawes 2008).
The formalism allows everything to be queried: relations,
propositions, sorts. Around the formulation of a question
we construct a nucleus, comprising the situation (the ”facts”)
and the beliefs that have led up to the question, the question
itself, and the goal content which would resolve the ques-
tion. The question nucleus integrates Ginzburg’s notions of
aboutness, and (potential) resolvedness.

Based on the question nucleus, the algorithm starts by
determining to what extend the different aspects are cov-
ered by the (dialogue) common ground between the robot
and the human. For this, contextual references are resolved
in a dialogue context model (Kruijff et al. 2007a), and it
is established how these can be related to inferences over
domain knowledge and instances (Kruijff et al. 2007b).
The question nucleus is extended with these connections
– or rather, with indications of the information structure
or informativity of individual content – so that it includes
an explicit notion of what is shared, and what is privately
held information (cf. (Lochbaum, Grosz, and Sidner 1999;
Grosz and Kraus 1999)).

The algorithm next decides what aspects of a question
nucleus to include in the content for phrasing the ques-
tion. For each aspect of the nucleus (facts, beliefs, ques-
tion, goals) the algorithm uses the informativity of the as-
pect’s content, in conjunction with similarly related but con-
trasting content in the dialogue context model, to determine
whether to include it. Essentially, new or contrastive con-
tent will be considered, whereas salient ”old” information
will not. The form in which the content will be included
is determined by content-specific algorithms for generat-
ing referring expressions (e.g. (Kelleher and Kruijff 2006;
Zender, Kruijff, and Kruijff-Korbayová 2009)). The deci-
sions to include particular content can be weighted accord-
ing to a comprehensibility ranking as e.g. in (Krahmer, van
Erk, and Verleg 2003).

The contributions the approach aims for are, briefly, as
follows. Purver and Ginzburg develop an account for gen-
erating questions in a dialogue context (Purver, Ginzburg,
and Healey 2003; Purver 2004). Their focus was, however,
on clarification for the purpose of dialogue grounding. A
similar observation can be made for recent work in HRI
(Li, Wrede, and Sagerer 2006), We are more interested in
formulating questions regarding issues in building up situ-
ation awareness, including the acquisition of new ways of
understanding situations (cf. also (Kruijff, Brenner, and
Hawes 2008)). In issue-based (or information state-based)
dialogue systems (Larsson 2002), the problem of how to
phrase a question is greatly simplified because the task do-

main is fixed. There is little need for paying attention to
transparency or scaffolding, as it can be assumed the user
understands the task domain.

An overview of the paper is as follows.The paper starts
with a discussion of basic issues in modeling questions and
their semantics, based on (Ginzburg 1995b). Then the ap-
proach is presented. The approach starts from the assump-
tion that a question is a dialogue, not just a single utterance.
Discussed is how the content plan for such a question dia-
logue can be determined, providing definitions, representa-
tion, and algorithms. The paper ends with a discussion of
how the approach could be integrated, evaluated, and points
for further research.

Background
What is a question? Ginzburg (1995b) discusses a variety of
linguistic approaches. All of them aim to provide an invari-
ant characterization of the semantics of a question. Broadly,
they have proposed the following aspects as crucial to that
definition.

First, several approaches propose to see a question as an
n-ary relation. The relation puts together the question with
one or more contributions pertaining to answering it. The
point here is to take into account the fact that a question
can be discussed over several turns in a dialogue. Second,
there is a sense of aboutness to a question. Each question
can be associated with a collection of propositions, which
are –intuitively– related to the question. And, finally, each
question can be considered to be associated with a (possibly
complex) proposition which provides an exhaustive answer.
In other words, an exhaustive answer resolves the question.

Ginzburg suggests that all these aspects together make
up a characterization of a question – not just one of them,
as most approaches suggest. Furthermore, these aspects
are to be understood as being relative. What a question is
about, and how it can be resolved, should be understood rel-
ative to an agent’s goal and belief/knowledge state (cf. also
(Ginzburg 1995a)). The following example illustrates this.

(1) Context: a robot drives around campus, and is about
to enter the DFKI building.
a. Janitor: Do you know where you are?

Robot: DFKI.
b. Janitor believes the robot knows where it is.

(2) Context: a robot drives around the DFKI building,
to get a cup of coffee.
a. Janitor: Do you know where you are?

Robot: DFKI.
b. The janitor is not convinced the robot really

knows where it is.

What counts as an answer to a question may thus vary
across contexts. What a question is thus cannot be reduced
to an analysis of just what counts as its answers. Instead,
Ginzburg starts with setting up an ontology in which ques-
tions, propositions and facts are considered as equal citizens.
This makes it possible to consider a question in relation to



possible answers for it. The ontology is defined using sit-
uation theoretic constructs, which we will adopt through-
out this paper. (All definitions as per (Ginzburg 1995a;
1995b).)

Definition 1 (SOA, Situation, Fact). A SOA (State Of Af-
fairs) describes possible ways an actual situation might be.
SOAs are either basic, or built up from basic ones using al-
gebraic operations. A basic SOA is an atomic possibility,
written as 〈R, f : i〉 with R a relation, f a mapping assign-
ing entities to the argument roles of R, and i is a polarity i.e.
i ∈ {+,−}. A situation s supports the factuality of a SOA
σ iff s |= σ. The SOA σ is then considered a fact in s. To
enable complex SOAs, SOAs can be structured as a Heyt-
ing algebra under a partial order ’→’, which is closed under
arbitrary meets (

∧
) and joins (

∨
). Situations and SOAs to-

gether form a SOA-algebra:

1. If s |= σ and σ → τ then σ |= τ

2. s &|= 0, s |= 1 (FALSE,TRUE)

3. If Σ is any finite set of SOAs, then s |=
∧

Σ iff s |= σ
for each σ ∈ Σ

4. If Σ is any finite set of SOAs, then s |=
∨

Σ iff s |= σ
for at least one σ ∈ Σ

Finally, an application operator is defined, to allow for vari-
able assignment (and reduction):
λx.〈R, a : b, c : x : +〉|x '→ d| = 〈R, a : b, c : d : +〉 !

Using Definition 1, we can now consider a proposition to
be an assertion about the truth of a possibility relative to a
situation.

Definition 2 (Proposition). A proposition p is a relational
entity, asserting a truth regarding a SOA τ in a particular
situation s: p = (s : τ). A proposition p = (s : τ) is TRUE
iff τ is a fact of s, denoted as s |= τ . !

Before defining what a question is, the notions of re-
solvedness and aboutness need to be defined. Resolved-
ness, or rather the broader concept of potentially resolving a
question, is defined as follows. The definition distinguishes
whether a (possibly complex) fact resolves a question de-
pending on whether the question is polar, asking for the truth
of an assertion (e.g. ”Is the ball red?”), or factive, asking af-
ter a value (e.g. ”What color is the ball?”).

Definition 3 (Resolvedness conditions). A SOA τ poten-
tially resolves a question q if either

1. τ positively-resolves q (for ’polarity p’: any informa-
tion that entails p; for a factive question: any informa-
tion that entails that the extension of the queried predi-
cate is non-empty)

2. τ negatively-resolves q (for ’polarity p’: any informa-
tion that entails ¬p; for a factive question: any informa-
tion that entails that the extension of the queried predi-
cate is empty)

!

We will leave the notion of aboutness for the moment.
Essentially, Ginzburg (1995a; 1995b) defines this as a col-
lection of SOAs which can be associated with the content of
a question q, with a SOA being about q if it subsumes the
fact that q is either positively or negatively resolved. (For
subsumption, recall Definition 1.)

Ginzburg’s definition of what a question is then works out
as follows.
Definition 4 (Question). A question is an entity (s?µ) con-
structed from a situation s and an n-ary abstract SOA µ =
λx1 , ..., xnσ(x1 , ..., xn) (n ≥ 0):

1. µ constitutes an underspecified SOA from which the
class of SOAs that are about q can be characterized.

2. Those SOAs which are facts of s and informationally
subsume a level determined by µ constitute a class of
SOAs that potentially resolve q.

!

The definition includes references to the relational charac-
ter of a question (the abstract), and the notions of aboutness
(intuitively, the space within which we are looking for an
answer) and of resolvedness (the space of possible answers
we are looking for, one of which will -hopefully- establish
itself as fact). Finally, we already indicated above that re-
solvedness is an agent-relative notion. Ginzburg suggests to
do so using Definition 3 as follows.
Definition 5 (Agent-relative resolvedness). A fact τ re-
solves a question (s?µ) relative to a mental situation ms iff

1. Semantic condition: τ is a fact of s that potentially re-
solves µ

2. Agent relativisation: τ =⇒ msGoal − content(ms),
i.e. τ entails the goal represented in the mental situation
ms relative to the inferential capabilities encoded in ms.

!

Approach
The previous section presented a formal (but relatively ab-
stract) notion of what a question is. It made clear that a
question is more than a predicate with an open variable, or
(alternatively) just another way of characterizing a set of
propositions that would serve as exhaustive answer. Instead,
a question is a relational structure, tying into a larger con-
text. For one, this “context” provides a set of beliefs (SOAs,
in Ginzburg’s terms), a background within which potential
answers are sought. An agent’s goals help motivate to fo-
cus which beliefs are associated with the question. Another
point about this “context” is that a question isn’t just a sin-
gle utterance, or just forming a unit with an utterance that
answers it. There is a dialogue context in which this ques-
tion is phrased. The question itself, and whatever utterances
contribute to help clarify, refine and answer that question,
may (though need not) refer to content already established
in that context.

Phrasing a question, in other words, means we need to
provide the possibility for such contextual factors to influ-
ence how the content of a question is determined. Once the



agent has determined that it needs to raise a question, and
about what (e.g. cf. (Kruijff, Brenner, and Hawes 2008) for
questions in situated forms of learning), it needs to estab-
lish how best to communicate the question. In this paper,
we suggest to do this as follows. We will begin by further
explication of the notion of question, using a structure we
term the question nucleus. The question nucleus captures
more explicitly the relation between beliefs and intentions
that are active in a current context, and how they determine
the space of possible answers (or complexes of those). Then,
we sketch several algorithms. The first group of algorithms
concern context determination. Intuitively, these algorithms
determine what beliefs and potential answers form the rele-
vant background for the question. The background specifies
what can be assumed to be known, (and can thus be referred
to or even silently assumed), both in terms of content and
intentions in the the dialogue- and situated context. How a
question is to be phrased relies on what it needs to expli-
cate relative to that background, to effectively communicate
it. This is then finally done by the content determination
algorithm. The result of this algorithm is a logical form, ex-
pressed in a (decidable) description logic. The logical form
specifies the core content for the question, which a content
planner subsequently can turn into one or more fully-fledged
utterances.

The following definition defines more precisely what
we mean by a logical form, based on (Blackburn 2000;
Baldridge and Kruijff 2002). We will use the same formal-
ism to describe SOAs (cf. Definition 1).
Definition 6 (Logical forms). A logical form is a formula
φ built up using a sorted description logic. For a set of
propositions PROP = {p, ...}, an inventory of ontolog-
ical sorts SORT = {s, ...}, and a set of modal relations
MOD = {R, ...}, φ = p | i : s | ψ∧ψ′ | 〈R〉ψ | @i:sψ. The
construction i : s identifies a nominal (or index) with onto-
logical sort s. The at-operator construction @i:sψ specifies
that a formula ψ holds at a possible world uniquely referred
to by i, and which has ontological sort s. !

A standard Kripke-style model-based semantics can
be defined for this language (Blackburn 2000). Intu-
itively, this language makes it possible to build up rela-
tional structures, in which propositions can be assigned
ontological sorts, and referred to by using i as in-
dices. For example, @b1 :entity(ball ∧ 〈Property〉(c1 :
color ∧ red) means we have a “ball” entity, which we
can uniquely refer to as b1, and which has a (refer-
able) color property. (An alternative, equal way of view-
ing this formula is as a conjunction of elementary pred-
ications: @b1 :entityball ∧ @b1 :entity〈Property〉c1 :
color ∧ @c1 :colorred.)

Question nucleus
We start by defining the notion of question nucleus. The
function of a question nucleus is twofold. First, it should
capture the question’s background in terms of associated be-
liefs and intentions, and what space of expected answers
these give rise to. An expected answer is naturally only as
specific (or unspecific) as is inferable on the basis of what

the agent knows.
Definition 7 (Expected answer). An expected answer a for
a question q is a proposition a = (s : τ), with τ potentially
resolving q as per Definition 3. τ is a logical formula (Def-
inition 6) which can be underspecified, both regarding the
employed ontological sorts, and arguments. !

Effectively, assuming that the agent has a collection of
ontologies which provide a subsumption structure (a " b
meaning a subsumes b, i.e. b is more specific), an expected
answer can be said to define a “level” of specifity (Defini-
tion 4) according to subsumption. Following up on the ball
example, assume the agent has an ontology which defines
material − property " {color, shape}. An expected an-
swer to a question, what particular shape the ball has, would
take the form @b1 :entity(ball ∧ 〈Property〉(s1 : shape)).
All the proposition specifies is that there is an identifiable
shape. If the question would be about any, or some un-
known, property of the ball, an expected answer could be
phrased as @b1 :entity(ball ∧ 〈Property〉(m1 : material −
property)). Using the available ontological structure, and
relational structure between formulas, we can formulate ex-
pected answers at any level of specifity without requiring the
agent to already know the answer (cf. also (Kruijff, Brenner,
and Hawes 2008)).
Definition 8 (Question nucleus). A question nucleus is a
structure qNucleus = {r, BL, XP, AS} with:

1. A referent r relative to which the question q (part of XP)
is phrased.

2. BL (Beliefs) is a set of private and shared beliefs, about
agent intentions and facts in the current context (cf.
(Lochbaum, Grosz, and Sidner 1999; Grosz and Kraus
1999)).

3. XP (Execution Plan) is a continual plan with an exe-
cution record (Brenner and Nebel 2008) for resolving a
question q = (s?µ).

4. AS (Answer Structure) is a finite "-structure over
propositions p1 , ... which potentially resolve q, and
which are implied by BL.

The beliefs BL specify what the agent knows about r, what
the agent presumes to be shared knowledge about r, and
what the agent presumes other agents could know about r.
BL is based on the dialogue leading up to the question, any
previous actions involving r, and a domain model of agent
competences (Brenner and Kruijff-Korbayová 2008). XP
makes explicit that phrasing a question constitutes a dia-
logue, with an associated plan for communicating the ques-
tion and a record for how far the question has been fully
answered. This record maintains which aspects (elementary
predications) of the question are still open (“under discus-
sion,” similar to the Question-Under-Discussion construct of
(Ginzburg 1995b)). The AS is a set of propositions, relat-
ing those propositions to the aspect(s) of the question they
would potentially resolve (and thus to the execution record
in XP ). AS is based on propositions implied by BL (rel-
ative to r, q) and is "-structured according to ontological
structure. !



Contextually determining aboutness
Asking a question starts with the agent having determined
what it is it needs to know about some referent r, e.g. an
area in the environment, an object – or, more specifically,
relations or properties. (To allow for group referents, we
will consider r to be a set.) Next the question nucleus is
built up, starting with the beliefs about the question, BL.

We adopt the approach to belief modeling described in
(Brenner and Kruijff-Korbayová 2008). Beliefs are formu-
lated as relational structures with multi-valued state vari-
ables (MVSVs). These state variables are used for several
purposes. First, they can indicate domain values, as illus-
trated by the sorted indices in the examples above. The
color c1 would be a Property-type state variable of the en-
tity b1, and could take domain values in the range of that
ontological sort. Important is that the absence of a value
for an MVSV is interpreted as ignorance, not as false-
hood: @b1 :entity(ball ∧ 〈Property〉(s1 : shape)) means
the agent does not know what shape the ball has, not that
it has no shape (as per a closed-world assumption). In a
similar way, state variables are used for expressing private
beliefs, and mutual or shared beliefs (Lochbaum, Grosz,
and Sidner 1999; Grosz and Kraus 1999). A private be-
lief of agent a1 about content φ is expressed as (K{a1}φ)
whereas a mutual belief, held by several agents, is expressed
as (K{a1 , a2 , ...}φ). Secondly, MSVSs can be quanti-
fied over, for example using the ? to express a question:
?s1.@b1 :entity(ball ∧ 〈Property〉(s1 : shape)) represents
a question regarding the shape of the referent b1.

As an agent perceives the environment, we assume it
builds up beliefs about the instances it perceives, and what
relations can be observed or inferred to hold between them.
For example, see (Brenner et al. 2007) for a robot manipu-
lating objects in a local visual scene, or (Kruijff et al. 2007b)
for a robot exploring an indoor environment. Furthermore,
we assume that the agent’s planning domains include mod-
els of agent capabilities – what another agent is capable of
doing, including talking (and answering questions!) about
particular aspects of the environment (Brenner and Kruijff-
Korbayová 2008). Finally, if the agent has been engaged in
a dialogue with another agent, and discussed the referent-in-
question r before, we assume that the (agreed-upon) content
discussed so far constitutes shared beliefs, held by all agents
involved.

Algorithm 1 : Determine(BL) (sketch)

Require: BELs is a set of private and mutual beliefs the
agent holds, (including beliefs about capabilities); r is the
referent (set) in question

BL = ∅
for b ∈ BELs do

if b includes a MVSV m ∈ r then
BL = BL ∪ b

end if
end for

return BL

Algorithm 1 sketches the basis of the algorithm for estab-
lishing BL. Those beliefs are gathered which refer explic-
itly to the referent the question is about. Note that BL may
end up being empty. This means that r has not been talked
about, nor does the agent know whether another agent could
actually offer it an answer to what it would like to know
more about.

Contextually determining resolvedness
The beliefs BL about the referent in question r state what
the agent already believes about r (privately, or shared), and
what it believes about another agent’s capabilities. Next,
these beliefs need to be structured such that potentially re-
solving answers can be derived. We assume that we can
make use of the ontological sorts, and the structuring over
these sorts provided by domain ontologies, to organize be-
liefs. The organization we are after first of all relates a belief
to a potentially resolving answer, by combining it (inferen-
tially) with the ?-quantified, ontologically sorted MVSVs in
the question to yields a partially or completely reduced log-
ical form (Definition 1). Secondly, the organization relates
beliefs by (sortal) subsumption over the potentially resolv-
ing answers they generate.

For example, consider a question about the color of a ball:
?c1.@b1 :entity(ball ∧ 〈Property〉(c1 : color)). Let us as-
sume the robot holds several beliefs with regard to b1, and
the variable c1. A robot learning more about visual prop-
erties of objects through interaction with a human tutor (Ja-
cobsson et al. 2007) typically holds at least beliefs about
what the tutor is capable of telling it. Thus, assume the
robot believes the tutor can tell it about material properties,
colors, and shapes. Using tell-val (tell value action)
we can model these beliefs as (K {a1} tell − val(a2 , m :
material − property), (K {a1} tell − val(a2 , c : color).
The variables m, b are existentially bound in these beliefs.
Using the inference that material − property ! color
and introducing bound variables m′, c′ for m and c respec-
tively, the beliefs can be combined with the question to
yield the potentially resolving propositions c′ : color,m′ :
material − property. Furthermore, subsumption yields
m′ : material − property ! c′ : color. Thus, by com-
bining the beliefs with what the agent already knows, it can
expect to know something it doesn’t yet know by asking a
question. And by making use of the way its knowledge is
ontologically structured, it can determine how precise that
answer is likely to be.

Algorithm 2 provides a first sketch of the algorithm for
establishing AS. (In the current version, propositional con-
tent and additional relational structure pertaining to m in the
context of b is not yet included into AS.)

Content determination
Finally, once the beliefs about q and the potentially resolving
answers for q have been established, we can turn to deter-
mining the exact content for communicating q. The purpose
of content determination is to establish what, how much,
should be communicated for the agent to get an appropri-
ate answer – how much content it needs to communicate to
ensure proper scaffolding and transparency. For example,



Algorithm 2 : Determine(AS) (sketch)

Require: BL is a set of beliefs relative to r, q is a question
about r, and ONT is a collection of ontologies supporting
subsumption inferences on sorts used in BL and q.

AS = ∅ (empty subsumption )
for b ∈ BLs do

φ = #
for MVSV m ∈ r existentially bound in b do

introduce a bound variable m′

φ = φ ∧ m′ : sort(MV SV )
end for
AS = AS % φ, under !

end for

return AS

consider again the question about the color of the ball. How
the question should be phrased, depends on whether e.g. the
ball has already been talked about, what goals are involved
(are we learning how this ball looks like, or how objects
roll?), etc. Example 3 provides some illustrations.

(3) Asking about the color of a single ball on a table ...
a. If the robot is not sure whether the other agent

knows about colors:
“Could you tell me about the color of this ball?”

b. If the robot believes the other agent knows about
colors:
“ Could you tell me what color this ball is?”

c. If the robot is not sure whether asking about
color is relevant to the current goal:
“I would like to know more about the color of
this ball. Could you tell me what it is?”

d. If the ball is under discussion, and asking for
color is relevant:
“What’s the color?”

Example 3 particularly illustrates how scaffolding and
transparency come into play. We connect these terms ex-
plicitly to the question nucleus. We see scaffolding primar-
ily as appropriately embedding a question into an intentional
setting, relating to AS and the extent to which available be-
liefs lead to specific (potentially resolving) answers. Trans-
parency relates to the referential setting of the question nu-
cleus, relating r to BL in the sense of what the agent can
already assume to be mutually known about the referent un-
der discussion. Planning the question as a dialogue, then,
means determining relevant beliefs, and the information sta-
tus of relevant content. Relevant beliefs are those which are
associated with maximally specific, potentially resolving an-
swer(s). A distinction needs to be made between private and
mutual believes, particularly as beliefs about competences
are first and foremost private beliefs. Furthermore, it should
be determined whether these beliefs fit into the current in-
tentional context. (For the purposes of the current paper, we
will consider learning goals only, and consider them to spec-

ify what ontological sorts the agent is trying to learn.) Infor-
mation status regards whether content, pertaining to r, can
be assumed to be mutually known – most notably, whether
r is mutually known (i.e. mutually identifiable in context).

Algorithm 3 : Content determination (sketch)

Require: BL is a set of beliefs relative to r, q is a question
about r, ONT is a collection of ontologies supporting sub-
sumption inferences on sorts used in BL and q, AS is a
structure over potentially resolving answers

RelBL = ∅
for a ∈ AS do

if a is maximally specific, i.e. there is no a’ s.t. a !
a’ then
RelBL = RelBL ∪ { b }, for b yielding a

end if
end for
MutualRelBL = mutual beliefs in RelBL
ScaffoldingBL = ∅
TransparencyBL = ∅
for MVSV m in q do

if there is a b ∈ MutualRelBL associated to m then
TransparencyBL = TransparencyBL ∪ { b }

else
ScaffoldingBL = ScaffoldingBL ∪ { be-
liefs associated to most specific answers for m }

end if
end for
return ScaffoldingBL, TransparencyBL

Algorithm 3 first determines what beliefs are relevant to
achieve a maximally specific answer, and which of these be-
liefs are mutual. How much scaffolding needs to be done de-
pends on whether these mutual beliefs imply all potentially
resolving answers to the questioned MVSVs in r. If not, the
algorithm backs off by constructing a belief set which needs
to be communicated for appropriate scaffolding. The basis
for transparency is formed by the mutual beliefs about r.

On the basis of these sets of beliefs, and q itself, the com-
munication of q can be planned. We do not provide an in-
depth discussion of dialogue- and content-planning here, for
space (and time) reasons. We refer the interested reader to
(Brenner and Kruijff-Korbayová 2008; Kruijff et al. 2009).
In brief, beliefs in the scaffolding set are specified as as-
sertions (Brenner and Nebel 2008). The plan for communi-
cating the question starts by verifying these assertions, and
then raises the question itself. It is a matter for content fu-
sion whether such verification can be done in conjunction
with the question itself (Example 3, a–b) or as preceding ut-
terances (Example 3, c). For the realization of the question,
the transparency beliefs are used to determine information
status. Content planning then turns information status into
decisions about how to refer to r and the asked-after prop-
erties – e.g. using pronominal reference (Example 3, c) or
even omitting explicit reference, by eliding any mention of
r (Example 3, d).



Conclusions
The approach presented in this paper is still under develop-
ment. The key technologies it is based on (planning, mo-
tivation, dialogue processing, and ontological inferencing)
are already available in the system architecture the approach
will be integrated into. We will describe the full integration,
with working examples, in a full version of this paper. We
will then also consider how this approach can be applied in
related settings, such as performance requests.

We are currently considering various alternative ways to
evaluate the approach. User experiments are just one option
here. The problem is that an approach as presented here,
and the overall architecture it will be integrated into, present
a large parameter space. Consequently, it is difficult to en-
sure a controlled setting for a user experiment – and, only
a very limited part of the parameter space can be effectively
explored. An alternative way we are therefore currently con-
sidering is to use techniques from language evolution. In
simulations we would like to explore what the effects of dif-
ferent parameter settings would be on how agents are able to
communicate, and what this consequently means for mea-
surable parameters such as learning performance. Examples
of such experiments can be found in (Ginzburg and Macura
2006).

There remain for the moment plenty of open issues to be
investigated further – this paper really only provides a first
description of the approach we are developing. It does aim to
make clear how notions such as scaffolding and transparency
can be folded into a characterization of how a system can
phrase a question – seeing a question, in fact, as a subdia-
logue to be planned, not just a single utterance paired with
a possible answer. Basic issues remain in the construction
of the various belief sets, and the associated structures over
potentially resolving answers. Although an “unweighted”
approach as followed here will work for most simple sce-
narios, it remains to be seen whether associating costs with
beliefs (and assuming them, in a plan for communicating a
dialogue) could provide a more adaptive, scalable approach
in the long run. Furthermore, the current formulation of the
construction of the answer structure AS (Algorithm 2) does
not cover polar questions (though this is an easy extension).
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multiagent planning approach to situated dialogue. In Pro-
ceedings of the LONDIAL (The 12th SEMDIAL Workshop
on Semantics and Pragmatics of Dialogue).

Brenner, M., and Nebel, B. 2008. Continual planning and
acting in dynamic multiagent environments. Journal of Au-
tonomous Agents and Multiagent Systems.
Brenner, M.; Hawes, N.; Kelleher, J.; and Wyatt, J. 2007.
Mediating between qualitative and quantitative representa-
tions for task-orientated human-robot interaction. In Pro-
ceedings of the Twentieth International Joint Conference
on Artificial Intelligence (IJCAI-07).
Dale, R., and Reiter, E. 1995. Computational interpreta-
tions of the gricean maxims in the generation of referring
expressions. Cognitive Science 19(2):233–263.
Ginzburg, J., and Macura, Z. 2006. Lexical acquisition
with and without metacommunication. In Lyon, C.; Ne-
haniv, C.; and Cangelosi, A., eds., The Emergence of Com-
munication and Language. Springer Verlag. 287–301.
Ginzburg, J. 1995a. Resolving questions, I. Linguistics
and Philosophy 18(5):459–527.
Ginzburg, J. 1995b. The semantics of interrogatives. In
Lappin, S., ed., Handbook of Contemporary Semantic The-
ory. Blackwell.
Grosz, B., and Kraus, S. 1999. The evolution of shared
plans. In Rao, A., and Wooldridge, M., eds., Foundations
and Theories of Rational Agency. Springer. 227–262.
Jacobsson, H.; Hawes, N.; Skocaj, D.; and Kruijff, G.
2007. Interactive learning and cross-modal binding – a
combined approach. In Language and Robots: Proceed-
ings of the Symposium, 1pp–1pp.
Kelleher, J., and Kruijff, G. 2006. Incremental genera-
tion of spatial referring expressions in situated dialog. In
Proceedings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of the As-
sociation for Computational Linguistics, 1041–1048.
Krahmer, E.; van Erk, S.; and Verleg, A. 2003. Graph-
based generation of referring expressions. Computational
Linguistics 29(1):53–72.
Kruijff, G.; Kelleher, J.; Berginc, G.; and Leonardis, A.
2006a. Structural descriptions in human-assisted robot vi-
sual learning. In Proceedings of the 1st Annual Conference
on Human-Robot Interaction (HRI’06).
Kruijff, G.; Zender, H.; Jensfelt, P.; and Christensen, H.
2006b. Clarification dialogues in human-augmented map-
ping. In Proceedings of the 1st Annual Conference on
Human-Robot Interaction (HRI’06).
Kruijff, G.; Lison, P.; Benjamin, T.; Jacobsson, H.; and
Hawes, N. 2007a. Incremental, multi-level processing for
comprehending situated dialogue in human-robot interac-
tion. In Language and Robots: Proceedings from the Sym-
posium (LangRo’2007).
Kruijff, G.; Zender, H.; Jensfelt, P.; and Christensen, H.
2007b. Situated dialogue and spatial organization: What,
where... and why? International Journal of Advanced
Robotic Systems 4(2).
Kruijff, G.; Lison, P.; Benjamin, T.; Jacobsson,
H.; Zender, H.; and Kruijff-Korbayová, I. 2009.
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Abstract
When several agents are situated in a common envi-
ronment they usually interact both verbally and phys-
ically. Human-Robot Interaction (HRI) is a prototypi-
cal case of such situated interaction. It requires agents
to closely integrate dialogue with behavior planning,
physical action execution, and perception. The paper
describes a framework called Continual Collaborative
Planning (CCP) and its application to HRI. CCP en-
ables agents to autonomously plan and realise situated
interaction that intelligently interleaves planning, act-
ing, and communicating. The paper analyses the be-
havior and efficiency of CCP agents in simulation, and
on two robot implementations.

1 Introduction

When agents try to jointly solve a task in a shared
environment, they typically interact with each other
and the environment in a variety of ways. They
see, they say, they act. These modes of interac-
tions are closely tied. Dialogue is typically about
the situation, about plans to be executed, things that
happened before. That makes it possible for these
modes to complement each other, and, where possi-
ble, to substitute each other. For example, a physical
action can serve as communicative feedback, to ac-
knowledge that an instruction was understood. The
problem is how to bring such a close coupling about.

The paper investigates this problem in the con-
text of cognitive architectures for robot assistants.
These robots can sense their environment, they
build up models of where things are and what you
can do there, and then use these models to talk
to humans about things they (the robots) should
do. To address the problem we propose to use a
framework called Continual Collaborative Planning
(CCP). CCP makes it possible to interleave plan-
ning, sensing, acting, and interacting (DesJardins
et al., 1999) – and to make explicit to what extent

planned actions and interactions are contingent on
what the robot knows right now. As the execution of
a plan unfolds, these contingencies (modeled as ”as-
sertions”) can trigger revision of the plan (i.e. the
robot’s goals), or a further detailed of the plan (mak-
ing use of knowledge the robot has acquired more
recently). This dynamics yields a pro-active behav-
ior in the robot: It actively tries to gather information
to establish how to balance its goals and their execu-
tion against the dynamics of a collaborative setting.

The paper describes the framework, and shows
experiments with an actual implementation on two
robot platforms (one for object manipulation, one
for an office assistant), and in a simulated environ-
ment (MAPSIM). The experiments focus on the ef-
fects of dynamic sensing and acting on the nature of
interaction between a robot and a human. Figure 1
shows a typical example (MAPSIM). The experi-
ments quantify how, in domains of different com-
plexity, the dynamics arising from the continual na-
ture of interleaving sensing, acting and interacting
provide for more task-efficient behavior than if no
such dynamic interleaving were possible.

Overview. §2 introduces the multiagent plan-
ning formalism, and discusses its suitability for dia-
logue planning. §3 presents the CCP algorithm. §4
presents the simulation environment MAPSIM and
quantitative experiments we have run in it to evalu-
ate our approach. §5 discusses the implementation
of CCP in the robot systems. We discuss related
work in §6 and conclude.

2 Representation

When planning for situated interaction an agent
needs to represent its physical environment as well
as other agents, it must reason about about their (mu-



(1) Anne: ’Please bring me the beer, R2D2.’
(2) R2D2: ’Okay, I’ll try, Anne.’
(3) R2D2 moves to the hall.
(4) R2D2: ’Where is the beer, Bill?’
(5) Bill: ’The beer is in the kitchen, R2D2.’
(6) R2D2: ’Thanks.’
(7) R2D2 moves to the living room.
(8) R2D2: ’Please open the kitchen door, Anne.’
(9) Anne opens the kitchen door.

(10) R2D2: ’Thanks.’
(11) R2D2 moves to the kitchen.
(12) R2D2 grasps the beer.
(13) R2D2 moves to the living room.
(14) R2D2 gives Anne the beer.
(15) Anne: ’Thanks for bringing me the beer, R2D2.’

Figure 1: Mixed-initiative interaction involving act-
ing, communication and sensing between three arti-
ficial CCP agents in MAPSIM (Explorer domain).
Sensing actions have been omitted for reasons of
space.

tual) beliefs as well as their physical, communicative
and perceptual capabilities. One language for mod-
elling these elements is the multiagent planning lan-
guage MAPL (Brenner and Nebel, 2009). Here, we
will describe MAPL informally and discuss its suit-
ability for situated interaction; for details of MAPL’s
semantics see (Brenner and Nebel, 2009).

MAPL is a multiagent variant of PDDL (Plan-
ning Domain Definition Language), the de-facto
standard language for classical planning (Fox and
Long, 2003). One important extension in MAPL is
the use of multi-valued state variables (MVSVs) in-
stead of propositions. For example, a state variable
colour(ball) would have exactly one of its possible
domain values red, yellow, or blue compared to the
three semantically unrelated propositions (colour
ball red), (colour ball yellow), (colour ball blue),
all of which could be true in a given STRIPS state.
MVSVs have successfully been used in classical
planning in recent years (Helmert, 2006), but they
also provide distinctive benefits when used for in-
teraction planning. Firstly, MVSVs can be used to
model knowledge and ignorance of agents by adding
a special constant unknown to the domain of each
MVSV. This concept can also be extended to be-
liefs about other agents’ beliefs and mutual beliefs
which are modeled by so-called belief state vari-
ables. Secondly, wh-questions can be modeled as

(1) Bill goes home.
(2) Bill: ”Please bake the pizza, Oven.”
(3) Oven: ”Okay.”
(4) Oven bakes the pizza.
(5) Oven: ”I have finished baking the pizza, Bill.”
(6) Bill: ”Thanks for baking the pizza, Oven.”
(7) Bill: ”Please bring me the pizza, R2D2.”
(8) R2D2: ”Okay.”
(9) R2D2 brings Bill the pizza.

(10) Bill: ”Thanks for bringing me the pizza, R2D2.”
(11) Bill eats the pizza.

Figure 2: Dialogue between three artificial agents in
MAPSIM (Pizza domain).

queries about MVSVs in our model (see below).
Thirdly, algorithms for generating and interpreting
referring expressions rely on the mutual exclusivity
between feature values, as expressed in the MVSV
representation.

MAPL actions are similar to those of PDDL. In
MAPL, every action has a controlling agent who
executes the action and controls when it is done.
Agents are assumed to be autonomous when execut-
ing actions, i. e. there is no external component syn-
chronising or scheduling actions by different agent.
As a consequence an action will only be executed if,
in addition to its preconditions being satisfied, the
controlling agent knows that they hold. Implicitly,
all MAPL actions are extended with such knowl-
edge preconditions. Similarly, there are implicit
commitment preconditions, intuitively describing
the fact that an agent will only execute actions if he
has agreed to do so.

Three different ways to affect the beliefs of
agents, e. g., for satisfying knowledge preconditions,
can be modelled in a MAPL domain : sensing, co-
presence (joint sensing), and communication. All
three are MAPL actions with knowledge effects.
Sensor models describe circumstances when the
current value of a state variable can be perceived.
Copresence models are multiagent sensor models
that induce mutual belief about the perceived state
variable (Clark and Marshall, 1981). Informally,
agents are copresent when they are in a common sit-
uation where they can not only perceive the same
things but also each other. Individual and joint sens-
ing are important for dialogue because they help
avoiding it: an agent does not need to ask for what



he sees himself, and he does not need to verbal-
ize what he assumes to be perceived by the other
agents as well. Communicative acts currently come
in two forms: (i) Declarative statements are actions
that, similarly to sensory actions, can change the be-
lief state of another agent in specific circumstances.
Line 5 of Fig. 2 shows an example of an agent ex-
plicitly providing another one with factual informa-
tion. (ii) Questions, commands and acknowledg-
ments do not have to be modelled explicitly, but are
derived from a MAPL domain automatically. They
are used in CCP as discussed in Sect. 3.

MAPL goals correspond to PDDL goal formulae.
However, MAPL has two additional goal-like con-
structs: Temporary subgoals (TSGs) are manda-
tory, but not necessarily permanent goals, i. e. they
must be satisfied by the plan at some point, but
may be violated in the final state. Assertions, on
the other hand, describe optional “landmarks”, i. e.
TSGs that may helpful in achieving specific effects
in later phases of the continual planning processes,
which cannot be fully planned for yet because of
missing information (Brenner and Nebel, 2009). For
example, the MAPL domain used to create the sim-
ulation in Fig. 1 contains an assertion stating that,
informally speaking, to get something one must first
know where it is.

MAPL plans differ from PDDL plans in being
only partially ordered. This is inevitable since we
assume that there is no central executive which could
guarantee a totally ordered execution. We use the
term asynchronous plans since MAPL plans also
allow for concurrent occurrence of actions. Fig. 3
shows an example. An asynchronous plan that guar-
antees that the implied knowledge preconditions will
be satisfied during execution (e. g. by explicitly nam-
ing the perceptions to be made and speech acts to be
used) is called self-synchronizing plan because it
“explains” how the agents can coordinate their be-
havior during execution.

It is often impossible for a group of situated
agents to jointly commit to a self-synchronizing plan
prior to beginning its execution. As an example, line
1 of Fig. 2 shows how an agent must start executing
its individual multiagent plan (i. e. a plan for a group
of agents but to which no other agent has commit-
ted yet) in order to even get the chance to negotiate
the plan with the others: In this scenario, Bill must

physically move first because he can only communi-
cate with his household appliances “at home”. This
is modeled explicitly in the MAPL domain by means
of a so-called communication precondition that the
planner has to satisfy if agents should engage in di-
alogue. In future work, we will also use communi-
cation preconditions to model dialogue-specific re-
quirements like attention (Grosz and Sidner, 1986)
and engagement (Sidner et al., 2005).

3 Continual Collaborative Planning

Continual Collaborative Planning (CCP) agents
switch between planning, partial plan execution,
monitoring, plan adaptation and communication.
Alg. 1 gives a high-level description of the CCP al-
gorithm. Since the current state of the algorithm not
only depends on what the agent has been doing, but
also on the messages received from others, CCP is
specified as a Distributed Algorithm (Lynch, 1996).

Algorithm 1 CCP AGENT(S, G)

P = ∅
Received no message:

if S satisfies G do
return “goal reached”

else
P = MONITORINGANDREPLANNING(S, G, P )

if P = ∅ then
return “cannot achieve goal G”

else
(S, P ) = EXECUTIONANDSTATEESTIMATION(S, P )

Received (tell-val vx) from agent a:
add v

.
=x to S

Received request(e) from agent a:
sg = TRANSLATEREQUESTTOGOAL(e)
P = MONITORINGANDREPLANNING(S, G ∪ sg, ∅)
if P = ∅ then

send “cannot execute request e” to a
else

add sg to G as temporary subgoal

We will first discuss the base case when no com-
munication has taken place yet, i. e. the CCP agent
has neither sent nor received any messages yet.
Roughly speaking, the agent alternates between (re-
)planning and acting in this case. The two phases
are detailed in Algs. 2 and 3. Alg. 2 shows how a
new planning phase is triggered: the agent monitors
whether his current plan has become invalid due to
unexpected (external) events or changes in his goals.
If this is the case, the agent adapts its plan by replan-
ning those parts that are no longer executable. In or-



oven: bake pizza

robot: bring bill pizza

position(pizza)=oven

bill: eat pizza

temperature(pizza)=hot

position(pizza)=bill

bill: go home

position(bill)=home

negotiate_plan bill oven

position(bill)=home

negotiate_plan bill robot

position(bill)=home

committed(oven)=true

committed(robot)=true

Figure 3: Bill’s initial plan for getting pizza.

der to exploit the power of state-of-the-art planning
systems, Alg. 2 uses an unspecified classical planner
PLANNER to (re-)plan for the obsolete or missing
parts of the old plan. The details of this process are
irrelevant for the purpose of this paper; it results in
an asynchronous plan that specifies actions for (pos-
sibly) several agents and the causal and temporal re-
lation between them that is necessary to achieve the
planning agent’s goal.

Algorithm 2 MONITORINGANDREPLANNING(S, G, P )

if res(S, P ) !⊇ G
REMOVEOBSOLETESUFFIXGRAPH(P)
P ′ = PLANNER(A, res(S, P ), G)
P = CONCAT(P, P ′)

return P

Fig. 3 shows such an asynchronous plan for the
pizza scenario of Fig. 2, created with Alg. 2. Note
that this plan contains special negotiation actions;
they will be the triggers for task-orientated subdi-
alogues in a later phase of CCP. The planning al-
gorithm enforces such negotiation actions to be in-
cluded in a plan whenever this plan includes actions
or subplans to be executed not by the planning agent,
but by another agent who is not yet committed to this
plan. Thus CCP ensures that a (sub-)dialogue will
take place that either secures the other agent’s com-
mitment or triggers replanning. Note how, in turn,
the need for negotiation has forced the planner to
include a physical action (Bill’s moving home) into
the plan in order to satisfy the above communication
precondition.

As soon as a CCP agent has found (or repaired)
a valid plan it enters the execution phase, described

in Alg. 3. First, an action, e, on the first level of the
plan, i. e. one whose preconditions are satisfied in
the current state, is chosen non-deterministically. If
the action is controlled by the CCP agent himself, it
is executed. If not, the planning agent tries to deter-
mine whether the action was executed by its control-
ling agent. In both cases, the CCP agent will try to
update its knowledge about the world state based on
the expected effects and the actual perceptions made
(FUSE function).

Algorithm 3 EXECUTIONANDSTATEESTIMATION(S, P )

e = choose a first-level event from P
if e =’negotiate plan with agent a’

r = SELECTBESTREQUEST(P, a)
send request(r) to a

else if agt(e) = self then
EXECUTE(e)

S′ = app(S, e)
exp = EXPECTEDPERCEPTIONS(S′, As)
perc = GETSENSORDATA()
if perc ⊇ exp or exp = ∅ then

remove e from P
S = FUSE(S′, perc)
return (S,P)

The most important case for verbal interaction is
the one where the action chosen to be executed is ne-
gotiate plan. This means that a CCP agent A is now
in a situation where he is able communicate with an-
other agent B who he intends to collaborate with,
i. e. A’s plan includes at least one action controlled
by B, that B has not yet committed to. In this case, A
will send a request to B. However, if a plan contains
several actions by another agent, i. e. a whole sub-
plan, it is often best not to request execution of the
actions individually, but to ask for the end result or,
respectively, the final action in the subplan. In other
situations it may even be reasonable to request the
achievement of subplans that include more than one
agent. CCP does not stipulate a specific implemen-
tation of SELECTBESTREQUEST; the standard ver-
sion, REQUESTSUBPLAN, selects the longest possi-
ble subplan using only one agent.

When an agent receives a request, Alg. 1 first
tests for its individual achievability, i.e., regardless
of other goals. If it can in principle be achieved, it
is adopted. Accepted requests1 are adopted as tem-

1For space reasons, we have omitted the treatment of re-
jected requests and failed action execution from this presenta-
tion. Essentially, agents keep “black lists” that prevent repeti-



porary subgoals (TSGs). This means that they must
only be achieved temporarily and do not have to hold
any more when the agent’s main goal is achieved.
The adoption of requests as TSGs is a crucial ele-
ment of CCP that, to the best of our knowledge, has
not been described in other Continual Planning ap-
proaches: in addition to repeatedly revising their be-
liefs about the world, CCP agents also perform con-
tinual goal revision. In the simplest case, this leads
to information-seeking subdialogues, as in lines 4–
6 of Fig. 1. But newly adopted TSGs also explain
why agents engage in subdialogues that mix com-
municative and physical actions (as in lines 8–10 of
the same example).

4 Situated Interaction in Simulation

Studying situated interaction requires environments
where agents can physically or virtually act and in-
teract. The same is true for studying continual plan-
ning: it needs environments where agents can not
only plan, but also execute, monitor and revise their
plans. To be able to investigate situated interaction
across many application domains and algorithmic
variants, we have developed MAPSIM, a simulation
generator that automatically transforms MAPL do-
mains into multiagent simulations. MAPSIM parses
and analyses a MAPL domain and turns it into per-
ception, action, and communication models for CCP
agents. During the simulation, MAPSIM maintains
and updates the global world state, it uses the sen-
sor models to compute individual and joint percep-
tions of agents, and it executes MAPL speech acts
by passing them on from the sender to the addressee.
In other words, MAPSIM interprets the planning do-
main as an executable model of the environment.

MAPSIM and the CCP agents described in this
paper have been implemented in Python, integrated
with a planning engine in C as a subsolver. The base
planner currently used in our implementation is a
slightly modified version of Axioms-FF (Thiebaux
et al., 2003). MAPSIM includes a basic verbalisa-
tion module, called the reporter agent, which ob-
serves all physical and communicative events in the
simulation and verbalises them using a simple re-
cursive template engine. The examples througout
the paper were created with the MAPSIM reporter

tion of unpromising behaviour.

Task Turns Agents Calls t Avg t Tot Total
prob1 7 2 3 0.02 0.06 1.17
prob2 10 2 5 0.02 0.12 1.67
prob3 13 2 8 0.03 0.25 2.36
prob4 15 3 11 0.05 0.6 4.79
prob5 23 2 15 0.09 1.18 7.34
prob6 27 3 33 0.13 3.71 16.84

Table 1: Experiments in the Explorer domain: prob-
lem complexity and runtimes (in secs).

agent. For our robot implementation (cf. next sec-
tion), we use a specific low-level dialogue planner.

For studying whether CCP is suitable for situ-
ated interaction and for measuring its performance
and scaling behaviour, we conducted several exper-
iments in the Explorer domain. This is a simplified
service robotics domains (cf., Figure 1 and §5) in
which tasks (consisting of a number of agents, inter-
connected rooms and objects) can become demand-
ing quite quickly. MAPSIM was run on a 2 GHz
AMD Athlon with 1 GB RAM. The CCP implemen-
tation used was the same that also runs on our robot
platform, but sensing and communication was com-
puted and routed by MAPSIM.

Table 1 provides some general information about
the experiments and the performance of our CCP
implementation. In each task, several autonomous
agents interacted in a common simulated environ-
ment, automatically synthesized from a short (about
150 lines) MAPL description of the Explorer do-
main (cf. Figure 1). The knowledge and goals varied
over tasks, leading to increasingly complex interac-
tions, roughly measurable by the number of turns
it took the agents to achieve their goals. Individ-
ual plans are computed quite fast (t Avg) and even
in sum (t Tot) are largely dominated by other (yet
unoptimised) parts of the simulation (Total). This
speed should be competitive with approaches based
on plan libraries2 , while providing the agents with
the additional flexibility to react to new situations
truly autonomously by finding previously unseen
plans on their own.

Table 2 explains in which situations agents change

2The planning problems in these tasks usually consist of sev-
eral hundred distinct facts and instantiated actions, which may
lead to enormous search spaces (size may be exponential in the
number of facts) and an even greater number of plans. It is
not obvious how a system based on a necessarily limited plan
librariy can choose an appropriate plan for any given situation.



Task Reuse Replanning Expansion Goal Change
prob1 9 1 0 1
prob2 10 3 1 2
prob3 10 6 1 3
prob4 20 8 1 3
prob5 16 11 2 5
prob6 20 26 1 5

Table 2: Plan reuse vs. Replanning (and causes for
plan invalidation).

their plans during situated interactions with CCP.
Note first that plan reuse usually dominates replan-
ning. However, complex interactions with several
agents are so dynamic that plans become obsolete
quickly. A major factor here is the adaptation of an
agent’s goals during an interaction (due to requests
and questions by others or due to perceptions “acti-
vating” conditional goals). Such goal changes (and
the resultant replanning) should not be considered
as planning failures; instead they enable engagement
in previously unforeseen subdialogues and changes
changes in initiative (as, e.g., in turns 3 and 6 of
Figure 1). Expansion of MAPL assertions, i.e. de-
tailed planning for previously postponed subprob-
lems, only seldom is the cause for replanning. Still,
assertions are the major tool that make agents be-
have proactively in situations where they need to get
help or information from others or the environment:
without assertions, all tasks except for prob1 be-
come unsolvable for the agents, because they cannot
work around their initial lack of knowledge or joint
commitment (e.g. turns 3–6 of Figure 1 where the
R2D2 postpones detailed planning for Anne’s goal
until is has got more information from a third agent,
Bill). If replanning is neither caused by assertions
nor goal changes, it is due to changes in the environ-
ment caused by other agents that render the previous
plan invalid.

Table 3 shows the distribution of action types
throughout interactions. It is interesting that this
fairly even distribution and the continual, seamless
switching between actions (as can be witnessed in
Figure 1), is not enforced anywhere in the CCP al-
gorithm. It arises from the needs of the agents to
achieve their individual goals by means of acting,
seeing, and communicating. Note also that physical
behaviour and sensing sometimes substitute com-
municative actions (e.g. in turn 8 of Figure 1). Wait-

Task Speech Acts Phys. Actions Sensings Wait
prob1 3 4 6 4
prob2 6 4 5 4
prob3 8 5 8 4
prob4 8 7 12 15
prob5 14 9 9 7
prob6 14 13 14 25

Table 3: Different types of actions and their distri-
bution in Explorer experiments.

ing, i.e. not acting deliberately or for want of a plan,
occurs in CCP, whenever the next actions in a plan
are to be executed not by the agent itself, but by an-
other (cf. Algorithm 3). This “passing” behaviour
also leads to some simple, if limited, turn-taking
mechanism (detailed discussion is beyond the scope
of this paper.)

5 Robot Implementations

We have also implemented CCP in two real robotic
systems, one for interactive table-top manipulation
and one for interactive exploration of an indoor envi-
ronment. The first robot, called the PlayMate, is sta-
tionary and uses a 6-DOF Katana arm to manipulate
objects on a table. It can interactively learn about
properties of the objects and play small games with a
human user standing nearby. The second robot sys-
tem, the Explorer, is based a mobile platform, an
ActivMedia PeopleBot. It interactively builds up an
understanding of the spatial and functional organ-
isation of an indoor environment, using automated
mapping techniques, and can perform basic tasks for
a human user, e. g. finding a object and carrying it
back to the human (if a second human puts the ob-
ject on the robot).

The two robot systems differ significantly in both
their hardware and their capabilities. However, they
use a common architecture schema, CAS (Hawes et
al., 2007), for integrating varying subarchitectures
(SAs). In CAS, all SAs are active in parallel, and
all operate on SA-specific representations (as is nec-
essary for robust and efficient task-specific process-
ing). These disparate representations are unified by
a binding SA, which performs abstraction and cross-
modal information fusion on the information from
the other SAs (Jacobsson et al., 2008), yet stores in-
formation about the origins and original representa-
tions in a so-called Address-Variable Map (AVM).



The representations produced by the binding SA
are sufficiently close to MAPL to enable planning
with CCP. The PlayMate and the Explorer robot em-
ploy the same planning domains for planning their
behaviour that are used for the respective MAP-
SIM simulations, i. e. the robots continually pro-
duced and revise MAPL plans exactly as in the sim-
ulation. However, actions are executed not in simu-
lation, but in the real world, by SAs controlling the
actuators and sensors of the robot. Each SA whose
behaviour is modelled in the planning domain pro-
vides a so-called action dispatcher which, using the
AVM, translates MAPL commands and arguments
back into its own representation.

For human-robot interaction it is most important
that the robots can communicate naturally with hu-
mans. Here, the verbalisation engine of MAPSIM is
not sufficient. Instead, CCP is integrated with a spe-
cialised SA for situated dialogue processing (Kruijff
et al., 2007). In this architecture, CCP does the high-
level pragmatic reasoning, i.e. it determines how and
why to use communication for achieving a (possi-
bly non-communicative) goal. Linguistic situation-
appropriate realisation of the planned “verbal be-
haviour”, as well as the situation-aware interpreta-
tion of speech acts by other agents, are handled by
the specialised dialogue component. CCP provides
the dialogue component with a high-level (commu-
nicative) goal and additional context information, so
that the dialogue component can turn it into an utter-
ance (or even subdialogue) that communicates the
provided content.

6 Related Work

The aim of this work is to bring together ideas
from Planning, Dialogue, and Multiagent Systems
research. We can only discuss a few prototypical in-
spirations from those fields here.

Our work is close in spirit to models of collabo-
rative dialogue, most notably those based on BDI
models of collaboration, such as the SharedPlans
formalism (Grosz and Kraus, 1996; Lochbaum,
1998; Rich et al., 2001). Similar to (Blaylock et al.,
2003) we emphasise the importance of integrating
collaborative planning and collaborative plan execu-
tion. In contrast to all aforementioned approaches,
CCP relies on first-principles planning rather than
pre-defined plan libraries (see Section 7). The ex-

plicit reasoning about perception and copresence
in CCP can explain how agents try to bring about
knowledge conditions for joint behaviour, as speci-
fied, e. g. in the SharedPlans literature.

Distributed Continual Planning was advocated as
a new paradigm for planning in dynamic multiagent
environments by desJardins and colleagues (Des-
Jardins et al., 1999). To the best our knowledge,
ours is the first principled attempt to apply DCP to
situated dialogue and HRI, and also the first DCP ap-
proach describing deliberative goal revision as part
of a DCP algorithm. Planning with sensing has of-
ten been described in the planning literature (see,
e. g. (Petrick and Bacchus, 2002) for a modern ex-
ample), but mostly in the context of conditional,
rather than continual planning, and, to the best of
our knowledge, without including the concept of co-
presence (Lewis, 1969). The form of active execu-
tion monitoring used in CCP is also related to the
attentional state of (Grosz and Sidner, 1986).

Most of the aforementioned work relies on hier-
archical action and plan representations. In contrast,
CCP could be said to decompose planning problems
over time by actively postponing subproblem solv-
ing. The two approaches are not mutually exclusive
and CCP could be adapted to hierarchical planning.

Collagen (Rich et al., 2001) is a system for build-
ing collaborative interface agents that is based on
(Grosz and Sidner, 1986; Grosz and Sidner, 1990),
which is domain-independent and has been used for
various applications. Collagen’s methods for rep-
resenting the discourse state and doing plan recog-
nition are much more sophisticated than CCP cur-
rently. However, Collagen does not (yet) include a
first-principles planner, but relies on plan libraries
and domain-specific code plug-ins (Rich and Sidner,
2007). It would be interesting to investigate whether
CCP can be integrated with Collagen.

Similarly, the most prominent representative of
the information-state-update approach to dialogue
modeling, GoDiS (Traum and Larsson, 2003),
has complementary rather than competing main
strengths: GoDiS has a more elaborate repertoire of
dialogue moves and can produce more sophisticated
dialogue behavior than CCP and MAPSIM, but it
uses static plans, and it is not clear how it would
combine communication with physical action.



7 Conclusion

This paper has presented a new algorithmic model
for situated interaction, Continual Collaborative
Planning (CCP). We have shown how mixed-
initiative interaction among agents interleaving
physical actions, sensing, and communication oc-
curs naturally during CCP. An early empirical inves-
tigation has shown that CCP agents can compute,
execute and revise situation-specific plans for inter-
action in real-time.

CCP is a fairly simple distributed algorithm. Most
reasoning about necessary actions is encapsuled in
the planning algorithm and enforced by the seman-
tics of MAPL. As a result, many desirable features
of situated interaction arise without being explicit in
the algorithm, as by-products of goal-directed plan-
ning, e.g. switching between physical and verbal
behaviour or the initiation of subdialogues. Like-
wise, actions without purpose are silently dropped
or substitued, e.g. in the case of implicit acknowl-
edgments. Finally, the causal structure of plans (and
histories of plan changes in the case of CCP) per-
mits introspection and verbalisation of past and fu-
ture planning processes, which is also crucial for our
and similar HRI applications.

Planning requires a declarative model of actions,
which in the real world, in particular for commu-
nication, is often hard to define. (This is probably
the main reason for planning-based approaches to
interaction having lost relevance in the last decade.)
CCP tries to accomodate for that by relying on exe-
cuting monitoring as much as on prediction, and by
enabling the agent to actively suspend the planning
process. For situated interaction, this leads to partic-
ularly dynamic, mixed-initiative behaviour because
CCP agents will rather engage in dialogue or sensing
instead of trying to plan with an incomplete model.

Many extensions to CCP are possible and planned
for the future, e. g. the inclusion of goal and plan
recognition techniques (for proactively supporting
collaborators or preventing execution conflicts) and
reasoning about the presuppositions underlying the
speech acts of others. We will experiment with these
variants of CCP in simulation first, then evaluate
them in HRI on our robot systems.
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Abstract

A robot can use situated dialogue with a human, in an effort to learn more about the world
it finds itself in. When asking the human for more information, it needs to be clear to the
human, what the robot is talking about. The robot needs to make transparent what it would
like to know more about, what it does know (or doesn’t), and what it is after. Otherwise,
the human is less likely to provide a useful answer to the robot. They need to establish
a common ground in. The paper presents ongoing research on developing an approach
for comprehending and producing (sub-)dialogues for clarifying or requesting information
about the world in which establishing common ground in beliefs, intentions, and attention
plays an explicit role. The approach is based on Stone & Thomason’s abductive framework
[42–44]. This framework integrates intention, attentional state, and dynamic interpretation
to abductively derive an explanation on what assumptions and intentions communicated
content can be interpreted as updating a belief context. The approach extends the framework
of Stone & Thomason with assertions, to provide an explicit notion of checkpoint, and a
more explicit form of multi-agent beliefs [7]. The approach uses these notions to formulate
clarification as a continual process of comprehension and production set in dialogue as a
collaborative activity.

1 Introduction

Robots need to continuously learn. They do not always know everything, or under-
stand everything. So they can ask: we make it possible for a robot to communicate
with humans, to learn more. For such dialogue to be effective, the human and the
robot need to form a mutual understanding of what is being talked about, and why.
Recent theories focus on how this mutual understanding can come about through
alignment [33,14]. Agents align how they communicate content, what they pay at-
tention to, and what they intend to do next. They base this alignment on how they

1 The research reported here was performed in the EU FP7 IP “CogX: Cognitive Systems
that Self-Understand and Self-Extend” (ICT-215181); http://cogx.eu
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perceive each other’s perspective on the world – situatedness, attention, intention,
capabilities, current cognitive and emotional state (cf. e.g. [39,12,40]).

This works out reasonably well as long as we can assume a more or less common
way of “looking” at things. Even when humans normally differ in what they know,
can, and intend to do, there is typically a common categorical framework in which
they can try to characterize the world, to arrive at a common ground. But this is
where a problem arises in communication between a human, and a robot that con-
tinuously learns. Because that robot is not just learning more about instances in the
world, possibly using a predefined human-like ontology. Ultimately, it will also be
forming category systems for thinking about these instances, based in patterns that
arise from its own ways of perceiving reality. And those may well be substantially
different from how humans see things.

Which is why mechanisms for clarification, and information requests in general,
are necessary for situated dialogue. Humans and robots interacting with each other
need to be able to ask when something is not clear. As Clark already indicated, this
covers a broad range of possible unclarities. Clarification typically covers misun-
derstanding at the purely linguistic level, but extends all the way to not being able
to understand how an utterance relates to the (situated) context it pertains to. In
human-robot interaction (HRI), and dialogue systems in general, clarification has
primarily focused on linguistic misunderstanding [46,34,27,36,35,28]. Relatively
few HRI systems extended clarification to also include misunderstanding or lack of
understanding relative to a situated context [45,26,25]. Trafton et al. [45] deal with
ambiguities in, or absence of, suitable object antecedent for references. Kruijff et al.
[26,25] more focus on clarification-as-information request, using situated dialogue
for a robot to obtain more information about particular aspects of the environment.
In this paper we describe a computational approach to clarification which aims to
deal with the continuum indicated by Clark.

The approach is based on an extension of Stone & Thomason’s abductive frame-
work [42–44]. In this framework, comprehension and production of dialogue are
based in the construction of an abductive proof. Abduction reasons towards an
explanation consisting of a consistent context update and possible changes to at-
tentional state. The explanation is based on factual assumptions, observations, and
inferred intentions – all included at a context-sensitive cost. The resulting frame-
work thus places belief context, attentional state, and intention on a par. This is
in idea comparable to other intentional approaches to dialogue and discourse, like
Grosz & Sidner’s [20]. Stone & Thomason’s approach arguably provides more flex-
ibility [44] in that aspects such as reference resolution are dynamically determined
through proof, rather than being constrained by hierarchical composition of a con-
text model. (This particularly applies to a comparison with approaches such as
SDRT [3].) For comprehension an abductive proof provides the conditions under
which an agent can update her belief model and attentional model with the content
for a communicated utterance, and her task model using the inferred intentions un-
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derlying the utterance. For production an abductive proof provides the conditions
for executing a plan to achieve an intended context- and attentional state update in
another agent.

The approach we present here extends Stone & Thomason’s framework in several
ways. We expand Stone & Thomason’s context [42] to incorporate the types of sit-
uated multi-agent beliefs and tasks the robot reasons with in understanding collab-
oration, and the world as such. Furthermore, we make Stone & Thomason’s notion
of “checkpoints” more explicit. Stone & Thomason propose to use checkpoints, a
communicative means to establish whether assumptions are in fact warranted [44].
Checkpoints introduce a relation between the construction of an explanation, and
acting on it. This suggests a similarity to the construction of a plan and the mon-
itoring of its execution, as found in continuous multi-agent planning [7]. Brenner
& Nebel [7] introduce a notion of assertion for continual planning. An assertion
poses the availability of future observations, to enable the construction of a contin-
ual plan including actions based on such an assertion. Upon execution, assertions
are checked and are points for possible revision or extension of a plan.

We propose to use a similar notion. In an abductive proof, we can include assump-
tions, observations, and actions at varying costs to infer an explanation. They all
contribute facts or outcomes from which further inferences can be drawn. An as-
sertion is a statement whose truth we need to assume, but which we cannot prove
or disprove on the current set of beliefs of the agent. Marking assertions turns these
statements in an abductive proof into points that warrant explicit verification – i.e.
they act as checkpoints. Checkpoints make explicit how acting upon an abductive
proof turns into a form of execution that is similar to continual plan execution. The
notions of assertion and checkpoint provide the approach with a fundamental way
for dealing with clarification. While constructing a proof, the inclusion of an as-
sertion can itself trigger a clarification process to verify its validity – or it can be
used to assert the positive outcome of a clarification process itself. The former case
concerns assumption-turned-assertion, whereas the latter case regards an assertion
about a future observation.

Taken together, the approach treats clarification as a process. A proof constructs
how the content of a request is based in private and shared beliefs and intentions,
and in an attentional state. It links the request and its expected answers, modeling
the latter as assertion. This turns the outcome of a request into an explicit check-
point, and with that, clarification into a process of requesting, answering, and veri-
fying the answer. Should the verification of the answer fail, a proof can be expanded
or reconstructed. The resulting approach formulates clarification as a continual pro-
cess of comprehension and production set in dialogue as a collaborative activity
[44].

An overview of the paper is as follows. §2 discusses Clark’s notion of grounding,
and computational approaches of that notion. §3 presents a formalization of the
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approach, with §4 discussing a prototype implementation and integration of the
approach into a cognitive system. The paper ends with a discussion of a wide range
of examples, and conclusions.

2 Background

In this section we look into the concept of common ground, the process of adding
to the common ground – grounding and its computational modeling. We also ex-
amine the relation between grounding and clarification and briefly touch the topic
of surface realizations of clarification requests.

2.1 Common ground and grounding

Following Clark ([10,11]), we define common ground as a set of mutual, common
or joint knowledge, beliefs and suppositions of a group of agents C.

Definition 1 (Common ground (shared basis)) p is common ground for members
of community C if and only if

(1) every member of C has information that basis b holds (b is referred to as
shared basis),

(2) b indicates to every member of C that every member of C has information that
b holds,

(3) b indicates to members of C that p.

Clark distinguishes two broad sources of shared bases: communal and personal.
Communal bases are based on a group member’s membership in cultural commu-
nities (such as nationality or the accent of English the member speaks) and imply
the features, facts and beliefs about the individual commonly ascribed to him/her
by other agents. Personal bases originate from joint personal experiences within the
group. Personal bases comprise both joint perceptual experiences about the situa-
tion and joint actions.

In order to add to common ground through joint actions, agents have to look for
evidence of shared bases in signals that other agents display.

In joint actions, the agents act together to achieve a common goal. Since this can
only be successful if the agents have common ground, the agents actively work on
its establishment. This process is called grounding. Common ground needs to be
established well enough for current purposes at all levels of communication. The
definitions of the levels vary across theories (see e.g. [41,46,10,2]).
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In Clark’s view, it has to be established at all levels of what he calls joint action
ladder, the following hierarchy of causally related actions:

Level Speaker A’s actions Hearer B’s actions

1 executing behavior t attending to behavior t

2 presenting signal s identifying signal s

3 signalling that p recognizing that p

4 proposing joint project w considering the proposal of w

Lower levels provide evidence to the upper ones and are the required for the upper
levels’ completion.

2.1.1 Closures

In general, agents performing an action require evidence that they have succeeded
in performing it. The optimal evidence usually isn’t the strongest, most economical
and most timely evidence possible, because that may be too costly. Clark formulates
these principles of closures:

• principle of least effort – all things being equal, agents try to minimize their
effort in doing what they intend to do.

• principle of opportunistic closure – agents consider an action complete just as
soon as they have evidence sufficient for current purposes that it is complete.

• principle of holistic evidence – evidence that an agent succeeded on a whole
action is also evidence that the agent succeeded on each of its parts.

• principle of joint closure – agents try to establish shared basis for the mutual
belief that they have succeeded well enough for the current purposes.

2.1.2 Contributions

In a conversation, contributions to the conversation are seen by Clark as joint ac-
tions aimed towards the successful understanding of the displayed (uttered) sig-
nals. The contributions, according to the joint closure principle, are divided into
two phases:

• the presentation phase, where A presents the content to B, the underlying as-
sumption being that if B gives sufficient evidence e of its acceptance, A can
believe that B understands what A has meant;

• the acceptance phase, where B gives evidence e′ that she understands the mes-
sage. B’s action is based on the assumption that this evidence is required by A
to believe that B has understood.
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The evidence required in a dialogue can be classified as follows:

• continued attention, showing that the hearer is satisfied with the speaker’s pre-
sentation;

• initiation of the relevant next contribution; 2

• acknowledgment, by saying “OK” or the like;
• demonstration of what B has understood the message meant;
• verbatim display of all or a part of A’s presentation.

Note that every acceptance except for the continued attention is also a contribution
to the dialogue (in the opposite direction) and therefore also has a presentation
phase.

2.2 Computational models of grounding

The descriptive and off-line nature of Clark’s theory of grounding disqualifies it
from direct use in dialogue systems. In practical applications, a more computationally-
oriented model is needed.

In non-situated dialogue systems, models of linguistic grounding have been studied
in detail, see e.g. [46,27,35]. In human-robot interaction, however, they have only
been studied to a limited degree. [28] present a basic model for Clark-style commu-
nicative grounding in human-robot interaction, adopting an approach very similar
to [46]. [26] discuss an approach to clarification in human-augmented mapping,
making use of the Question-Under-Discussion mechanism of [16,17,27].

In this section, we sketch out David Traum’s finite-state model ([46]) and the situ-
ated multi-modal model of Li et al. ([28]) and relate them to Clark’s contribution
model.

2.2.1 Traum’s finite-state model

The Grounding Acts model, introduced by David Traum (see [46,47]), is a com-
putational, prescriptive and non-situated on-line reformulation of Clark’s theory of
contributions. Its cornerstones are grounding acts, interpretations of discourse units
with a specific function towards grounding of the units to effectively model the the
presentation and acceptance phases of the contribution model.

The grounding acts, distinguished by whether they are performed by the initiator I
of the discourse unit or the responder R, are the following:

• initiate – initiate a new discourse unit;

2 Which, of course, implies the hearer’s understanding of the speaker’s contribution.
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• continue – continue the discourse unit, i.e. further specify its content (in Clark
and Schaefer’s terminology);

• acknowledge – signal understanding of the discourse unit to the other party; 3

• repair – correct a misunderstanding in the discourse unit’s content;
• request repair – signal a lack of understanding;
• request acknowledgment – signal a request of acknowledgment by the other

party;
• cancel – abort the process of the discourse unit’s grounding.

Traum avoids treating each grounding act as a Clark-style presentation, eliminating
the need for each of them to have its own acceptance phase. This allows him to
devise a finite-state model: each grounding act changes the grounding state of the
underlying discourse unit, possibly to the same state. There are seven grounding
states, the initial state is S, the desired, grounded, state is F:

• state S – initial state
• state 1 – acknowledgment by R required for grounding
• state 2 – need for repair by I and acknowledgment by R
• state 3 – need for acknowledgment by I
• state 4 – need for repair by R and acknowledgment by I
• state F – grounded
• state D – dead state (grounding either abandoned or failed)

From the viewpoint of Clark’s theory, once a discourse unit is grounded, i.e. its
grounding state is F, its acceptance phase is successfully finished.

The Grounding Acts model does not require any particular size of the discourse
units to be grounded. However, the size of the units determines what behavior can
be modeled. In [47], Traum indicates that most work has been done with intonation
phrases as grounding units, but that smaller as well as larger units have been used.

2.2.2 Stack-based situated model of Li et al.

Li et al. ([28]) build on Traum’s work and present a situated multi-modal grounding
model for human-robot interaction.

Their model uses exchanges ([9]) as grounding units. Exchange is a pair of “con-
tributions” – speech acts initiated by the two agents engaged in the dialogue. The
first act of the exchange is called Presentation, the second is called Acceptance.
Note that Li et al. use the term “contribution” in a different way than Clark does:
for Clark, a contribution comprises both acceptance and presentation.

3 Traum uses “acknowledgment” to cover the entire spectrum of positive signals of under-
standing that the hearer issues.
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Similarly to Traum, instead of treating each Acceptance as a new presentation as
Clark does, Li et al. explicitly model the embedding of (clarification) subdialogues
by organizing exchanges in a stack operated by a push-down automaton augmented
so as to allow transitions trigger actions and push or pop a variable number of ex-
changes in one step. They identify four relations of the grounding status of individ-
ual exchanges stored in the stack to the grounding of the stack as a whole:

• default – the Presentation defines a new account independent to the previous
ones;

• support – specified when an agent is unable to provide an Acceptance for the
given Presentation. In such case a new exchange is initiated to support the ground-
ing of the given Presentation. (For instance, by saying “What?”);

• correct – a correction of the previous Presentation;
• delete – abandon the grounding process of the previous Presentation.

The (Clark’s) acceptance phase is successfully finished when there is an Accep-
tance (Li et al’s) available. The Acceptance may also be an implicit one, as in
Clark’s continued attention. Grounded units are immediately removed from the
stack.

The contributions are structured as interaction units (IUs) that consist of two layers:
conversational and intention layer. The conversation layer component comprises
verbal and non-verbal realizations of the intention represented in the intention layer.
This allows the handling of deictic expressions such as “this box” in a systematic
way and therefore modeling a multi-modal dialogue.

For each contribution received from the other dialogue participant, it is first at-
tempted to determine the underlying intention by examining the verbal content of
the IU; if that fails, the non-verbal component is examined. If the intention is recog-
nized and found conforming to the current joint goal, a new acceptance contribution
is generated and the presentation is deemed to be grounded. If the intention is not
recognized, a new contribution with the relation support or correct is pushed onto
the stack.

2.3 Clarification as a means of grounding

To overcome a breakdown in communication, people relatively often use clarifica-
tion (sub)dialogues rather than starting the whole conversation again as that would
not waste their resources (following the principle of least effort in Section 2.1).

Clarification, corresponding to Traum’s concept of “repair” and the support/correct
grounding relation in Li et al.’s approach mentioned above, can take many forms –
be that relative to the form of the utterance, its meaning and the level of understand-
ing that has been achieved. In the following, we examine the range of clarification
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requests that may be raised, e.g. by a robot in a human-robot interaction scenario,
depending on the source of communication breakdown represented as the achieved
level in Clark’s joint action ladder and give an example classification of their sur-
face forms based on a corpus study.

A communication breakdown may occur at any level of the joint action ladder,
which corresponds to different levels of understanding and interpretation of the
utterance. The following classification is based on [38] and extended by the notion
of visual recognition problems:

Breakdowns on level 1 (execution / attention) are typically channel problems,
where there is a lack of contact between the parties [38].

Examples:

• The hearer (B) doesn’t notice that the speaker(A) is talking to her;
• A can’t talk to B since B is looking somewhere else.

Breakdowns on level 2 (presentation / identification) can arise due to acoustic
problems [38]. A part of the speech signal was not heard or not recognized or
there is an uncertainty in the word recognition such as multiple similarly ranked
hypotheses in the output of the recognition.

• “Pick up the red 〈noise〉” or “〈noise〉 the red ball” or “〈noise〉”;
• “Move the {cup | cub}”.

Breakdowns on level 3 (signaling / recognition) arise when we fail to process a
signal – whether linguistically, or as part of maintaining situation awareness. Lin-
guistically, we distinguish lexical problems [38], when the meaning of one or more
words in the utterance is not known, and parsing problems [38]. A parsing prob-
lem regards an ambiguity in the syntactic structure of the utterance that results in
ambiguity of its semantic interpretation.

• The hearer knows the word “football” but does not have any concept or visual
image associated with it (lexical problem).

• “bring the mug on top of the shelf” which can either concern a mug on the shelf
or a mug somewhere else that should be put onto a shelf (parsing problem)

• “the mug with a flower” which can either refer to a mug with a flower in ir or a
mug with a flower painted on it (parsing problem).

Similarly, we might face a problem in processing signals in other modalities. A
perceptual recognition problem arises when the agent is uncertain about what it
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perceives, or when it does not recognize it. (Note that we understand perception
here in a broad sense – not just visual perception, but also e.g. laser range-finder
based perception and classification.)

• A robot sees an object, but is unable to recognize it as a mug;
• The robot can’t see a door in the room.

Another possibility is that the agent may fail in reference resolution [38]. There
is an ambiguity or failure in the resolution of the intended referent of a natural
language expression. This may concern the referents of NPs and deictic expressions
(with or without gestures), as well as action references. This problem can thus go
beyond the realm of dialogue, as an agent may fail to ground a reference in her
world model(s).

• “the red ball” when there are multiple red balls on the table, or when there is
none;

• “the supermarket” when there are multiple (or no) supermarkets in the relevant
region;

• “this” + pointing when it’s not clear which object is meant;
• “Monday the first” when the month has not been specified.

Finally, a belief conflict can arise [38]. There may be a problem with the validation
of a proposition against the agent’s beliefs. (This might perhaps be seen as just
another case of reference resolution problem.) Presupposition failures, apart from
referential presuppositions which are handled above, would also belong here.

• “You’ll need a visa” when the hearer doesn’t think so ([37]);
• “There are three balls on the table” when the robot can only see two;
• “This is a ball” when the robot is perceiving a square object;
• “Put the ball on the table” presupposes that the ball is not on the table yet; if it

is, a conflict arises.

Breakdowns on level 4 (proposal / consideration) arise as problems in intention
recognition or -evaluation [38]. It is not clear why the utterance with that interpre-
tation has been uttered or why an action in the physical world has taken place, i.e.,
how it is relevant to the interaction, what contribution it makes to the goal(s), if
there are any.

• “This is a phone” when one is playing the color game;
• “Do you know where the printer is?” or “Go to the printer room” when the cur-

rent task is to get a cup of coffee;
• if the human places an object in front of the robot without saying anything, the

robot may not know what is expected from it, or when the human is moving
objects, the robot may not know why s/he’s doing it.
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3 Approach

In this section we discuss an abductive approach to comprehension and produc-
tion of clarification dialogues. The approach is based on Stone & Thomason [42–
44]. We extend their approach with assertions (§3.2), and a more explicit notion
of multi-agent beliefs (§3.3). Assertions introduce explicit checkpoints in a proof.
At these checkpoints, an assertion needs to be verified against the current con-
text. Should this verification fail, a proof can be expanded to overcome this failure
(identifying which actions to undertake), or require reconstruction. This lends the
approach a continual nature [7], making abduction for clarification part of a larger,
continual form of collaborative activity (§3.4).

3.1 Abduction: Stone & Thomason’s approach

Stone & Thomason propose a contextualized form of weighted abduction, for pro-
ducing and comprehending dialogue [42,43]. The abductive inference is set within
the broader model of collaborative activity [44]. This model makes explicit how
the proofs for comprehension and production interact with actual steps for acting
upon these proofs. Below, we first focus on the definitions for Stone & Thomason’s
form of abduction. In subsequent sections we provide definitions of the formal ex-
tensions we propose.

Definition 2 (Abductive modal inference [42]) Contextual reasoning is phrased
as a modal logic. Modal operators of the form [c] are associated with contexts. A
distinguished operator ! specifies an axiom to be true in all contexts. A schema-
tizes atomic formulas; ! identifies the always-true atom.

If κ is a sequence of context operators of the form [c0]...[cn] (possibly empty) then
the notation κ(φ) is used to name the formula [c0]...[cn]φ. κ ◦ κ′ denotes the con-
catenation of κ and κ′. Goals are modalized atomic formulas, clauses P are modal-
ized Horn clauses whose antecedent and conclusion formulas may themselves be
modalized:

G ::=κ(A)|!
P ::=κ′(κ1(A1)...κm(Am) → k′′(H))|

!κ′(κ1(A1)...κm(Am) → k′′(H))

During proof construction each subgoal is associated with an assumability function
fj to indicate assumption costs:

(!)κ′(G1/f1. ∧ .. ∧Gm/fm → k′′(Q))

An abductive proof for a query Q is a sequence of lists for whose initial element is
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Q[unsolved], in which transformation rules (truth, assumption, resolution, factor-
ing) transform this list successively into a final list in which none of the elements
are marked as unsolved. The proof determines an answer to the query as a pair
〈Q0, D 〉 consisting of an instantiation Q0 of Q and a set of postulated assump-
tions ∆ . ∆ is a multiset consisting of a formula κ(A) for each element of the form
κ : A[assumed] in the terminal list. !

The transformation rules for abductive proof construction are defined as follows.

Definition 3 (Transformation rules [42]) Given a state in the construction of an
abductive proof, represented as a list L = Q1, ..., Qn with Qi = κ : A the left-most
query marked as unsolved. This state can then be transformed using one of the
following transformation rules:

Truth If A is #, derive a new state exactly like L except that the label of Qi is
resolved rather than unsolved.

Assumption Derive a new state exactly like L except that the label of Qi is assumed
rather than unsolved.

Resolution Select a clause R of the form P or !P , where P is
κ′(κ1(A1)...κm(Am) → k′′(H))
with its variables renamed, so that it has no variables in common with L. Sup-
pose H and A are unifiable with a most general unifier σ, κ = κ∗ ◦ κ′ ◦ κ”, and
unless R is !P then k∗ is empty. Then derive the new state:
Q1σ, ..., Qi−1σ,
κ = κ∗ ◦ κ′ ◦ κ1 : A1σ[unsolved], ....,κ = κ∗ ◦ κ′ ◦ κm : Amσ[unsolved],
κ : Aσ[resolved], Qi+1, ...., Qnσ

Factoring Suppose some element Qs describing a query κ : H precedes Qi in L,
and H and A are unifiable with most general unifier σ. Then derive a new state
suppressing the duplicate proof of Qi: Q1σ, ..., Qi−1σ, Qi+1σ, ..., Qnσ.

!

In [43] Stone & Thomason identify four types of context κ: c is a context, i repre-
sents old information in c, e represents new information about events, and a is the
attentional component. For understanding the utterance ’he left’ Stone & Thoma-
son provide the following illustration:
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a1: he(X)

e1: utter(’he left’, E, P )

e1: do(E)

i1: leave(P, X)

c1: add−info(P, i1, i2)

c1: put−in−focus(X, a1, a2)

The proof assumes that he(X) can be resolved against the current attentional con-
text with low cost if X is masculine, singular and in focus. The event e1 is postu-
lated on observation, and the information i1 is proven given by the grammar, which
provides the logical form as a way of expressing P . The inference about the in-
tended effects of communication (i.e. of the intention do(E)) is the addition of P
to the context (i.e. a context update), and the maintaining of X in focus.

3.2 Assertions in abductive inference

We expand Stone & Thomason’s definition of abductive modal inference with a
notion of assertion. The point of an assertion is to provide an explicit checkpoint
in a proof. Brenner & Nebel [7] define a notion of assertion for continual plan-
ning, in which an assertion can explicitly trigger replanning or plan expansion. We
propose to do something similar. Intuitively, the truth of an assertion depends on
the outcome of an action, or on a future observation verifying the asserted propo-
sition. Such verification occurs during the execution of the actions, based on the
interpretation of a proof as a plan [44]. Should an assertion not be confirmed, we
can revisit the assertion in the proof and check how to adapt the proof – akin to
continual planning.

We propose a notion of assertion for abduction, based on test actions 〈F 〉? [5]. Bal-
doni et al. [5] specify a test as a proof rule. In this rule, a goal F follows from a
state a1, ..., an after steps 〈F 〉?, p1, ..., pm if we can establish F on a1, ..., an with
answer σ and this (also) holds in the final state resulting from executing p1, ..., pm.
Using the notion of context as per Definition 2, a test κ : 〈F 〉? means we need to
be able to verify F in context κ. If we only use axioms A, testing is restricted to
observability of facts. By extending Definition 2 with embedded implications, we
can also make tests range over obtainable outcomes. An embedded implication is
an implication D → C as part of a Horn clause. [4] show how embedded implica-
tions can be included in abduction; (see [8] for a general overview). An embedded
implication establishes a local module: The clauses D can only be used to prove
C. Formulating a test over an embedded implication µ : D → 〈C〉?, we make it
explicit that we assume the truth of the statement but require its eventual verifi-
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cation in µ. (Test actions turn an embedded implication into a static module, only
promoting the conclusion [4].) Finally, an assertion then is the transformation of a
test, into a partial proof which assumes the verification of the test, while at the same
time conditioning the obtainability of the proof goal on the tested statements. Intu-
itively, µ : 〈D〉? within a proof Π[〈D〉?] to a goal C turns into Π[D] → C ∧ µ : D.
Should µ : D not be verifiable, Π is invalidated.

Definition 4 (Test; embedded implication) Given the language for Horn clauses
P in Definition 2. We extend this with embedded implications D ⊃ C and a test
operator 〈·〉? as follows:

P ::=(as per Definition 2)|
a clause of the form R or !R where R is:
κ′(κ1(A1)...κm(Am) → k′′(D ⊃ C))|
κ′(κ1(A1)...κm(Am) → k′′(D ⊃ 〈C〉?))|
κ′(κ1(A1)...κj(〈Aj〉?)...κm(Am) → k′′(H))

with C atomic or tested, 〈C ′〉? with C’ atomic

A test operator 〈A〉? applies to atomic A, and resolves to A" (A is true) or A⊥ (A
is false, under an open world assumption). !

Definition 5 (Abductive modal inference with assertions) An assertion is the ex-
plicit assumption of a positive test result for a test 〈A〉? for A atomic. We extend
the abductive model inference of Definition 2 with an assertion transformation rule:

Assertion Select a clause R of the form P or !P , where P is
κ′(κ1(A1)...κj(〈Aj〉?)...κm(Am) → k′′(H)).
then derive the new state:
Q1, ...., Qi−1,
κ′ ◦ κ1 : A1[unsolved], ...,
κ′ ◦ κj : Aj[asserted], ....,
κ′ ◦ κm : Am[unsolved], Qi+1...Qn

The multiset ∆ is extended to also include assertions κ′ ◦ κj : Aj[asserted],
besides the assumptions in the proof (Definition 2). A falsified assertion A⊥ can
lead to the expansion or reconstruction of a proof. Given a proof as a state L =
Q1, ..., Qi, ...., Qn for a goal G, with Qi = κ : A[asserted]. If A⊥, a proof expan-
sion is an abductive proof Π for A" as goal, starting from the current conditions
including A⊥, s.t. L = Q1, ..., Qi−1, Π, Qi+1, ...., Qn derives goal G (and ∆ for
L updated with ∆ for Π). Failure to produce a proof expansion leads to a proof
reconstruction, starting from a context κ : ¬A. !
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3.3 Multi-agent beliefs

We exploit Stone & Thomason’s idea of contextualizing abductive inference [43] to
explicitly reason with situated multi-agent beliefs. In our approach, abductive infer-
ence reasons over belief models. A belief model represents what an agent believes
about the world, about actions are to be performed there, and what she is currently
paying attention to. Beliefs and tasks are relativized to one or more agents, and to
spatio-temporal “frames,” situating beliefs and tasks in time and space.

The logical definition of belief models captures the beliefs, tasks, and attentional
state. The structures used in the logical definition are based on the notion of Multi-
Variant State Variables (MVSV) used in MAPL to define multi-agent belief models
[7]. These state variables are used for several purposes. First, they can indicate
domain values, taking values in the range of an ontological sort the variable is de-
fined for. Important is that the absence of a value for an MVSV is interpreted as
ignorance, not as falsehood (as per a closed-world assumption). In a similar way,
state variables are used for expressing private beliefs, and mutual or shared be-
liefs [31,19]. A private belief of agent a1 about content φ is (basically) expressed
as (K{a1}φ) whereas a mutual belief, held by several agents, is expressed as
(K{a1, a2, }φ). Finally, MSVSs can be quantified over.

Definition 6 (Belief model, attentional state) A belief model is a tuple B = 〈A,S,K, T ,F〉.
A is a non-empty set of agents. S is a spatio-temporal model, consisting of a set of
spatiotemporal frames and a set of relations defined over these frames (see defini-
tions below). K is a set of private and/or mutual beliefs [31,19]. A private belief
of agent ai ∈ A about content φ in spatiotemporal frame σk ∈ S is expressed
as (K σk {ai}φ), a private belief of ai contributed to another agent aj is written
as (K σk {[ai]aj}φ) whereas a mutual belief, held by several agents ai..aj ∈ A
for a spatiotemporal frame σk ∈ S, is expressed as (K σk {ai, aj, }φ) (after [7]).
Every belief φ is explicitly indexed, noted as φ[I] for an index set I with indices
from the namespace of indices for B, N(B). The namespace for a B is a set of in-
dices of content over which beliefs and tasks can be defined. T is an ordered set
of tasks. A task ta for an agent ai ∈ A in spatiotemporal frame σk ∈ S is repre-
sented as (T σk{ai}ta); a task involving multiple agents ai, , aj is represented as
(T σk{ai, aj}ta). Just like beliefs, tasks are explicitly indexed: ta[I]. F is the set of
foregrounded beliefs and tasks, for which it holds that F ⊆ (K ∪ T ). !

Definition 7 (Spatiotemporal calculus) Let a spatiotemporal frame be a tuple stf =
〈S, T, p,ϕai〉 consisting of a spatial interval S defined as a set of one or more con-
tiguous places in space, T a continuous temporal interval 〈Xo, Xc〉, and ϕai a
perspective under which S and possibly T are considered relative to an agent ai.
If S, T are presumed valid under every perspective, ϕ = & and can be omitted
from the tuple. p is a time-point, and functions as unique index for the spatio-
temporal frame. Xo, Xc are interpreted as points on the (interval) real line such
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that Xo < Xc. Xo is called the opening of the interval and Xc the closing of the
interval. p is a time-point on the (point) real line. Given stfi = 〈Si, 〈Xo

i , X
c
i 〉, pi

and stfj = 〈Sj, 〈Xo
j , X

c
j 〉, pj〉, if pi ≤ pj then Xc

i ≤ Xo
j . We assume a function

Z that provides a bi-simulation between time-points and temporal intervals [6].
Relations between temporal intervals are defined using a tractable fragment of the
Allen interval calculus [1,32] with RCC-8 (cf. e.g. [15]). In addition, the calculus
defines the following shorthands:

• Given a frame Fnow and 〈Xo
now, Xc

now〉 for identifying the present time, and a
frame Fi with 〈Xo

i , X
c
i 〉 such that Fnow during Fi, then Fi is called open relative

to Fnow: open(Fi|Fnow), or simply open(Fi).
• Given a frame Fnow and 〈Xo

now, Xc
now〉 for identifying the present time, and a

frame Fi with 〈Xo
i , X

c
i 〉 such that Fnow after Fi, then Fi is called closed relative

to Fnow: closed(Fi|Fnow), or simply closed(Fi)

!

With these notions we can provide more detail to Stone & Thomason’s four types
of context κ [43], with c a context, i old information in c, e new information about
events, and a the attentional state. We assume a context of type c to range over
beliefs and tasks in B, (and by extension so does i), and over general (“!-true-for-
all-contexts”) rules from a domain model. To make explicit what belief or task a
c-type context in a proof step concerns, we adopt the following structure over labels
functioning as context.

Definition 8 (B-relative contexts in abductive inference) Given a query of the form
Qi = κ : A. We further structure κ as a term following the format of beliefs and
tasks (Definition 6). For a modality M (K or T ), a spatiotemporal frame σ and
a set of agents α, we build a term M [σα]: Qi = M [σ α] : A. Composition ◦
over contexts requires this composition to apply to the composed spatiotemporal
frames and sets of agents (to whom beliefs and tasks are contributed). Specifically,
M [σ α]◦M [σ′ α′] % M [σ ◦σ σ′ α◦α α′] under labelled logics that control composi-
tion over spatiotemporal frames, and over agent sets. For A holding for all contexts
we keep ! (Definition 2). !

For spatiotemporal frames, we control composition using a spatiotemporal calculus
(Definition 7) to infer what relation R can hold between two frames: If R(X, Y )
for the intervals represented by σ, σ′ then σ ◦R σ′ in the label (cf. [13]). Similarly,
we can define an algebra over agent sets based on a basic logic of attributing multi-
agent beliefs.
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3.4 Abduction for clarification as a continual collaborative activity

Stone & Thomason place their abductive inference in the context of an algorithm
for comprehending and producing collaborative activity [44]. The algorithm is
based on the idea that, ultimately, what we try to understand is the intention be-
hind an activity. Looking at it from the viewpoint of collaboration, why did the
agent do something? The algorithm aims to capture the interplay between action
and interaction in collaboration. It defines collaborative activity in terms of collab-
orative agents taking tacit and public actions. Tacit actions are actions which one
agent performs (mentally or physically) without those being observable (“sensed”)
by the other agent(s). Public actions are observable to all agents involved, and most
importantly, help to explicitly further a common ground.

Algorithm 1 presents a definition of Stone & Thomason’s algorithm. When trying
to comprehend an observed event e, understanding builds an abductive proof for e
returning an intention i presumed to underly e and updates to the context c′ (includ-
ing updates to the attentional state). This comprehension process takes into account
the available communicative resources r, and the horizon of contextual alternatives
Z(c) [44]. The weighted cost-based nature of the abductive inference deals with
the uncertainty inherent to such understanding; cf. also [22]. On the other hand,
producing actions is based in the possible undertaking of tacit actions set against
private beliefs, and then the selection of a message in the resulting context to be
communicated publicly to the other agents involved.

Algorithm 1 Collaborative acting [44]

loop {
Perception

e ← SENSE()
〈c′, i〉 ← UNDERSTAND(r, Z(c), e)
c ← UPDATE(c′, i)

Determination and Deliberation
c′ ← ACT-TACITLY(p, c)
m ← SELECT(p, c′)
i ← GENERATE(r, c′, m, Z(c))

Action
ACT-PUBLICLY(a(i))
c ← UPDATE(c′, i)

}

Underlying Algorithm 1 is an assumption that there is a symmetry between compre-
hension and production. They are assumed to be coordinated [43,44]): for a fixed
perspective, an utterance will be understood the way the speaker intends it. Stone &
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Thomason call this the Principle of Coordination Maintenance. They note that this
is a strong assumption [44], as natural communication is able to deal with divergent
perspectives and less certainty in action. The use of assertions allows us to lessen
this assumption. Certainty can be asserted, but it needs to be verified. Should an
assertion turn out to fail, we need to revise.

The Principle of Coordination Maintenance is reflected in the unverified updates
made in Algorithm 1. With assertions, it may happen that an update is not war-
ranted. For example both GENERATE and UNDERSTAND may rely on an asserted
outcome of a clarification request. Only if this assertion is verified, can we make
the update. Otherwise, the underlying proof needs to be expanded or revised.

Verification in a collaborative setting is, in and by itself, another run through the
loop in the algorithm. A clarification question is raised (GENERATE), the answer
obtained is processed (UNDERSTAND), and we need to verify whether the update
made on the basis of the public action initially resulting from raising the question
is actually warranted.

Algorithm 2 Continual collaborative acting

Σπ = ∅

loop {
Perception

e ← SENSE()
〈c′, i, Π〉 ← UNDERSTAND(r, Z(c)⊕ Σπ, e)
c ← VERIFIABLE-UPDATE(c′, i, Π)

Determination and Deliberation
c′ ← ACT-TACITLY(p, c)
m ← SELECT(p, c′)
〈i, Π〉 ← GENERATE(r, c′, m, Z(c)⊕ Σπ)

Action
ACT-PUBLICLY(a(i))
c ← VERIFIABLE-UPDATE(c′, i, Π)

}

We alter Algorithm 1 to reflect this need for verification. Algorithm 2 adds a stack
Σpi of ’open’ proofs, and it turns the UPDATE steps of Algorithm 1 into VERIFIABLE-
UPDATE steps. The presence of a proof Π on the stack Σpi indicates it has assertions
in its ∆-set (cf. Definitions 2 and 5) that are either not yet verified, or have been fal-
sified. We provide the proof stack as argument to the UNDERSTAND and GENERATE
steps. This makes it possible to expand or restructure a proof currently on Σpi, us-
ing it to determine the next public action to make. (The use of Σπ can be compared
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to Ginzburg’s Question-Under-Discussion structure.) A VERIFIABLE-UPDATE tests
the update to be made, based on 〈c′, i〉 and the underlying proof Π, against Σπ.

Algorithm 3 Algorithmic definition of VERIFIABLE-UPDATE

Given an input proof Π with 〈c′, i〉
if Σπ = ∅ then

Σπ ← PUSH(Π)
return c ← UPDATE(c′, i)

else
Π′ ← POP(Σπ)

end if
verified = true
for Ai[asserted] ∈ ∆ of Π′ do

if 〈c′, i〉 ∧ Ai[asserted] ' ⊥ then
verified = false
∆ ← ∆[Ai/A⊥〈c′, i〉]

else
∆ ← ∆[Ai/A#]

end if
end for
Σπ ← PUSH(Π)
if verified == false then

Σπ ← PUSH(Π′)
return c′ ← DOWNDATE(c′, Π′)

else
return c′ ← UPDATE(c′, Π)

end if

Algorithm 3 outlines the algorithm for VERIFIABLE-UPDATE. If Σpi is empty, we
continue to make an update like in Algorithm 1: c ← UPDATE(c′, i). Otherwise,
〈c′, i〉 are tested against the assertions in the ∆-set of the proof Π′ popped from
Σπ. For each assertion Ai[asserted] in ∆ we check whether the intended update
would falsify Ai. If so, we mark the assertion in ∆ as A⊥ and provide the falsifying
update, If Ai is not falsified, it is marked as A#. Should we find that one or more
assertions in ∆ were falsified, we downdate the context with the update of Π′. We
store subsequently push Π onto Σπ, and finally Π′ (making it the top-proof to be
addressed).

This provides for a straightforward model of clarification in collaborative activity.
If we specify a clarification in a proof together with an asserted positive outcome,
the algorithm for continual collaborative activity can verify whether the answer
is indeed subsequently obtained. If not, or if only partially so, further abductive
inference can expand or restructure the invalidated proof to continue clarification.
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4 Examples and Implementation

In this section we illustrate our approach on the following dialogue:

(1) Human places an object on the table
(2) Robot: ”That is a brown object.”
(3) Human: ”It is a red object.”
(4) Robot: ”Ok. What kind of object is it?”
(5) Human: ”Yes.”
(6) Robot: ”Aha. But what KIND of object is it?”
(7) Human: ”It is a box.”

This dialogue illustrates several important phenomena we would like to capture,
in relation to common ground, grounding and clarification (§2). In (1) the human
places an object on the table. The robot interprets this activity as an intention on
behalf of the human to show the robot something. The robot accordingly acknowl-
edges this, by communicating what it understands about the object (2). Next we see
the first “conflict.” The robot believes the object is brown, which contrasts with the
human’s belief that it is actually red (§2.3: Level 3, breakdown in recognition, belief
conflict). The human corrects the robot (3). The robot accepts this correction (4),
and subsequently asks a question after the type of object it’s seeing. The human,
not being particularly collaborative, replies with “yes” (5). This leads to another
temporary breakdown in the dialogue, as a polar response isn’t an expected kind
of answer to the question the robot just posed (§2.3: Level 4, breakdown in con-
sideration, intention evaluation). The robot repeats the question (6), with a stress
on “KIND,” to stress the expected answer (and contrast with the initial and rather
unhelpful answer the human provided, (5)). Finally, the human provides the desired
information (7).

The discussion below relies on a design of a preliminary implementation of weighted
abduction, (Definitions 2 and 5), and its integration into the dialogue system and the
overall cognitive architecture we are developing. Core to the design is that we main-
tain belief models (Definition 6) at different working memories. For our current
purposes, we assume a belief model for dialogue, and one for a short-term working
memory with a-modal content (i.e. “binding” working memory [23]). These two
belief models are synchronized, in both directions. Following Lison & Kruijff’s no-
tion of context-sensitive language processing [30,29], foregrounded a-modal beliefs
are provided to the dialogue belief model to represent salient information about the
situated context(s) under consideration. We use namespace-information to appro-
priately keep track of where beliefs have their origin. This enables us to percolate
changes to beliefs across multiple belief models, and achieve synchronization in
the direction from the dialogue belief model back to the a-modal belief model. For
example, the dialogue above illustrates how a robot’s belief about visual proper-
ties (“this is a brown object”) gets corrected through interaction with a human (“no

20



it is a red object”). Another use of synchronization, resulting from updating the
foregrounded beliefs in the dialogue belief model with new beliefs in the a-modal
model, is that salient visual referents can thus become available as “given” without
having been explicitly introduced into the dialogue context beforehand.

(1) Human places an object on the table, (2) robot replies with “that is a brown
object.” Vision introduces a representation on the a-modal working memory,
identifying a “brown object,” which the human ah has placed on the table. Fol-
lowing the methodology of [23], this introduces a union on this working memory.
We use the union to create a corresponding belief for the robot ar:

(Kσnow{[ar]ah@v1:thing(object ∧ 〈Color〉(vb1 : color ∧ brown))) (1)

Based on its (assumed) high visual salience, the belief in (1) is placed in the fore-
ground set of the belief model on a-modal working memory, Fam. This triggers
synchronization with the dialogue belief model, ensuring that this belief also be-
comes foregrounded in the dialogue belief model (Fcom).

We treat the appearance of the a-modal belief in Fcom as a SENSE action, cf. Algo-
rithm 2. This triggers interpretation of that the observation as an act in the setting of
a collaborative activity. The interpretation is guided by the fact that in (1) we have
the robot attribute a belief to ah. We treat the robot as a cautious agent, considering
this attribution still as a private belief. As ah was the one placing the object v1, the
attribution does make the object available for reference. At the same time it trig-
gers an explicit acknowledgment to make the belief part of the common ground.
The following proofs reflects this.

e1/σnow: show(ah,@v1:thing(object ∧ 〈Color〉(vb1 : color ∧ brown))), E)

e1/σnow: do(E)

Fcom put−in−focus(v1, a1, a2)

K[σnow [ar]ah]: @v1:thing(object ∧ 〈Color〉(vb1 : color ∧ brown))
(2)

(2) starts with understanding the intention behind the human’s showing the object.
The proof establishes it as an attempt to update the belief model of the robot, in-
cluding a new (attributed) belief about the object, and an updated foreground. Given
this updated belief model, the next step we take is to generate a public act. Acting
as a cautious agent, the goal of this public act is to turn the attributed belief into a
shared belief about the object.
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a2/Fcom: that(v1)

[asserted]K[σnow [ar]ah]: @v1:thing(object)

[asserted]K[σnow [ar]ah]: @v1:thing〈Color〉(vb1 : color ∧ brown))

e2/σnow: utter(ar, ’that is a brown object’, E,

@v1:thing(object ∧ 〈Color〉(vb1 : color ∧ brown)))

e2/σnow: do(E)

K[σnow {ar, ah}]: @v1:thing(object ∧ 〈Color〉(vb1 : color ∧ brown)))
(3)

The proof in (3) breaks up the proposition in (1) into its elementary predications. It
then explicitly asserts the individual perceived properties ascribed to the object. An
utterance “that is a brown object” is then introduced as action to make the ascription
public, and yield the desired update of the observation to a shared belief. The use
of a deictic pronoun to refer to v1 can be assumed at low cost as v1 is part of the
foreground.

(3) Human indicates the robot is wrong, “it is a red object.” (4) the robot com-
plies, ”Ok.” At this point, the proof stack Σπ contains the proof (3). The asser-
tions about the ascribed properties are yet to be verified. Now the human replies
with, “it is a red object.” This yields a straightforward proof in the UNDERSTAND
step.

a2/Fcom: it(v1)

K[σnow {ar, ah}]: @v1:thing(object)

e2/σnow: utter(ah, ’it is red’, E,

@v1:thing(object ∧ 〈Color〉(vb1 : color ∧ red)))

e2/σnow: do(E)

Fcom put−in−focus(v1, a2, a3)

K[σnow {ar, ah}]: @v1:thing(object ∧ 〈Color〉(vb1 : color ∧ red)))

(4)

The proof in (4) assumes that there is a shared belief about the object (minimal
assumption), and that it can be referred to at low cost as it is (still) in the foreground.
The observed utterance yields a semantic representation, which the proof concludes
is the desired update relative to the object.
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The problem now arises when we try to perform the update. The VERIFIABLE-
UPDATE determines that the desired update contradicts an assertion in the proof
currently on top of the stack, (3). As a result, we downdate the incorrect belief. We
push the proof again onto the stack with a revised ∆-set. The object assertion is
verified, the color assertion has been falsified by the intended update that v1 has a
red color.

Production of the next public action is now guided by the problematic proof that
remained on Σπ. This illustrates the continual nature of our approach. The assertion
of the color property made it possible for another agent to correct it. This resulted in
a retraction of the belief and now leads to a step to address the situation. This step
is simple. Acting on the assumption that the human is truthful, the robot simply
acknowledges the correction, and updates its beliefs accordingly. The proof (5)
does so based on expansion of (4) to yield the desired final update.

K[σnow {ar, ah}]: correction(@v1:thing(object ∧ 〈Color〉(vb1 : color ∧ red)), E′)

e2/σnow utter(ar, ’ok’, E′,$)

e2/σnow do(E′)

K[σnow {ar, ah}]: @v1:thing(object ∧ 〈Color〉(vb1 : color ∧ red)))
(5)

The revised belief about v1 in the dialogue belief model leads to a synchronization
with the corresponding belief about v1 in the a-modal belief model. Subsequently,
this makes it possible for the visual modality in which the belief originated, to use
the updated information to correct its categorization models.

(4) the robot asks after object type, (5) to which the human unhelpfully re-
sponds with “yes.” Next, we assume that vision triggers a request for more in-
formation about the type of object we are looking at. Vision provides this trigger to
the motivation planner, which in turn sends it to dialogue [21]. The determination
and deliberation phase of Algorithm 2 handles the trigger by formulating a ques-
tion: “What kind of object is this?” Following [18,24] this question has an expected
answer, and is set against the background of shared beliefs about the object. The
shared beliefs about the object, and the fact that v1 is (still) part of Fcom, makes
it possible to simply refer to the object using a pronoun. We then produce a proof
for a public action based on the idea that if we ask a question, and get a suitable
answer, we can make the appropriate update to our belief model. (To keep the proof
readable, we abbreviate the following semantic representation for the question to
P in the proof.)
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@b1:ascription(be ˆ
<Mood>int ˆ
<Tense>pres ˆ
<Cop-Restr>(i1:thing ˆ it ˆ

<Num>sg) ˆ
<Cop-Scope>(k1:thing ˆ kind ˆ

<Delimitation>unique ˆ
<Num>sg ˆ
<Quantification>specific ˆ
<Owner>(o1:thing ˆ object)) ˆ

<Subject>i1:thing ˆ
<Wh-Restr>(w1:specifier ˆ what ˆ

<Scope>k1:thing))

K[σnow {ar, ah}]: @v1:thing(object)

a3/Fcom: it(v1)

e3/σnow utter(ar, ’what kind of object is it’, E, P )

e3/σnow do(E)

[asserted]K[σnow {ah}] Answer ! thing

[asserted]/e4 ◦if e3 utter(ah, X,E′, P ′ |= Answer)

[asserted]/e4 ◦if e3 do(E′)

K[σnow {ar, ah}]: @v1:thing(Answer)

(6)

Proof (6) proceeds by assuming that both agents know about v1, and that it is still
in the foreground. It assumes a semantic structure for the utterance (provided by
content planning), realized as an utterance (using a CCG realizer). The next steps
formulate the idea that, once the question is raised, the human ah responds with an
answer. The proof needs to assert that ah first of all knows the answer, and then
provides this answer in an utterance in an event e4 immediately following (◦if )
upon the question. Provided that the answer is a proper answer to the question, we
can update the belief both agents have with that information.

The subsequent answer “yes” satisfies the assertion that the user did something. It
just wasn’t the right answer. A polar statement is not a proper subtype of thing (it
is a marker). At the same time, it does neither prove nor disprove whether or not
the human actually knows the answer. We are thus still left with falsified assertions,
an open question, and proof (6) on Σπ.

(6) the robot repeats the question, (7) after which the human provides a correct
answer. Earlier, we dealt with falsified assertions by simply adopting a correction
that the user provided ((3) – (5)). What makes the current setting different is that
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in this case the assertions do not concern the beliefs of the robot ar, but statements
about the beliefs and intentions of the human ah. The robot is therefore in the
position to “correct” – which we do by repeating the action. The repetition of the
question leads to a stronger stress on the phrase identifying the expected type of
answer (see also the report by Kruijff-Korbayová et al.).

K[σnow {ar, ah}]: @v1:thing(object)

a5/Fcom: it(v1)

e5/σnow utter(ar, ’what kind of object is it’, E, P )

e5/σnow re− do(E)

[asserted]K[σnow {ah}] Answer ! thing

[asserted]/e6 ◦if e5 utter(ah, X,E′, P ′ |= Answer)

[asserted]/e6 ◦if e5 do(E′)

K[σnow {ar, ah}]: @v1:thing(Answer)

(7)

The subsequent answer “it is a box” then satisfies the assertions, and leads to an-
other update on v1. This update is handled as per the mechanisms discussed already.

5 Conclusions

The paper discussed an approach to modeling continual collaborative activity, using
weighted abduction. The approach is based on earlier work by Stone & Thomason,
which it extends with more explicit handling of multi-agent belief models, and
the introduction of a notion of assertion based on [7]. The result is an approach
in which Stone & Thomason’s strong principle on coordination between compre-
hension and production [44] can be relaxed. Should coordination fail, indicated by
failing assertions, then proof revision (expansion or rewriting) can be used as a
continual way to redress the problem. The paper exemplified the approach on an
extended example from human-robot interaction in a continual visual learning set-
ting. The illustrations were set against the background of a design for integrating
the approach into the dialogue system and the larger cognitive architecture, and a
preliminary implementation. The examples illustrated how different issues in com-
mon ground, clarification, and grounding come together in a coherent framework
that looks at dialogue as a continual collaborative activity.
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Abstract— We develop an approach for determining con-
textually appropriate intonation of grounding feedback ut-
terances, in particular clarification requests raised during
continuous and cross-modal learning in autonomous robots. Fol-
lowing the analysis in [Ginzburg, 1996], [Purver et al., 2003],
[Purver, 2004] on clarifications in human dialogue, we develop
strategies for formulating clarification requests in human-
robot dialogue. As for intonation, we combine the approaches
of [Steedman, 2000a], [Lambrecht and Michaelis, 1998] and
[Engdahl, 2006] to intonation assignment based on information
structure, an underlying partitioning of utterance context the
reflects its relation to discourse context. We implement our
approach in the CogX system. Empirical verification of our
approach comes from psycholinguistic experiments.

I. INTRODUCTION

When in doubt, ask. This paradigm very much applies
to autonomous robots which self-understand and self-extend
in the environment they find themselves. It is therefore
essential for these systems to learn continuously about their
surroundings. Moreover, the learning process has to be driven
mainly by their own curiosity, rather then some external
motivation. During the course of learning or planning actions,
a robot might require additional information from a human
interlocutor. Spoken dialogue is a means through which a
robot can request new information or clarify the knowledge
it has acquired about the situated environment.

This ability to self-initiate a dialogue, besides adding
autonomy to a robot’s behavior, also allows the robot to
connect its belief state to that of its interlocutor. This enables
the participating agents to perform grounding, and arrive
at a common ground [Clark and Schaefer, 1989]. A robot’s
grounding feedback is one of the means to arrive at a
common ground. By employing a variety of feedbacks, such
as acknowledgement (e.g. ‘I see a red box’), verification
request (e.g. ‘Is it a red box?’), disambiguation request (e.g.
‘Is this box red or brown?’) or simple information request
(e.g. ‘What color is this box?’) a robot is able to assert or
clarify its knowledge about its surroundings.

But is it just the lexical choice that makes up the
meaning of an utterance? For example, the answers to
the questions in (1a) and (2a) (sentences 4 and 5 taken
from [Steedman, 2000a]), contain the same exact string of
words, (1b) and (2b). If it were only the lexical choice that
governed the semantics of these answer pairs, then both these

* Supported by EU FP7 Project ‘CogX’(FP7-ICT-215181).

answers should convey the same meaning, and hence be
interchangeable. This, however, is not the case. What is it
then, that distinguishes the response in (2b) from that in
(1b)?

(1) a. Who proved completeness?

b. (MARCEL) (proved COMPLETENESS).
H* L L+H* LH%

(2) a. What did Marcel prove?

b. (Marcel PROVED) (COMPLETENESS).
L+H* LH% H* LL%.

[Steedman, 2000a], among others, attributes the differ-
ences in these answer pairs to their information content,
more specifically their information structure (IS). In spoken
English, IS is realized through intonation. The intonation
contours shown under the answers, with the words printed
in SMALL CAPITALS indicating the alignment of the most
prominent pitch accents (fundamental frequency f0 peaks)
and the brackets indicating the intonation phrases, originate
in the pioneering work of [Pierrehumbert, 1980]. The ut-
terances in (1b) and (2b) with their respective intonation
contours are not interchangeable without sounding unnatural
or altering the meaning of the dialog in the given context.

The task of making the grounding feedback utterances of a
conversational robot contextually appropriate, inevitably also
involves intonation assignment.

To illustrate some of the issues we aim to address, let
us first consider a scenario where a H(uman) presents the
R(obot) an object in an “empty” verbal and visual context,
i.e., this is the first object presented, there are no other objects
in the scene (e.g., an empty table top) and nothing has been
said so far. R recognizes the shape and color of the object
with some degrees of certainty. To verify its perception, R
can produce a verification request, giving H the opportunity
to accept, reject or correct all or parts of R’s hypothesis:

(3) Is it a red box?

Next, let us assume that R is certain above some threshold
ε that the object is a box, but not certain enough that it is
red. Instead of the more neutral verification request above, R
can, for example, provide the following grounding feedback:

(4) It is a box. Is it red?



The first utterance provides an acknowledgment concern-
ing the more certain recognized property, for the sake of
transparency.12 The second utterance verifies the less certain
recognized property. Interestingly, this two-fold feedback can
also be combined into one utterance:

(5) Is it a RED box?

Intonation plays an important role here: Intuitively, and
in line with the existing work on intonation and information
structure, accentuation can mark the part(s) of the utterance
with the highest need for verification, whereas that assumed
to have been correctly recognized, and thus part of the
common ground between R and H, can remain unaccented.
Conversely, if color is assumed correctly recognized, but
shape is uncertain, R can utter the following verification
request.

(6) Is it a red BOX?

The intonation countour in (6) will, however, be practically
hardly distinguishable from the case where both color and
shape are presented for verification:

(7) Is it a RED BOX?

This compact manner of formulating R’s feedback, com-
bining acknowledgment and clarification request in one
utterance, is reminiscent of the implicit feedback strategy
often used in dialogue systems, e.g., [Aust et al., 1995],
[Larsson, 2002] where parameters extracted from user’s in-
put recognized with high confidence are incorporated into
the next system prompt, e.g., “When do you want to travel
to Paris?” incorporates the recognized destination city into
the next prompt asking for the date of travel.

When the verbal and/or visual context is not empty,
additional factors influencing accent placement become
relevant. Previous research has addressed the contextual
factors influencing accent placement. For example, it is
widely accepted that in statements accent is assigned
to those words that distinguish a referent from relevant
alternatives available in the context [Steedman, 2000b],
[Steedman and Kruijff-Korbayová, 2003]. This role
of accent placement is present in questions, too
[Lambrecht and Michaelis, 1998], [Engdahl, 2006], and
similar principles hold. The second confirmation request
by R in the following example illustrates accent placement
w.r.t. previously mentioned objects:

(8) (H presents a red cone)
R: Is it a red CONE?
H: Yes, that’s right.
(H presents a blue pyramid)
R: Is it a BLUE cone?
H: No, it’s a blue pyramid.

1R can of course misrecognize objects and/or their properties, as well as
be wrong in assessing its (un)certainty. That is why grounding feedback is
essential.

2R may make a short pause after the first utterance, to give H the
opportunity for positive or negative feedback. If H gives positive or no
feedback, R goes on.

The use of contextually inappropriate intonation in situ-
ated dialogue might lead to ambiguities and/or mislead the
dialogue participants to maintain incongruous belief states.
Such situations would undermine the very purpose of spo-
ken dialogue. To avoid such miscommunication, a situated
dialogue system needs to use contextual information in the
utterance content planning and determination of intonation
contour during surface realization. This in turns requires the
system to incorporate mechanism to capture, represent and
maintain contextual details.

This paper is organized as follows. In Section II we
overview the most relevant previous work on clarification
in dialogue, and on using information structure to control
intonation of system output. In Section III we discuss the
contextual factors that we take into account when for-
mulating grounding feedback. In Section IV we describe
our approach to partitioning utterances according to their
information structure, and the effect this has on intonation.
The implementation of our approach is presented in Section
V. In VI we sketch the experimental setup in which we will
obtain empirical verification of our approach. In Section VII
we conclude.

II. BACKGROUND

[Purver et al., 2003] investigated the nature of clarifica-
tions in human dialogue, using the BNC dialogue corpus.
They chart out the range of possible forms of clarification
requests (CR), together with the range of readings they
can convey. Their analysis reveals the frequency of vari-
ous CR forms, with reprise (50%), non-reprise (12%) and
conventional types (30%) of all. Moreover, 60% of these
reprise CRs were of reprise fragment type i.e. elliptical
literal reprise [Ginzburg and Sag, 2000] of a fragment of the
lead-in utterance. From our experience with conversational
robots, we come to an observation that similar CR forms
can be employed in a human-robot conversation. However,
since we aim to build autonomous conversational robots that
can self-initiate a clarification dialogue, we do not always
have a preceding utterance that is being clarified (as is the
case in the BNC), and from which the clarification form can
be derived. Under such circumstances we need alternative
approaches to formulate the CRs in our system.

Since intonation of CRs is our main focus, we fol-
low Steedman’s theory of information structure (IS)
[Steedman, 2000a]. In Steedman’s view, the IS of an ut-
terance is composed of two parts. One of these parts links
the utterance to the current discourse context (the theme),
and the other part contributes information (the rheme). As
an illustration, refer to the bracketing in (1b) and (2b)
which indicates the theme-rheme segmentation in view of
the respective questions. However, like most of the ex-
isting work on IS, Steedman’s theory makes predictions
about the intonation of statements. Some preliminary hy-
potheses concerning the IS in questions are formulated
in [Prevost and Steedman, 1994a], but these only concern
information-seeking wh-questions.



Among the existing investigations into the IS of questions,
[Lambrecht and Michaelis, 1998] have discussed in detail
accent placement in information questions. Their discussion
addresses predominantly questions requesting information,
but they also mention some examples of CRs, also including
echo questions (also called reprise-questions in the literature,
[Bolinger, 1989], [Engdahl, 2006]). [Engdahl, 2006] in her
work on information packaging in questions highlights the
role of question under discussion (QUD) [Ginzburg, 1996]
in providing the right locus to account for focus-ground
articulation of utterances. When a speaker produces an utter-
ance with a particular information packiging, this provides
information about their information state, what s/he knows
and what s/he wants to achieve at this point.

With regard to practical applications, early work on con-
trolling the intonation of synthesized speech w.r.t. context
concerned mainly accenting open-class items on first men-
tion, and deaccenting previously mentioned or otherwise
“given” items [Hirschberg, 1993], [Monaghan, 1994]. But
such algorithms based on givenness fail to account for cer-
tain accentuation patterns, such as marking explicit contrast
among salient items. Givenness alone also does not seem
sufficient to motivate accent type variation.

In [Prevost, 1996] contrastive accent patterns and some
accent type variation are modeled using Steedman’s approach
to IS in English. In one application he handles question-
answer pairs where the question intonation analysis in IS
terms is used to motivate the IS of the corresponding answer,
realized through intonation. Another application concerns in-
tonation in generation of short descriptions of objects, where
Theme/Rheme partitioning is motivated on text progression
grounds, and Background/Focus partitioning distinguishes
between alternatives in context.

In [Kruijff-Korbayová et al., 2003] and
[Baker et al., 2004], a similar IS-based approach is
applied to assign contextually appropriate intonation to the
output of an actual end-to-end dialogue system (German
and English, respectively). The reported evaluation results
show that this leads to qualitative improvements.

The intonation of questions, and CRs in particular, has so
far been largely neglected in dialogue systems. The prac-
tical applications mentioned above all concentrated on the
assignment of intonation in statements. However, a series of
production and perception experiments around the HIGGINS
dialogue system [Edlund et al., 2004], shows that fragmen-
tary grounding utterances in Swedish differ in prosodic fea-
tures depending on their meaning (acknowledgment vs. clar-
ification of understanding or perception), and that subjects
differentiate between the meanings accordingly, and respond
differently [Edlund et al., 2005], [Skanze et al., 2006].

In a study of a corpus of German task-oriented human-
human dialog, [Rodrı́guez and Schlangen, 2004] also found
that the use of intonation seemed to disambiguate clarifi-
cation types, with rising boundary tones used more often to
clarify acoustic problems than to clarify reference resolution.

Our work extends the use of information structure to con-
trol the intonation of dialogue system output beyond answers

to information-seeking questions: we include acknowledg-
ments as well as clarification requests, and ultimately other
types of questions. We include both fragmentary grounding
feedback and full utterances, and address varying placement
of pitch accents depending on context and communicative
intention.

III. FACTORS IN CR FORMULATION

We now discuss a range of contextual factors that we
take into account as shaping the content and surface form of
grounding feedback in our system. Currently we concentrate
on feedback that grounds entities and their properties; we
leave grounding of actions for future work. That is, a
feedback utterance concerns a referent (currently just a single
one) and is clarifying some of its properties.

a) Competing referents in verbal and visual context:
We distinguish situations where the context prior to the CR
utterance is empty or non-empty. Empty preceding verbal
context means that no entities have been mentioned prior
to the CR utterance. Empty preceding visual context means
that no entities have been made visually available. In the
first scenario described in the introduction (example (3),
when the first object is placed onto an empty tabletop and
nothing has been said yet, the verbal context is empty and
the visual context contains only the one object, the referent
that the CR addresses. We conjectured that in this situation,
the speaker is quite free in formulating their utterance to
reflect their assumptions about the common ground and
their communicative goal(s), e.g., signaling by intonation
what they consider most important about the referent, as in
example (5). As soon as either verbal or visual context is
non-empty, the speaker needs to take into account similar
entities available in the context, and properly distinguish the
intended referent from them, as in example (8). It is well
known that salience plays an important role in this case.

b) Salience: In this paper we have been explicitly
focusing on a scenario where a H(uman) places and object
on a tabletop in front of the R(obot). This makes this
object inherently salient. We conjecture that even if the
visual and/or verbal context is non-empty, the just placed
object is the most salient one, and thus allows deictic
reference (e.g., “it”, “this”, “that”, “the/this box”). For other
cases we will employ existing algorithms for generation of
referring expressions, particularly ones that take verbal and
visual salience into account [Krahmer and Theune, 2002],
[Kelleher and Kruijff, 2006], [Zender et al., 2009].

c) Source of problem: Existing work on CRs has inves-
tigated the relationship between the form of a CR and the
source of trouble that trigers it, inspired by the action lad-
der [Clark, 1996]. Thus, [Rodrı́guez and Schlangen, 2004]
distinguish between problems in channel, acoustic or lex-
ical recognition, parsing, reference resolution and intention
recognition. [Rieser and Moore, 2005] extend this repertoire
with ambiguity refinement and belief confirmation. This
work has addressed CRs with verbal antecedents, that is,
CRs addressing problems in natural language understand-
ing (typically speech). In our system, visual recognition



constitutes an additional potential problem source. In this
paper, it is the latter that we concentrate on. As part
of the CogX project [Kruijff and Janı́ček, 2009] formulate
an abduction-based approach to planning CRs following
[Stone and Thomason, 2002], [Stone and Thomason, 2003],
[Thomason et al., pear] and extending this approach to in-
clude misunderstanding or lack of understanding relative to
a situated context.

d) Multiple communicative goals: As we have pointed
out in the introduction, when there are multiple communica-
tive goals pertaining to one referent, we consider ways of
formulating an utterance that satisfies these goals simultane-
ously. Example (5) illustrated a case of acknowledging the
type of the referent and verifying its color in one utterance.

e) Clarification issue: While the range of issues under
clarification is potentially very broad, we currently focus just
on CRs pertaining to either the type or visually recognizable
attributes of a referent. That is, for example, whether the
referent is a box (or a ball, etc.) and/or what is its color,
shape, size and potentially also location w.r.t. other objects.

f) Clarification hypothesis: The system either recog-
nizes the type or attribute(s) of an object with some degree of
certainty, or it is at a loss. When it has multiple hypotheses,
they may be competing (i.e., comparably good) or there may
be a single best one. Correspondingly, the system is then able
to formulate CRs with increasing degree of specificity:

(9) What is it? (no hypothesis)
What COLOR does it have?

(10) Is it a CONE or a PYRAMID? (competing hyp.)
Is it RED or BROWN?

(11) Is it a CONE? (single hypothesis)
Is the box RED?

g) Conflicting expectations: In the examples we dis-
cussed so far, the system was recognizing objects “out of
the blue”, that is, it had no expectations or information from
other sources about the object’s properties. But we also want
to consider situations when a CR arises because recognition
results could not be integrated with R’s beliefs for some
reason. This arises for example when visual recognition and
linguistic interpretation give conflicting results:

(12) H: (shows a red box) This box is red.
R: (does not recognize the color as red)
WHAT color is the box?

Alternatively, the wh-phrase can be left in situ, realized
with noticeable rising intonation [Engdahl, 2006]:

(13) The box has WHAT color?

The placement of the pitch accent on the wh-word is
appropriate in a context where some specific value has just
been mentioned. Bolinger coined the term reprise questions
for questions that ‘replay’ a (part of a) previous utterance
[Bolinger, 1989], [Engdahl, 2006]. But this intonation pat-
tern seems suitable in a range of situations when the recog-
nition results are incompatible with contextually established

expectations, and it is not straightforward to see the CR as
a reprise of a previous move:3

(14) H: I will now show you some red objects.
R: Okay!
H: (shows a red ball)
R: (recognizes a red ball) A red ball.
H: (shows a red box)
R: (recognizes a box of a different color)
WHAT color is the box?

In both these examples, the intonation indicates that R has
trouble matching the recognized color to the expected color.
This is different from not being able to recognize the color
at all, as in example (9). In both (12) and (14), R could
alternatively formulate the CRs as a fragment:

(15) Red?
Is it red?
A RED box?

Moreover, if R is quite sure that the object has another
color, it could also say:

(16) Is the box not BLUE?
Isn’t the box blue?

(17) Is the box BLUE?

While R’s responses in (14) and (15) only indicate
unvillingness to accept that the color of the object is red,
(16) in addition proposes what R thinks is the correct color.
We conjecture that the decision to take initiative and make an
alternative proposal depends on the presence of a hypothesis
(in this case: color) of which R is certain above some
threshhold.

h) Re-raising an issue: When R poses a question but
does not get a response that it can interpret as an answer, it
needs to reiterate its question. We need to keep track of this
in order to ensure that reiteration is not a repetition. Besides
an altogether different formulation of the question, what par-
ticularly interests us is the intonation of a repeated request.
There is the option of using the same intonation pattern,
but more pronounced accentuation in this case, e.g., a pitch
accent with higher intensity. Another possibility suggested
in [Engdahl, 2006] is using a different intonation pattern,
particularly, different placement of the nuclear accent.

(18) What COLOR is the box?
(19) WHAT color the box?

Engdahl suggests that by accenting an initial wh-word
in an information question the speaker may signal that
“the issue she is introducing is one that has already
been raised in the converstion but not been resolved”
[Engdahl, 2006][p.101].

3We believe that the expectation could also arise by inference generalizing
from previous actions, thus not on the basis of any verbal clue. For example,
if R is shown one red object after another, it may form the expectation
that more red objects will follow. When an object arives that R does not
recognize as red, we believe it can also pose the CR as in (12) or (13).



i) Authority/responsibility for an issue: On the ba-
sis of corpus-based experiments in Swedish reported in
[Gustafson-Čapkpová, 2005], [Engdahl, 2006] points out
that, contrary to common claims in the literature about
declarative questions, declarative utterances are often inter-
preted as questions even without any formal signal, such as
a rising prosodic gesture. She summarizes that statements
about the addressee are commonly understood as requests
for confirmation (checks). We would like to take this further
and claim that what really is at stake here is who has the
responsibility to resolve an issue: if it is the speaker, a
formally declarative utterance is interpreted as a statement,
whereas if it is the hearer, it can be interpreted as a request
for confirmation.

The relevance of speaker’s vs. hearer’s responsibility is
also suggested in [Steedman, 2000a] when comparing differ-
ent theme- and rheme-tunes. In the future we would like to
investigate whether these two lines of thought can be brought
together.

The contextual factors listed above influence the formu-
lation of CRs in various ways, and therefore need to be
available to the utterance planner. We are still in the process
of finding out what and how to encode explicitly in the input
representations (cf. Section V). We recognize that there are
interactions and interdependencies between the factors, and
it is part of our ongoing and future work to pin at least some
of these down.

IV. INTONATION IN CRS

Intonation has several aspects. According to the au-
tosegmental phonology approach [Pierrehumbert, 1980],
[Ladd, 1996], the intonation contour of an utterance consists
of intonation phrases, and these are described in terms of
accents and boundary tones of various types. The literature
is rife with discussions of the meanings of various intonation
contours of statements, including dicussions of the meaning
differences ascribed to different accent types and their place-
ment on different words within an utterance. However, much
less is available concerning the intonation of questions. Most
work addresses boundary tones, but very little research has
addressed accent types and placement in questions.

Grounding feedback of course involves both statements,
such as acknowledgments, and various types of clarification
requests which can be broadly characterized as questions,
even though they are not always realized by full sentences,
and when they are, they may have interrogative or declarative
syntax.

We take Steedman’s approach to intonation in English
[Steedman, 2000a], [Steedman, 2000b] as a starting point,
because it is an approach that (i) tightly couples intonation
with grammatical structure; (ii) associates intonation with
discourse meaning in terms of information structure; (iii)
provides a compositional semantics of English intonation
in information-structural terms; (iv) assumes a general IS-
sensitive notion of discourse context update; (v) has proved
its worth in previous practical applications to control intona-
tion assignment w.r.t. context.

Steedman concentrates on certain aspects of intonation
that primarily have to do with information structure, as a
partitioning of utterance meaning reflecting its relation to the
context. He recognizes two independent dimensions of IS:
The Theme-Rheme partitioning reflects a notion of aboutness:
the theme maintains a link to the discourse context, i.e., to
what has been previously mentioned or can be considered
as already established, and the rheme contributes some
information about the theme. The second partitioning is into
Background and Focus, where focus reflects where a theme
or a rheme differs from alternatives in the context. The
relation between intonation and IS is, in a nutshell, that (i)
themes and rhemes constitute intonation phrases; (ii) main
pitch accents are assigned to words realizing the focus within
a theme or a rheme; (ii) the type of accent depends on
whether the focus is within a theme or a rheme. Regarding
boundary tones, Steedman argues that a falling boundary tone
signals the speaker’s responsibility for (ownership of) the
corresponding information unit, whereas a rising boundary
tone signals the hearer’s responsibility/ownership.

The combination of accents and boundary tones gives rise
to theme-tunes and rheme-tunes. As an illustration, observe
the intonation contour of the utterances in (1b) and (2b). The
rhemes exhibit the H* L(L%) tune, where the L(L%) tone
marks the intonational phrase boundary. The themes exhibit
the L+H* L(H%) tune.

A. Intonation in statements
Similarly to the earlier work cited in Sec. II, we can

straightforwardly apply Steedman’s approach to the assign-
ment of intonation in acknowledgments, which are state-
ments of what the robot has perceived or understood with
sufficient certainty. Consider the following example, assum-
ing an empty verbal and visual initial context:

(20) a. H places a red box

b. R recognizes a red box with sufficient certainty

c. R: (It is)T (a RED BOX)R
H* H* LL%

d. H places a blue box

e. R recognizes a blue box with sufficient certainty

f. R: (THIS)T (is a BLUE box)R
LH* LH% H* LL%

The theme-rheme partitioning of (20c) can be derived
by assuming that upon presentation of a new object, the
issue of what type and properties hold of this object is a
relevant theme to address. This theme can alternatively be left
out from the explicit realization, producing the fragmentary
acknowledgment “A RED BOX”. The rheme contains two new
pieces of information (namely, the type of the object and its
color), which can both be assigned focus, and thus accent.
Given accent-projection rules of English, the overt accent on
the adjective is optional in this case.

When the interaction continues in (20cd), the context is no
longer empty. While the theme-rheme partitioning of the next



robot’s response could be parallel to that of (20c), resulting
in “It is a BLUE box”, (20f) shows a more fancy alternative.
Its theme is construed as contrastive, indicating that the new
object is different from another object available in the context
(namely, the red box). About this theme it is then asserted
that it is of type box and is blue. Within this rheme, it is
the color property that distinguishes the current object from
the previous one, and therefore is assigned focus, and thus
becomes accented.

An open issue in this area is, how to assign focus when the
verbal and visual context differ, i.e., not all visually available
objects have been verbally mentioned or some verbally
introduced referents are not available visually. Do referents
recently mentioned verbally or those available visually have
a higher priority as contextual alternatives for the purpose
of contrast? Or are they all equal? This is a question of
deciding between or combining visual and verbal salience,
which requires further research.

B. Intonation in questions

We think of questions as including (at least) information
requests (IRs) and clarification requests (CRs) requesting
additional information or verification from the hearer.4 Syn-
tactically, these may be interrogative or declarative sentences
or non-sentential fragments. The interrogative sentences may
be wh-questions or yes/no-questions.

Our notion of CRs is broad, and potentially hard to
delineate from that of IRs because it includes not only
requests for verification of a previous verbal utterance (also
called checks or check questions in the literature), but also
requests for verification of uncertain or missing information
about the visual scene or of the robot’s inferences, which
may or may not have a verbal antecedent.

Few authors have discussed accent placement in questions
and the associated discourse meaning(s).5 We draw on the
approach [Lambrecht and Michaelis, 1998], who studied the
formal and pragmatic principles that govern the placement
of sentence accent in English information questions (IQs).
While they do not define what they mean by IQs, their
discussion addresses wh-questions used as IRs and, in a few
cases, as CRs (request to repeat, i.e., an echo question, or
request to identify/clarify a referent).

[Lambrecht and Michaelis, 1998] propose that in IQs the
sentence accent does not fall on the focus, i.e., the wh-
word (though sometimes it can). Instead they argue that
“the sentence accent in IQs represents an independently
motivated type: the topic-establishing or -ratifying accents
observed in declarative contexts to co-occur with focus
accent” [p. 539]. They propose a set of general principles
for accent placement. Their analysis of IQs relies on Lam-
brecht’s theory of information structure, and in particular
his distinction between knowledge presupposition (KP) and
topicality presupposition (TP) [Lambrecht, 1994]. The KP
of an IQ is an open proposition, which may or may not

4At the moment we do not cosider rhetorical questions.
5See [Lambrecht and Michaelis, 1998] for an overview.

correspond to an established topic. Essentially, accents mark
those parts of the KP that are not included in a TP, i.e., not
ratified as topics in the discourse. The following example
from [Lambrecht and Michaelis, 1998][ex. (41a), p. 525ff]
illustrates their analysis:

(21) What cities did you VISIT?

Contexts:

i. I heard you went to France and visited various
cities.

ii. I heard you avoided Paris on your trip to France.

Presuppositions:

KP: You visited x cities (in France)
TP: in context (i): ‘you’ and ‘cities’ are ratified topics

in context (ii): ‘you did something with respect
to cities (in France)’ is ratified

Assertion: x=what?

Focus : what

The accent falls on ‘visit’ by default, because the other
parts of the KP, ‘you’ and ‘cities’, are ratified topics in both
contexts, and therefore unaccentable. In context (i), the ‘you
visited some cities’ is activated, but not (considered by the
speaker) ratified as a TP. In context (ii), ‘you visited some
cities’ is construed (by the speaker) as contrasting with an
alternative proposition activated in the context, namely ‘you
avoided some city’.

We think that there is another possibility, although
[Lambrecht and Michaelis, 1998] do not discuss it: namely,
that the context in (i) also allows the speaker to consider
‘you visited some cities’ as a ratified topic, in which case
their rules would license accent placement on “what”, since
“the propositional function in the KP is an already ratified
topic” [p. 535], i.e., the KP and the TP coincide:

(22) WHAT cities did you visit?
TP: ‘you visited some cities’ is a ratified topic

This is a CR to clarify, further identify a referent. An-
other case of accenting the wh-word is for metalinguistic
reasons, in echo questions [Lambrecht and Michaelis, 1998],
[Bolinger, 1989].

(23) A: I went to France and visited 〈inaudible〉
B: WHAT did you visit?

Presuppositions

KP: You visited x (in France)
TP: ‘you visited x’ is a ratified topic

Applied to our scenario, the approach of
[Lambrecht and Michaelis, 1998] seems to make the
following predictions:

(24) Context: empty initial verbal or visual context;
H places a red box;
R recognizes obj1 to be a box with sufficient cer-
tainty, but does not recognize its color



Acceptable presuppositions:
KP: obj1 is a box and has color x
TP: obj1 is a ratified topic (by virtue of having

been ostentatively placed in front of R);
‘obj1 has some property’ is a ratified topic
(objects have properties and the ascription
of properties to objects is something R
does/learns)

Assertion: x=what?
Focus : what
Possible realization:
What COLOR does it have?

The accent lands on “color” because the color property
is one of possible object properties. Referring to obj1 by a
pronoun is justified because it is a ratified topic. In order
to produce a reference by a full NP “the box”, we need to
appeal to the fact that although obj1 is ratified as topic, it
has not yet been grounded among the interlocutors that it is
a box.

The following example shows a realization that (we be-
lieve) is infelicitous in the above context:

(25) WHAT color does it have?
KP: obj1 has x color
TP: ‘obj1 has x color’ is ratified topic

If the given TP holds, then the accent will end up on
“what” as the only possibility, because the KP and the TP
coincide. It is hard to justify why this TP should be blocked.
All physical objects have at least one color, after all, and
recognizing and learning objects’ colors is one of the things
that R does.

We believe that [Engdahl, 2006] helps us to resolve this
apparent puzzle. She points out that although sentence-
initial wh-phrases are normally not accented in English, it
is possible to accent them in certain uses, specifically, when
the speaker is introducing an issue that has already been
raised in the conversation but not been resolved. The accent
on “what” is thus blocked in (25), since the issue of the color
of obj1 has not been previously raised. Note that in (22), the
issue ‘you visited some cities’ has been raised in the context.
An issue can be raised explicitly in a preceding utterance
but also more indirectly. [Engdahl, 2006] formulates her
interpretive account of accent placement on the wh-word
or elsewhere in a an IQ, and the placement of the wh-
phrase in-situ or sentence initially in terms of question under
discussion (cf. also [Ginzburg, 1995a], [Ginzburg, 1995b],
[Roberts, 1996]). Topic ratification following Lambrecht,
theme- and rheme-alternative presupposition resolution fol-
lowing Steedman, or question under discussion accommoda-
tion following Engdahl are tightly related, and more research
is needed to operationalize them.

Lambrecht’s notion of topic and Steedman’s notion of
Theme are largerly compatible (at least for our practical
purposes). Our approach is, therefore, to integrate these two
approaches to IS in IQs.

In an early paper on IS partitioning,
[Prevost and Steedman, 1994b] suggest that wh-questions
of the form illustrated in (26) consist of a theme and a
rheme, as follows:

(26) I know what the CAT scan is for, but
(WHICH condition)T (does URINALYSIS address)R?

LH* LH% H* LL%

The Rheme of the question sets the theme of the corre-
sponding answer:

(27) (URINALYSIS addresses)T (HEMATURIA)R.
LH* LH% H* LL%

All the questions used in [Prevost and Steedman, 1994b]
have two accents of different types. This is indeed an
indication of two information units, a theme and a rheme.
It is not entirely clear how to analyze questions with just
one accent in Steedman’s approach. One possibility is that
they contain a theme-rheme partitioning, but the theme is
prosodically unmarked, because either the theme does not
contain a focus, or the focus is not assigned an accent (since
accenting theme-focus is optional in the presence of a rheme
focus). Another possibility is that such questions constitute
just one information unit, either a theme or a rheme – as
should be reflected in the type of accent (if Steedman is right
about the correspondence between accent type and theme- vs.
rheme-focus in English).

[Lambrecht and Michaelis, 1998][p. 531] note that the
open proposition presupposed by an IQ (i.e., the KP) consti-
tutes a topic-comment structure, too. Unlike in statements,
where the comment is asserted, in IQs it is itself presupposed.
In their example (41a) reproduced above as (21), ‘cities’ is
said to constitue a topic and ‘did you visit’ a comment.

For the time being, we are not excluding any of the three
possibilities for theme-rheme partitioning in IQs. Which one
obtains in a specific case should depend on the context and
the communicative goal of the speaker. The context may
constrain, but sometimes does not fully determine the IS of
an utterance. This holds of questions as well as statements.
The speaker has considerable (but not unlimited) freedom in
articulating their utterances.

In order to also deal with polar questions (PQs), we
our approach combining [Lambrecht and Michaelis, 1998]
and [Steedman, 2000a] to them. Thus, a PQ involves a KP
concerning the validity of the proposition in question. The
proposition itself can be viewed as having an IS partitioning
like the corresponding statement would have. Again, it is
conceivable that we will find PQs with the full theme-
rheme partitioning, as well as ones that only constitute one
information unit, a theme or a rheme.

V. IMPLEMENTATION

The production of verbal CRs in the CogX system con-
sists of the following phases: communicative goal planning,
utterance planning, surface realization and speech synthesis.
Communicative goal planning is described in more detail
in [Kruijff and Janı́ček, 2009]. Below we give more details



about the remaining phases. The utterance planner takes an
abstract logical description of a communicative goal as input,
and produces one or more logical forms that represent how
that goal can be expressed in a contextually appropriate
way. The logical forms are then realized into utterances
using the OpenCCG realizer [White and Baldridge, 2003],
[White, 2006].

To represent communicative intentions, and the corre-
sponding utterance meanings at all levels of processing, we
use ontologically rich, relational structures [Kruijff, 2005]
based on the Hybrid Logic Dependency Semantics
(HLDS)[Kruijff, 2001], [Baldridge and Kruijff, 2003].

A. Utterance planning for CRs

Our implementation of utterance planning for CRs
is an extension to [Kruijff, 2005]. We specify the
planning grammar as systemic networks [Kruijff, 2005],
[Mathiessen, 1983], [Bateman, 1997]. These systems take
an abstract logical form as input, and enrich them with
specifications of the desired linguistic realization, that take
available context information into account. There is, of
course, a tight relationship between the choices made by the
utterance planner and the realization options available in the
grammar of the realizer.

Let us illustrate the abstract logical forms used in our
system. Since this work is under development, these forms
are still subject to modification.

(28) @d1:dvp(c-goal
∧ 〈SpeechAct〉question
∧ 〈Relation〉clarify
∧ 〈Content〉(e1 : ascription

∧ 〈Target〉(b1 : entity

∧ 〈Salient〉true)
∧ 〈Property〉(b2 : entity ∧ box

∧ 〈Color〉(b3 : quality ∧ red ∧
〈Known〉uncertain)))

∧ 〈Context〉empty)

The relational structure in (28) uses standard operators to
model relations between features in HLDS [Kruijff, 2001],
[Baldridge and Kruijff, 2003]. @n〈R〉m implies that there
is a relation R between nominals n and m. A nominal is
a formula, which is interpreted as a unique reference to a
state in the underlying model theory of the logic. Moreover,
nominals can be sorted, to indicate the ontological category
of the proposition that holds at the state referred to by the
nominal. A detailed explanation of the HLDS structures is
available in [Kruijff, 2005]. Below we briefly elucidate those
aspects that are relevant to the current discussion, i.e., how
does this form capture the system’s intention to raise a CR,
and the necessary contextual details.

This structure specifies: the intention of a communicative
act, SpeechAct; its relation to the context, Relation;
the content, Content, which consist of a predicate and its
arguments to be communicated; and a relevant portion of the
current discourse context, Context.

We use a shallow classification of speech acts following
[Searle, 1975], and incorporating basic insights from the
DAMSL [Core and Allen, 1997] classification of forward-
looking functions. Currently, we distinguish assertions, ques-
tions, directives and greetings. Grounding feedback utter-
ances are either assertions (in the case of acknowledgements)
or questions (in the case of CRs). The backward-looking
function of a communicative act is captured as its relation to
the context. CUrrently we distinguish between accept, reject,
clarify and answer.

The nominal e1 of sort ascribe in Content feature
influences the type of main verb in its predicate part of the
utterance, and thus its overall structure. In this case it also
means that a full sentence will be produced. The relations
embedded within the main predicate depend on its type. In
the current example, the relational feature Target repre-
sents an object referred to, to which a property represented
under the Property relation is being ascribed.

Under Context, we currently can include a list of active
referents in the verbal and/or situational context, with their
relevant properties. (See example (29) below.)

The utterance planner algorithm processes the Content-
part of the input representation and applies systems of the
systemic network to its nominal to enrich this structure
with additional syntactic and semantic features relevant for
realization. Let us have a brief look at this process.

A systemic network is a collection of systems. Each
system has an entry condition checks the presence of specific
nominal and/or specific feature values in the input logical
form. On having met its entry condition, the chooser associ-
ated with the system applies. A chooser is basically a n-ary
decision tree. Each node in the tree has a condition, which
leads to nodes further down the tree. The leaf nodes in such
a tree represent action(s). These actions include adding new
relations, features and propositons in the current logical from.
As a consequence the abstract logical forms is enriched with
additional features. Moreover, these enriched forms can then
also become input to another system, and so on.

For example, the presence of the 〈SpeechAct〉question
feature triggers a system responsible for tense, aspect
and mood, which can add the attribute 〈Mood〉int
(int:interrogative), if the decision is to produce an interrog-
ative question (rather than a declarative one). This choice
guides the realizer further to decide between a wh-question
and a polar one, and to insert the appropriate structure
bits. Moreover, since we want to produce spoken output,
and we want to control its intonation, we have a system
that assigns the type of final boundary tone, in this case,
〈UtFinalBT 〉rising.

Next, the presence of a nominal e1 of sort ascription
invokes a system, which adds an intransitive verb be as the
main verb. The presence of this intransitive verb triggers an-
other system to look for its arguments, in this case the scope
and restrictor. The arguments of the ascription predicate are
represented in the logical from under the relational feature
〈Target〉 and 〈Property〉.

For a nominal referring to an entity, further systems



are invoked, which first of all decide whether to use a
pronominal or full NP reference. In our example, a pro-
noun will be used for the entity b1 in the 〈Target〉,
because the entity is salient. A full NP will be used for
〈Property〉. For this, further systems include additional
details such as, 〈Num〉sg, 〈Quantification〉specific, and
〈Delimitation〉existential. Finally, the feature 〈color〉 will
trigger systems for adding a modifier to the noun.

The structural decisions discussed so far amount to a plan
to realize the question it it a red box.

Now let us describe how we plan the information-structure
of an utterance. In the implementation developed so far, we
work without the theme/rheme distinction and consider the
utterances all rheme, for the time being. Fous is assigned
either based on contrast w.r.t. alternatives in the context,
or, in the absence of alternatives to contrast, to the most
informationally prominent part of the utterance. In the latter
case, as we suggested earlier, focus can for example be
assigned to indicate an uncertain property value. That is what
we do in the current example. For the sake of comparison,
let us consider another version, where the context is not
empty, i.e., the 〈Context〉 feature contains a list of relevant
alternatives/competitors:

(28′) ∧ 〈Context〉empty)(b4 : de − list

∧ 〈First〉(b5 : entity ∧ box

∧ 〈Color〉(b6 : quality ∧ black))

∧ 〈Next〉(b7 : entity ∧ box ∧
〈Size〉(b6 : quality ∧ small))

Given that both these other entities are boxes, we assign
focus to the color attribute of b2. In this particular case the
result is the same as it was without the contextt, but that is
of course a coincidence.

At the end of the utterance planning process, the final
logical form specifying the content of the utterance, enriched
with a range of features relevant for a contextually appropri-
ate form of realization has the following shape:6

(29) <Content>(e1:ascription
ˆ be ˆ <Tense>pres
ˆ <Mood>int ˆ <UtFinalBT>rising ˆ
<Cop-Restr>(b1:entity ˆ context
ˆ <Delimitation>unique ˆ <Num>sg
ˆ <Quantification>specific) ˆ

<Cop-Scope>(b2:entity ˆ box
ˆ <Num>sg
ˆ <Quantification>specific
ˆ <Delimitation>existential
ˆ <Modifier>(b3:quality ˆ red
ˆ <Focus>true)) ˆ

<Subject>(b1:entity)
)

For comparison, let us consider an alternative example, in
which a CR request is produced against a context containing

6The utterance planning process is monotonic, but relations and features
that the realizer does not use are pruned in a final “clean-up” step.

red competitors which are not boxes. We have the following
input representation:

(30) @d1:dvp(c-goal
∧ 〈SpeechAct〉question
∧ 〈Relation〉clarify
∧ 〈Content〉(e1 : ascription

∧ 〈Target〉(b1 : entity

∧ 〈Salient〉true)
∧ 〈Property〉(b2 : entity ∧ box

∧ 〈Color〉(b3 : quality ∧ red ∧
〈Known〉uncertain)))

∧ 〈Context〉(b4 : de − list

∧ 〈First〉(b5 : entity ∧ ball

∧ 〈Color〉(b6 : quality ∧ red))

∧ 〈Next〉(b7 : entity ∧ cone

∧ 〈Size〉(b6 : quality ∧ red))))

The systemic networks will then accordingly place the
focus on the type of the entity in the ascription predicate,
namely ‘box’. Furthermore, let us assume that this time
round the utterance planner decided to produce a demon-
strative pronoun in the subject, reflected by the feature
〈proximity〉proximal, and a declarative CR: this changes
the mood, while the boundary tone will still be rising. Here
is the corresponding logical form:
(31) <Content>(e1:ascription

ˆ be ˆ <Tense>pres
ˆ <Mood>decl ˆ <UtFinalBT>rising ˆ
<Cop-Restr>(b1:entity ˆ context
ˆ <Proximity>proximal
ˆ <Delimitation>unique ˆ <Num>sg
ˆ <Quantification>specific) ˆ

<Cop-Scope>(b2:entity ˆ box
ˆ <Focus>true ˆ <Num>sg
ˆ <Quantification>specific
ˆ <Delimitation>existential
ˆ <Modifier>(b3:quality ˆ red)) ˆ

<Subject>(b1:entity)
)

These logical form are then provided to the OpenCCG
realizer for realization.

B. CR realization
The realizer should produce a (ranked) set of possi-

ble utterances and a range of possible intonation contours
for each of them. We follow the approach advocated in
[Steedman, 2000a], [Steedman, 2000b] of specifying intona-
tion compositionally in the grammar. To integrate intonation
within our existing grammar, we employ the multi-level sign
approach of [Kruijff and Baldridge, 2004].

The intonation model we use originates with the model of
intonation in [Pierrehumbert, 1980]. The core components
of this model are pitch accents, phrasal tones and boundary
tones. Pierrehumbert identified the ways in which these
components can be combined to form the f0 contours.

Words in English language are associated with lexical
stress, which assigns one syllable greater prominence. How-
ever, it is the relative prominence of the words in an utterance



that determines its intonation contour. We refer to this type
of prominence as pitch accent. H* and L* are the most basic
pitch accents. While words bearing H* are realized as a tone
occurring high in speaker’s pitch range, L* is realized as
a low tone. There also exist bitonal pitch accents such as
L+H*, L*+H, H+L* and H*+L An occurrence of a phrasal
tone H and L after a succession of pitch accents delimits
a intermediate phrase. Phrasal tones thus control the pitch
accent between the most recent pitch accent tone and the
end of the phrase. Intermediate phrases (or a sequence of
these) can be followed by either of the boundary tones H%
and L%. Boundary tones thus form the intonational phrase,
and describe the general direction of rising or falling of the
f0 contours at the end of intonational contour.

To relate information structure to realization, we
adopt Steedman’s approach [Steedman, 1991] through
[Steedman, 2000a] and [Steedman, 2000b], where the in-
tonational realization of a rheme is with one of a set of
possible rheme-tunes, such as H* L(L%) , H* LL% ,
or H* LL$ (rheme-marking accents are: H*, L*, H*+L,
H+L*), and the theme comes with a theme-tune, such as
L+H* L(H%), L+H* LH% or L+H* LH$ (theme-marking
accents are: L+H*, L*+H). The ”%” is marks utterance-
medial boundaries, as for phrases set apart by commas, and
the ”$” for utterance-final boundaries.

The pitch accent, phrasal and boundary tones form the
basic lexemes of a prosody grammar. These basic com-
ponents combine to form intonational phrases. However,
this combination is not arbitrary. The combinatorics of a
prosody grammar can be summarized as follows (from
[Prevost and Steedman, 1994a]):

1) A boundary must combine with at least one pitch
accent to its left.

2) A boundary may not combine with another boundary.
3) Constituents which are prosodically unmarked may

freely combine with non-boundary constituents bearing
prosodic information.

4) Multiple pitch accents may occur in an intonational
phrase

5) A complete intonational phrase may combine only with
another complete intonational phrase.

6) A constituent of any length bearing no pitch accents
can promote itself to a full thematic intonational phrase
(Null Theme Promotion Rule)

To incorporate an intonation layer into our grammar, we
first add lexical families to indicate pitch accent tunes. For
the moment we start with the rheme accent H*:

# Lexicon/Categories for Pitch Accents
family Hs(indexRel="Rheme"){
entry: n<2> [X hs]\* n<2> [X acc] :

T:pa-unit(<Rheme>X);
}

This lexicon entry for the Hs (Hstar) family specifies that
it takes an accusative noun as argument and results in a
noun, which now has a rheme accent mark (hs). Since a
rheme accent can mark nouns, adjectives, predicates etc. they
are the argument and result of these functional categories.

If we want adjectives such as ‘red’ to be marked with
the rheme-accent, we need to add another entry in this
family that takes an adjective as an argument and results
in a rheme-accent bearing modifier. We extend the signs
with an additional syntactic feature pitacct to capture the
type of tune marking of a sign. This new syntactic feature
further constrains the combination of an unaccented word
with any boundary tone (rule 3). On the other hand, this entry
prevents two rheme accented nouns from combining. This
also implies that the grammar does not support intermediate
phrases. The grammar is therefore currently too constrained
to accommodate CRs having successive accents.

Pitch accent bearing terms can further combine with
boundary tones LL%, LH% and HH% on their left. How-
ever, not all of these pitch accent and boundary combinations
are allowed. One way to control this is to use a feature in a
sign to specify boundary tones that it can combine with. But
this will then lead to unnecessary combinations and even a
combinatoric explosion if the grammar is large. To avoid this,
we introduce boundary tones as separate lexical families.
Boundaries are thus defined as functional categories, which
take pitch accent bearing lexical items as argument, and
result in an intonational phrase. This way only pitch accent
bearing words are allowed to combine with a boundary tone,
as specified in rule (1). Following is an entry for a boundary
that marks an intonational phrase.

#Lexical/Categories for Boundary Tones
family LLp(indexRel="CompRheme"){
entry: np<>[X acc cp]\* np<> [X acc ip]:

T:b-unit(<CompRheme>X);
}

The feature ip indicates that only an intermediate phrase
can combine with a boundary tone LL%, to result in a com-
plete rheme phrase i.e an intonational phrase. Only complete
theme/rheme phrases are allowed to combine further and
result in larger intonational phrases, rule (5). As our current
focus is on rheme-only CRs, we haven’t incorporated this
rule into our grammar yet.

The prosody layer of the grammar is still under develop-
ment. What we are aiming for are the following realizations
including prosodic marking for the examples of logical forms
in (29) and (31):

(29′) is it a red Hs box HHp

(31′) is it a red box Hs HHp

The Hs indicates rheme-accent H* on the word to its left,
and HHp indicates the utterance final boundary HH%.

The final step in the production is speech synthe-
sis. We are using the MARY Text-To-Speech synthe-
sizer [Schröder and Trouvain, 2003]7. A post-processing
step converts the output of the CCG realizer to the MaryXML
format, in which a text is annotated with the type and location
(word) of pitch accents, and breaks (boundary tones).

VI. EXPERIMENTATION

Since we do not yet have a working integrated system with
the desired functionality, we opted to start by experimentally

7mary.dfki.de



bad 1 2 3 4 5 good
unintelligible 1 2 3 4 5 intelligible

artificial 1 2 3 4 5 lifelike
unnatural 1 2 3 4 5 natural
confusing 1 2 3 4 5 clear

inappropriate 1 2 3 4 5 appropriate

Fig. 1. Semantic differential scales for subjective quality judgments

verifying the crucial assumptions of our approach on a
component-basis first. To this end we are currently preparing
the first round of experiments addressing intonation assign-
ment in clarification requests. Of the many open issues
that call for experimental support, we take as a starting
point the question whether differences in the placement of
the main accent in confirmation requests are perceivable
in synthesized speech and whether visual context licenses
contrastive accent placement. The confirmation requests we
test have the form “Is it a red box?” for a range of different
colors and shapes, where either the noun or the adjective is
accented. We synthesize them using the Mary TTS system
[Schröder and Trouvain, 2003]8 . Subjects see a photo of a
hand placing an object onto a table top in front of a robot,
where the table top is either empty or contains a few other
objects chosen to make the accent placement either congruent
or discongruent with the visual scene. Subjects hear a robot’s
confirmation request and then a response by a human. These
examples illustrate the stimuli:

(32) (the table top already contains a blue box;
H is adding a red box)

a. R: Is it a RED box? Congruent, correct

b. R: Is it a red BOX? Discongruent, correct

H: Yes, that’s right.

For each such stimulus, we elicit subjective qualitative
judgments of the robot’s speech using the semantic differen-
tial scales shown in Fig. 1.

As the preparation of this first round of experiments is
ongoing, we do not yet have results to report.

VII. CONCLUSIONS

In this paper we discussed the importance of dialogue in
continuous learning for autonomous robots. We illustrated
how spoken dialogue helps to improve grounding in a
human-robot conversation. We described our approach to
producing grounding feedback with a range of context-
dependent forms and with context-dependent intonation. We
discussed, in particular, how we assign information structure
to utterances to reflect their relation to the context, and how
this then determines the intonation of the produced output.
We described our approach to implementation employing
systemic networks for utterance planning, and a CCG re-
alizer. We outlined how we are going about incorporating
a layer describing the intonation structure of English in our

8http://mary.dfki.de

existing grammar. We also sketched the setup of experiments
the we are preparing to test the validity of our approach to
producing contextually appropriate grounding feedback.

The utterance planner and the intonation layer of the
grammar are under development, and as we extend them,
we further operationalize the theoretical notions used in our
approach. Once we start running the experiments, we will be
able to work in cycles of specification-extension – empirical
validation – implementation – experimental-evaluation.
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[Steedman and Kruijff-Korbayová, 2003] Steedman, M. and Kruijff-
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Efficient Parsing of Spoken Inputs for Human-Robot Interaction

Pierre Lison and Geert-Jan M. Kruijff

Abstract— The use of deep parsers in spoken dialogue sys-
tems is usually subject to strong performance requirements.
This is particularly the case in human-robot interaction, where
the computing resources are limited and must be shared by
many components in parallel. A real-time dialogue system must
be capable of responding quickly to any given utterance, even in
the presence of noisy, ambiguous or distorted input. The parser
must therefore ensure that the number of analyses remains
bounded at every processing step.

The paper presents a practical approach to address this issue
in the context of deep parsers designed for spoken dialogue.
The approach is based on a word lattice parser combined
with a statistical model for parse selection. Each word lattice
is parsed incrementally, word by word, and a discriminative
model is applied at each incremental step to prune the set of
resulting partial analyses. The model incorporates a wide range
of linguistic and contextual features and can be trained with
a simple perceptron. The approach is fully implemented as
part of a spoken dialogue system for human-robot interaction.
Evaluation results on a Wizard-of-Oz test suite demonstrate
significant improvements in parsing time.

I. INTRODUCTION

Developing robust and efficient parsers for spoken dia-
logue is a difficult and demanding enterprise. This is due to
several interconnected reasons.

The first reason is the pervasiveness of speech recogni-
tion errors in natural (i.e. noisy) environments, especially
for open, non-trivial discourse domains. Automatic speech
recognition (ASR) is indeed a highly error-prone task, and
parsers designed to process spoken input must therefore find
ways to accomodate the various ASR errors that may (and
will) arise. This problem is particularly acute for robots
operating in real-world noisy environments and deal with
utterances pertaining to complex, open-ended domains.

Next to speech recognition, the second issue we need to
address is the relaxed grammaticality of spoken language.
Dialogue utterances are often incomplete or ungrammatical,
and may contain numerous disfluencies like fillers (err, uh,
mm), repetitions, self-corrections, etc. Rather than getting
crisp-and-clear commands such as ”Put the red ball inside
the box!”, we are more likely to hear utterances such as:
”right, now, could you, uh, put the red ball, yeah, inside
the ba/ box!”. This is natural behaviour in human-human
interaction [1] and can also be observed in several domain-
specific corpora for human-robot interaction [2]. Spoken
dialogue parsers should therefore be made robust to such
ill-formed utterances.

This work was supported by the EU FP7 ICT Integrated Project “CogX”
(FP7-ICT- 215181).
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Finally, the vast majority of spoken dialogue systems are
designed to operate in real-time. This has two important
consequences. First, the parser should not wait for the
utterance to be complete to start processing it – instead, the
set of possible semantic interpretations should be gradually
built and extended as the utterance unfolds. Second, each
incremental parsing step should operate under strict time
constraints. The main obstacle here is the high level of
ambiguity arising in natural language, which can lead to a
combinatorial explosion in the number of possible readings.

The remaining of this paper is devoted to addressing this
last issue, building on an integrated approach to situated
spoken dialogue processing previously outlined in [3], [4].
The approach we present here is similar to [5], with some
notable differences concerning the parser (our parser being
specifically tailored for robust spoken dialogue processing),
and the features included in the discriminative model.

An overview of the paper is as follows. We first describe
in Section II the cognitive architecture in which our system
has been integrated. We then discuss the approach in detail in
Section III. Finally, we present in Section IV the quantitative
evaluations on a WOZ test suite, and conclude.

II. ARCHITECTURE

The approach we present in this paper is fully implemented
and integrated into a cognitive architecture for autonomous
robots. A recent description of the architecture is provided
in [6], [7]. It is capable of building up visuo-spatial models
of a dynamic local scene, and continuously plan and execute
manipulation actions on objects within that scene. The robot
can discuss objects and their material- and spatial properties
for the purpose of visual learning and manipulation tasks.
Figure 1 illustrates the architecture schema for the commu-
nication subsystem, limited to the comprehension side.

Fig. 1. Architecture schema of the communication subsystem (limited to
the comprehension part).



Starting with ASR, we process the audio signal to estab-
lish a word lattice containing statistically ranked hypothe-
ses about word sequences. Subsequently, parsing constructs
grammatical analyses for the given (partial) word lattice. A
grammatical analysis constructs both a syntactic analysis of
the utterance, and a representation of its meaning. The analy-
sis is based on an incremental chart parser1 for Combinatory
Categorial Grammar [8]. These meaning representations are
ontologically richly sorted, relational structures, formulated
in a (propositional) description logic – more precisely in the
HLDS formalism [9]. The parser itself is based on a variant
of the CKY algorithm [10].

Once all the possible (partial) parses for a given (partial)
utterance are computed, they are filtered in order to retain
only the most likely interpretation(s). This ensures that the
number of parses at each incremental step remains bounded
and avoid a combinatorial explosion of the search space.
The task of selecting the most likely parse(s) among a set
of possible ones is called parse selection. We describe it in
detail in the next section.

At the level of dialogue interpretation, the logical forms
are then resolved against a dialogue model to establish co-
reference and dialogue moves.

Linguistic interpretations must finally be associated with
extra-linguistic knowledge about the environment – dialogue
comprehension hence needs to connect with other subarchi-
tectures like vision, spatial reasoning or planning. We realise
this information binding between different modalities via a
specific module, called the “binder”, which is responsible for
the ontology-based mediation accross modalities [11].

A. Context-sensitivity
The combinatorial nature of language provides virtually

unlimited ways in which we can communicate meaning.
This, of course, raises the question of how precisely an
utterance should then be understood as it is being heard.
Empirical studies have investigated what information humans
use when comprehending spoken utterances. An important
observation is that interpretation in context plays a crucial
role in the comprehension of the utterance as it unfolds [12].
During utterance comprehension, humans combine linguistic
information with scene understanding and “world knowl-
edge” to select the most likely interpretation.

Fig. 2. Context-sensitivity in processing situated dialogue understanding

1Built using the OpenCCG API: http://openccg.sf.net

Several approaches in situated dialogue for human-robot
interaction have made similar observations [13], [14], [15],
[7]: A robot’s understanding can be improved by relating
utterances to the situated context. By incorporating con-
textual information into our model, our approach to robust
processing of spoken dialogue seeks to exploit this important
insight. At each processing step (speech recognition, word
lattice parsing, dialogue-level interpretation and cross-modal
binding), contextual information is used to prime the utter-
ance comprehension, as shown in the Figure 2.

III. APPROACH

As we just explained, the parse selection module is re-
sponsible for selecting at each incremental step a subset of
”good” parses. Once the selection is made, the best analyses
are kept in the parse chart, while the others are discarded
and pruned from the chart.

A. The parse selection task
To achieve this selection, we need a mechanism to dis-

criminate among the possible parses. This is done via a
(discriminative) statistical model covering a large number of
features.

Formally, the task is defined as a function F : X → Y
where the domain X is the set of possible inputs (in our
case, X is the set of possible word lattices), and Y the set
of parses. We assume:

1) A function GEN(x) which enumerates all possible
parses for an input x. In our case, the function rep-
resents the admissibles parses according to the CCG
grammar.

2) A d-dimensional feature vector f(x,y)∈ℜd , represent-
ing specific features of the pair (x,y). It can include
various acoustic, syntactic, semantic or contextual fea-
tures which can help us discriminate between the
various parses.

3) A parameter vector w ∈ℜd .
The function F , mapping a word lattice to its most likely

parse, is then defined as:

F(x) = argmax
y∈GEN(x)

wT · f(x,y) (1)

where wT · f(x,y) is the inner product ∑d
s=1 ws fs(x,y), and

can be seen as a measure of the “quality” of the parse. Given
the parameters w, the optimal parse of a given utterance x
can be therefore easily determined by enumerating all the
parses generated by the grammar, extracting their features,
computing the inner product wT · f(x,y), and selecting the
parse with the highest score.

The task of parse selection is an example of a structured
classification problem, which is the problem of predicting
an output y from an input x, where the output y has a rich
internal structure. In the specific case of parse selection, x is
a word lattice, and y a logical form.



B. Training data
In order to estimate the parameters w, we need a set

of training examples. Unfortunately, no corpus of situated
dialogue adapted to our task domain is available to this day,
let alone semantically annotated. The collection of in-domain
data via Wizard of Oz experiments being a very costly and
time-consuming process, we followed the approach advo-
cated in [16] and generated a corpus from a hand-written
task grammar.

To this end, we first collected a small set of WoZ data,
totalling about a thousand utterances related to a simple
scenario of object manipulation and visual learning. This set
is too small to be directly used as a corpus for statistical
training, but sufficient to capture the most frequent linguistic
constructions in this particular context. Based on it, we
designed a domain-specific context-free grammar covering
most of the utterances. Each rule is associated to a semantic
HLDS representation. Weights are automatically assigned to
each grammar rule by parsing our corpus, hence leading
to a small stochastic context-free grammar augmented with
semantic information.

Once the grammar is specified, it is randomly traversed a
large number of times, resulting in a larger set (about 25.000)
of utterances along with their semantic representations. Since
we are interested in handling errors arising from speech
recognition, we also need to “simulate” the most frequent
recognition errors. To this end, we synthesise each string
generated by the domain-specific grammar, using a text-
to-speech engine2, feed the audio stream to the speech
recogniser, and retrieve the recognition result.

Via this technique, we are able to easily collect a large
amount of training data. Because of its relatively artificial
character, the quality of such training data is naturally lower
than what could be obtained with a genuine corpus. But, as
the experimental results will show, it remains sufficient to
train the perceptron for the parse selection task, and achieve
significant improvements in accuracy and robustness. In a
near future, we plan to progressively replace this generated
training data by a real spoken dialogue corpus adapted to
our task domain.

C. Perceptron learning
The algorithm we use to estimate the parameters w using

the training data is a perceptron. The algorithm is fully
online - it visits each example in turn, in an incremental
fashion, and updates w if necessary. Albeit simple, the
algorithm has proven to be very efficient and accurate for
the task of parse selection [5], [17].

The pseudo-code for the online learning algorithm is
detailed in [Algorithm 1].

It works as follows: the parameters w are first initialised
to some arbitrary values. Then, for each pair (xi,zi) in the
training set, the algorithm searchs for the parse y′ with the
highest score according to the current model. If this parse
happens to match the best parse which generates zi (which

2We used MARY (http://mary.dfki.de) for the text-to-speech engine.

we shall denote y∗), we move to the next example. Else, we
perform a simple perceptron update on the parameters:

w = w+ f(xi,y∗)− f(xi,y′) (2)

The iteration on the training set is repeated T times, or
until convergence. The most expensive step in this algorithm
is the calculation of y′ = argmaxy∈GEN(xi) wT · f(xi,y) - this
is the decoding problem.

Algorithm 1 Online perceptron learning

Require: - Set of n training examples {(xi,zi) : i = 1...n}
- For each incremental step j with 0≤ j ≤ |xi|,

we define the partially parsed utterance x j
i

and its gold standard semantics z j
i

- T : number of iterations over the training set
- GEN(x): function enumerating possible parses

for an input x, according to the CCG grammar.
- GEN(x,z): function enumerating possible parses

for an input x and which have semantics z,
according to the CCG grammar.

- L(y) maps a parse tree y to its logical form.
- Initial parameter vector w0

% Initialise
w← w0

% Loop T times on the training examples
for t = 1 ... T do

for i = 1 ... n do
% Loop on the incremental parsing steps
for j = 0...|xi| do

% Compute best parse according to model
Let y′ = argmaxy∈GEN(x j

i )
wT · f(x j

i ,y)

% If the decoded parse '= expected parse, update the
parameters of the model
if L(y′) '= z j

i then

% Search the best parse for the partial utterance x j
i

with semantics z j
i

Let y∗ = argmaxy∈GEN(x j
i ,z

j
i )

wT · f(x j
i ,y)

% Update parameter vector w
Set w = w+ f(x j

i ,y
∗)− f(x j

i ,y
′)

end if
end for

end for
end for
return parameter vector w

It is possible to prove that, provided the training set (xi,zi)
is separable with margin δ > 0, the algorithm is assured
to converge after a finite number of iterations to a model
with zero training errors [5]. See also [18] for convergence
theorems and proofs.

D. Features
As we have just seen, the parse selection operates by

enumerating the possible parses and selecting the one with
the highest score according to the linear model parametrised
by the weights w.



The accuracy of our method crucially relies on the
selection of “good” features f(x,y) for our model - that is,
features which help discriminating the parses. In our model,
the features are of four types: semantic features, syntactic
features, contextual features, and speech recognition features.

1) Semantic features: What are the substructures of a
logical form which may be relevant to discriminate the
parses? We define features on the following information
sources: the nominals, the ontological sorts of the nominals,
the dependency relations (following [19]), and the sequences
of dependency relations.

Fig. 3. HLDS logical form for “I want you to take the mug”.

The features on nominals and ontological sorts aim at
modeling (aspects of) lexical semantics - e.g. which mean-
ings are the most frequent for a given word -, whereas
the features on relations and sequence of relations focus
on sentential semantics - which dependencies are the most
frequent.

These features therefore help us handle various forms of
lexical and syntactic ambiguities.

2) Syntactic features: Syntactic features are features as-
sociated to the derivational history of a specific parse.
Alongside the usual CCG rules (application, composition and
type raising), our parser also uses a set of non-standard rules
designed to handle disfluencies, speech recognition errors,
and combinations of discourse units by selectively relaxing
the grammatical constraints (see [4] for details). In order to
”penalise” to a correct extent the application of these non-
standard rules, we include in the feature vector f(x,y) new
features counting the number of times these rules are applied
in the parse. In the derivation shown in the Figure 4, the rule
corr (correction of a speech recognition error) is for instance
applied once.

These syntactic features can be seen as a penalty given to
the parses using these non-standard rules, thereby giving a
preference to the “normal” parses over them.

This ensures that the grammar relaxation is only applied

pick
s/particle/np

cup
up corr

particle
s/np

>

the
np/n

ball
n

np >

s >

Fig. 4. CCG derivation of “pick cup the ball”.

“as a last resort” when the usual grammatical analysis fails
to provide a parse.

3) Contextual features: As we have already outlined in
the background section, one striking characteristic of spoken
dialogue is the importance of context. Understanding the
visual and discourse contexts is crucial to resolve potential
ambiguities and compute the most likely interpretation(s) of
a given utterance.

The feature vector f(x,y) therefore includes various fea-
tures related to the context:

• Activated words: our dialogue system maintains in its
working memory a list of contextually activated words
(cfr. [20]). This list is continuously updated as the
dialogue and the environment evolves. For each context-
dependent word, we include one feature counting the
number of times it appears in the utterance string.

• Expected dialogue moves: for each possible dialogue
move, we include one feature indicating if the dialogue
move is consistent with the current discourse model.
These features ensure for instance that the dialogue
move following a QuestionYN is a Accept, Reject
or another question (e.g. for clarification requests), but
almost never an Opening.

4) Speech recognition features: Finally, the feature vector
f(x,y) also includes features related to the speech recogni-
tion. The ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice. One example is given
in Figure 5.

Fig. 5. Example of word lattice

We want to favour the hypotheses with high confidence
scores, which are, according to the statistical models in-
corporated in the ASR, more likely to reflect what was
uttered. To this end, we introduce in the feature vector
several acoustic features measuring the likelihood of each
recognition hypothesis.

E. Incremental chart pruning
In the previous subsections, we explained how the parse

selection was performed, and on basis of which features.



Beam width Size of Average parsing Exact-match Partial-match
word lattice time (in s.) Precision Recall F1-value Precision Recall F1-value

(Baseline) (none) 10 10.1 40.4 100.0 57.5 81.4 100.0 89.8
120 10 5.78 40.9 96.9 57.5 81.9 98.0 89.2
60 10 4.82 41.1 92.5 56.9 81.7 94.1 87.4
40 10 4.66 39.9 88.1 54.9 79.6 91.9 85.3
30 10 4.21 41.0 83.0 54.9 80.2 88.6 84.2
20 10 4.30 40.1 80.3 53.5 78.9 86.5 82.5

(Baseline) (none) 5 5.28 40.0 100.0 57.1 81.5 100.0 89.8
120 5 6.62 40.9 98.4 57.8 81.6 98.5 89.3
60 5 5.28 40.5 96.9 57.1 81.7 97.1 88.7
40 5 4.26 40.9 91.0 56.5 81.7 92.4 86.7
30 5 3.51 40.7 92.4 56.5 81.4 93.9 87.2
20 5 2.81 36.7 87.1 51.7 79.6 90.7 84.8

TABLE I
EVALUATION RESULTS (IN SECONDS FOR THE PARSING TIME, IN % FOR THE EXACT- AND PARTIAL-MATCH).

This parse selection is used at each incremental step to
discriminate between the ”good” parses that needs to be kept
in the parse chart, and the parses that should be pruned in
order to keep a limited number of interpretations, and hence
avoid a combinatory explosion of analyses.

To achieve this, we introduce a new parameter in our
parser: the beam width. The beam width defines the maximal
number of analyses which can be kept in the chart at each
incremental step. If the number of possible readings exceeds
the beam width, the analyses with a lower parse selection
score are removed from the chart.

Practically, this is realised by removing the top signs
associated in the chart with the set of analyses to prune,
as well as all the intermediate signs which are included in
these top signs and are not used in any of the ”good” analyses
retained by the parse selection module.

A simple backtracking mechanism is also implemented
in the parser. In case the beam width happens to be too
narrow and renders the utterance unparsable, it is possible to
reintroduce the signs previously removed from the chart and
restart the parse at the failure point.

The combination of incremental parsing and incremental
chart pruning provides two decisive advantages over classi-
cal, non-incremental parsing techniques: first, we can start
processing the spoken inputs as soon as a partial analysis
can be outputted by the speech recogniser. Second, the
pruning mechanism ensures that each incremental parsing
step remains time-bounded. Such a combination is therefore
ideally suited for the real-time spoken dialogue systems used
in human-robot interaction.

IV. EVALUATION

We performed a quantitative evaluation of our approach,
using its implementation in a fully integrated system (cf.
Section II). To set up the experiments for the evaluation,
we have gathered a Wizard-of-Oz corpus of human-robot
spoken dialogue for our task-domain (Figure 6), which
we segmented and annotated manually with their expected
semantic interpretation. The data set contains 195 individual

utterances 3 along with their complete logical forms.
The results are shown in the Table I. We tested our

approach for five different values of the beam width param-
eter, and for two sizes of the word lattice. The results are
compared against a baseline, which is the performance of
our parser without chart pruning. For each configuration, we
give the average parsing time, as well as the exact-match and
partial-match results (in order to verify that the performance
increase is not cancelled by a drop in accuracy). The most
important observation we can make is that the choice of the
beam width parameter is crucial. Above 30, the chart pruning
mechanism works very efficiently – we observe a notable
decrease in the parsing time without significantly affecting
the accuracy performance. Below 30, the beam width is too
small to retain all the necessary information in the chart, and
the recall quickly drops.

Figure 7 illustrates the evolution of the ambiguity level
(in terms of number of alternative semantic interpretations)
during the incremental parsing. We observe that the chart
pruning mechanism acts as a stabilising factor within the
parser, by limiting the number of ambiguities produced after
every incremental step to a reasonable level.

Fig. 6. Wizard-of-Oz experiments for a task domain of object manipulation
and visual learning

3More precisely, word lattices provided by the speech recogniser. These
word lattices can contain a maximum of 10 recognition hypotheses.



Fig. 7. Variation of ambiguity level during incremental parsing, with and
without chart pruning (on word lattices with NBest 10 hypotheses).

V. CONCLUSIONS

We presented in this paper an original mechanism for
efficient parsing of spoken inputs, based on a combination
of incremental parsing (to start the processing as soon as
a partial speech input is recognised) and incremental chart
pruning (to limit at every step the number of analyses
retained in the parse chart).

The incremental parser is based on a fine-grained Com-
binatory Categorial Grammar, and takes ASR word lattices
as input. It outputs a set of partial semantic interpretations
(”logical forms”), which are progressively refined and ex-
tended as the utterance unfolds.

Once the partial interpretations are computed, they are
subsequently pruned/filtered to keep only the most likely
hypotheses in the parse chart. This mechanism is based on
a discriminative model exploring a set of relevant semantic,
syntactic, contextual and acoustic features extracted for each
parse. At each incremental step, the discriminative model
yields a score for each resulting parse. The parser then only
retains in its chart the set of parses associated with a high
score, the others being pruned.

The experimental evaluation conducted on a Wizard-of-
Oz test suite demonstrated that the aforementioned approach
was able to significantly improve the parser performance .

As forthcoming work, we shall examine the extension of
our approach in new directions, such as the introduction
of more refined contextual features, the extension of the
grammar relaxation rules, or the use of more sophisticated
learning algorithms such as Support Vector Machines.
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Abstract

Spoken dialogue is notoriously hard to
process with standard NLP technologies.
Natural spoken dialogue is replete with
disfluent, partial, elided or ungrammati-
cal utterances, all of which are difficult to
accommodate in a dialogue system. Fur-
thermore, speech recognition is known to
be a highly error-prone task, especially
for complex, open-ended domains. The
combination of these two problems – ill-
formed and/or misrecognised speech in-
puts – raises a major challenge to the de-
velopment of robust dialogue systems.

We present an integrated approach for ad-
dressing these two issues, based on an in-
cremental parser for Combinatory Cate-
gorial Grammar. The parser takes word
lattices as input and is able to handle ill-
formed and misrecognised utterances by
selectively relaxing its set of grammati-
cal rules. The choice of the most rele-
vant interpretation is then realised via a
discriminative model augmented with con-
textual information. The approach is fully
implemented in a dialogue system for au-
tonomous robots. Evaluation results on a
Wizard of Oz test suite demonstrate very
significant improvements in accuracy and
robustness compared to the baseline.

1 Introduction

Spoken dialogue is often considered to be one of
the most natural means of interaction between a
human and a robot. It is, however, notoriously
hard to process with standard language process-
ing technologies. Dialogue utterances are often in-
complete or ungrammatical, and may contain nu-
merous disfluencies like fillers (err, uh, mm), rep-
etitions, self-corrections, etc. Rather than getting

crisp-and-clear commands such as ”Put the red
ball inside the box!”, it is more likely the robot
will hear such kind of utterance: ”right, now, could
you, uh, put the red ball, yeah, inside the ba/ box!”.
This is natural behaviour in human-human interac-
tion (Fernández and Ginzburg, 2002) and can also
be observed in several domain-specific corpora for
human-robot interaction (Topp et al., 2006).

Moreover, even in the (rare) case where the ut-
terance is perfectly well-formed and does not con-
tain any kind of disfluencies, the dialogue sys-
tem still needs to accomodate the various speech
recognition errors thay may arise. This problem
is particularly acute for robots operating in real-
world noisy environments and deal with utterances
pertaining to complex, open-ended domains.

The paper presents a new approach to address
these two difficult issues. Our starting point is the
work done by Zettlemoyer and Collins on parsing
using relaxed CCG grammars (Zettlemoyer and
Collins, 2007) (ZC07). In order to account for
natural spoken language phenomena (more flex-
ible word order, missing words, etc.), they aug-
ment their grammar framework with a small set
of non-standard combinatory rules, leading to a
relaxation of the grammatical constraints. A dis-
criminative model over the parses is coupled with
the parser, and is responsible for selecting the most
likely interpretation(s) among the possible ones.

In this paper, we extend their approach in two
important ways. First, ZC07 focused on the treat-
ment of ill-formed input, and ignored the speech
recognition issues. Our system, to the contrary,
is able to deal with both ill-formed and misrec-
ognized input, in an integrated fashion. This is
done by augmenting the set of non-standard com-
binators with new rules specifically tailored to deal
with speech recognition errors.

Second, the only features used by ZC07 are syn-
tactic features (see section 3.4 for details). We
significantly extend the range of features included



in the discriminative model, by incorporating not
only syntactic, but also acoustic, semantic and
contextual information into the model. As the ex-
perimental results have shown, the inclusion of a
broader range of linguistic and contextual infor-
mation leads to a more accurate discrimination of
the various interpretations.

An overview of the paper is as follows. We first
describe in Section 2 the cognitive architecture in
which our system has been integrated. We then
discuss the approach in detail in Section 3. Fi-
nally, we present in Section 4 the quantitative eval-
uations on a WOZ test suite, and conclude.

2 Architecture

The approach we present in this paper is fully
implemented and integrated into a cognitive ar-
chitecture for autonomous robots. A recent ver-
sion of this system is described in (Hawes et al.,
2007). It is capable of building up visuo-spatial
models of a dynamic local scene, and continuously
plan and execute manipulation actions on objects
within that scene. The robot can discuss objects
and their material- and spatial properties for the
purpose of visual learning and manipulation tasks.

Figure 1: Architecture schema of the communica-
tion subsystem (only for comprehension).

Figure 2 illustrates the architecture schema for
the communication subsystem incorporated in the
cognitive architecture (only the comprehension
part is shown).

Starting with ASR, we process the audio signal
to establish a word lattice containing statistically
ranked hypotheses about word sequences. Subse-
quently, parsing constructs grammatical analyses
for the given word lattice. A grammatical analy-
sis constructs both a syntactic analysis of the ut-
terance, and a representation of its meaning. The
analysis is based on an incremental chart parser1

1Built using the OpenCCG API: http://openccg.sf.net

for Combinatory Categorial Grammar (Steedman
and Baldridge, 2009). These meaning represen-
tations are ontologically richly sorted, relational
structures, formulated in a (propositional) descrip-
tion logic, more precisely in the HLDS formal-
ism (Baldridge and Kruijff, 2002). The parser
compacts all meaning representations into a sin-
gle packed logical form (Carroll and Oepen, 2005;
Kruijff et al., 2007). A packed LF represents con-
tent similar across the different analyses as a single
graph, using over- and underspecification of how
different nodes can be connected to capture lexical
and syntactic forms of ambiguity.

At the level of dialogue interpretation, a packed
logical form is resolved against a SDRS-like dia-
logue model (Asher and Lascarides, 2003) to es-
tablish co-reference and dialogue moves.

Linguistic interpretations must finally be associ-
ated with extra-linguistic knowledge about the en-
vironment – dialogue comprehension hence needs
to connect with other subarchitectures like vision,
spatial reasoning or planning. We realise this
information binding between different modalities
via a specific module, called the “binder”, which is
responsible for the ontology-based mediation ac-
cross modalities (Jacobsson et al., 2008).

2.1 Context-sensitivity
The combinatorial nature of language provides
virtually unlimited ways in which we can commu-
nicate meaning. This, of course, raises the ques-
tion of how precisely an utterance should then be
understood as it is being heard. Empirical stud-
ies have investigated what information humans use
when comprehending spoken utterances. An im-
portant observation is that interpretation in con-
text plays a crucial role in the comprehension of
utterance as it unfolds (Knoeferle and Crocker,
2006). During utterance comprehension, humans
combine linguistic information with scene under-
standing and “world knowledge”.

Figure 2: Context-sensitivity in processing situ-
ated dialogue understanding



Several approaches in situated dialogue for
human-robot interaction have made similar obser-
vations (Roy, 2005; Roy and Mukherjee, 2005;
Brick and Scheutz, 2007; Kruijff et al., 2007): A
robot’s understanding can be improved by relating
utterances to the situated context. As we will see
in the next section, by incorporating contextual in-
formation into our model, our approach to robust
processing of spoken dialogue seeks to exploit this
important insight.

3 Approach

3.1 Grammar relaxation
Our approach to robust processing of spoken di-
alogue rests on the idea of grammar relaxation:
the grammatical constraints specified in the gram-
mar are “relaxed” to handle slightly ill-formed or
misrecognised utterances.

Practically, the grammar relaxation is done
via the introduction of non-standard CCG rules
(Zettlemoyer and Collins, 2007). In Combinatory
Categorial Grammar, the rules are used to assem-
ble categories to form larger pieces of syntactic
and semantic structure. The standard rules are ap-
plication (<, >), composition (B), and type rais-
ing (T) (Steedman and Baldridge, 2009).

Several types of non-standard rules have been
introduced. We describe here the two most impor-
tant ones: the discourse-level composition rules,
and the ASR correction rules. We invite the reader
to consult (Lison, 2008) for more details on the
complete set of grammar relaxation rules.

3.1.1 Discourse-level composition rules
In natural spoken dialogue, we may encounter ut-
terances containing several independent “chunks”
without any explicit separation (or only a short
pause or a slight change in intonation), such as

(1) “yes take the ball no the other one on your
left right and now put it in the box.”

Even if retrieving a fully structured parse for
this utterance is difficult to achieve, it would be
useful to have access to a list of smaller “discourse
units”. Syntactically speaking, a discourse unit
can be any type of saturated atomic categories -
from a simple discourse marker to a full sentence.

The type-changing rule Tdu allows the conver-
sion of atomic categories into discourse units:

A : @if ⇒ du : @if (Tdu)

where A represents an arbitrary saturated
atomic category (s, np, pp, etc.).

The rule TC is a type-changing rule which al-
lows us to integrate two discourse units into a sin-
gle structure:

du : @ax ⇒ du : @cz / du : @by (TC)

where the formula @cz is defined as:

@{c:d-units}(list∧
(〈FIRST〉 a ∧ x)∧
(〈NEXT〉 b ∧ y)) (2)

3.1.2 ASR error correction rules
Speech recognition is a highly error-prone task. It
is however possible to partially alleviate this prob-
lem by inserting new error-correction rules (more
precisely, new lexical entries) for the most fre-
quently misrecognised words.

If we notice e.g. that the ASR system frequently
substitutes the word “wrong” for the word “round”
during the recognition (because of their phonolog-
ical proximity), we can introduce a new lexical en-
try in the lexicon in order to correct this error:

round % adj : @attitude(wrong) (3)

A set of thirteen new lexical entries of this type
have been added to our lexicon to account for the
most frequent recognition errors.

3.2 Parse selection
Using more powerful grammar rules to relax the
grammatical analysis tends to increase the number
of parses. We hence need a mechanism to discrim-
inate among the possible parses. The task of se-
lecting the most likely interpretation among a set
of possible ones is called parse selection. Once all
the possible parses for a given utterance are com-
puted, they are subsequently filtered or selected
in order to retain only the most likely interpreta-
tion(s). This is done via a (discriminative) statisti-
cal model covering a large number of features.

Formally, the task is defined as a function F :
X → Y where the domain X is the set of possible
inputs (in our case, X is the set of possible word
lattices), and Y the set of parses. We assume:

1. A function GEN(x) which enumerates all
possible parses for an input x. In our case,
this function simply represents the set of
parses of x which are admissible according
to the CCG grammar.



2. A d-dimensional feature vector f(x, y) ∈
"d, representing specific features of the pair
(x, y). It can include various acoustic, syn-
tactic, semantic or contextual features which
can be relevant in discriminating the parses.

3. A parameter vector w ∈ "d.

The function F , mapping a word lattice to its
most likely parse, is then defined as:

F (x) = argmax
y∈GEN(x)

wT · f(x, y) (4)

where wT · f(x, y) is the inner product∑d
s=1 ws fs(x, y), and can be seen as a measure

of the “quality” of the parse. Given the parameters
w, the optimal parse of a given utterance x can be
therefore easily determined by enumerating all the
parses generated by the grammar, extracting their
features, computing the inner product wT ·f(x, y),
and selecting the parse with the highest score.

The task of parse selection is an example of
a structured classification problem, which is the
problem of predicting an output y from an input
x, where the output y has a rich internal structure.
In the specific case of parse selection, x is a word
lattice, and y a logical form.

3.3 Learning
3.3.1 Training data
In order to estimate the parameters w, we need a
set of training examples. Unfortunately, no corpus
of situated dialogue adapted to our task domain is
available to this day, let alone semantically anno-
tated. The collection of in-domain data via Wizard
of Oz experiments being a very costly and time-
consuming process, we followed the approach ad-
vocated in (Weilhammer et al., 2006) and gener-
ated a corpus from a hand-written task grammar.

To this end, we first collected a small set of
WoZ data, totalling about a thousand utterances.
This set is too small to be directly used as a cor-
pus for statistical training, but sufficient to cap-
ture the most frequent linguistic constructions in
this particular context. Based on it, we designed
a domain-specific CFG grammar covering most of
the utterances. Each rule is associated to a seman-
tic HLDS representation. Weights are automati-
cally assigned to each grammar rule by parsing our
corpus, hence leading to a small stochastic CFG
grammar augmented with semantic information.

Once the grammar is specified, it is randomly
traversed a large number of times, resulting in a
larger set (about 25.000) of utterances along with
their semantic representations. Since we are inter-
ested in handling errors arising from speech recog-
nition, we also need to “simulate” the most fre-
quent recognition errors. To this end, we synthe-
sise each string generated by the domain-specific
CFG grammar, using a text-to-speech engine2,
feed the audio stream to the speech recogniser,
and retrieve the recognition result. Via this tech-
nique, we are able to easily collect a large amount
of training data3.

3.3.2 Perceptron learning
The algorithm we use to estimate the parameters
w using the training data is a perceptron. The al-
gorithm is fully online - it visits each example in
turn and updates w if necessary. Albeit simple,
the algorithm has proven to be very efficient and
accurate for the task of parse selection (Collins
and Roark, 2004; Collins, 2004; Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007).

The pseudo-code for the online learning algo-
rithm is detailed in [Algorithm 1].

It works as follows: the parameters w are first
initialised to some arbitrary values. Then, for
each pair (xi, zi) in the training set, the algorithm
searchs for the parse y′ with the highest score ac-
cording to the current model. If this parse happens
to match the best parse which generates zi (which
we shall denote y∗), we move to the next example.
Else, we perform a simple perceptron update on
the parameters:

w = w + f(xi, y
∗)− f(xi, y

′) (5)

The iteration on the training set is repeated T
times, or until convergence.

The most expensive step in this algorithm is
the calculation of y′ = argmaxy∈GEN(xi) w

T ·
f(xi, y) - this is the decoding problem.

It is possible to prove that, provided the train-
ing set (xi, zi) is separable with margin δ > 0, the

2We used MARY (http://mary.dfki.de) for the
text-to-speech engine.

3Because of its relatively artificial character, the quality
of such training data is naturally lower than what could be
obtained with a genuine corpus. But, as the experimental re-
sults will show, it remains sufficient to train the perceptron
for the parse selection task, and achieve significant improve-
ments in accuracy and robustness. In a near future, we plan
to progressively replace this generated training data by a real
spoken dialogue corpus adapted to our task domain.



algorithm is assured to converge after a finite num-
ber of iterations to a model with zero training er-
rors (Collins and Roark, 2004). See also (Collins,
2004) for convergence theorems and proofs.

Algorithm 1 Online perceptron learning

Require: - set of n training examples {(xi, zi) : i = 1...n}
- T : number of iterations over the training set
- GEN(x): function enumerating possible parses

for an input x, according to the CCG grammar.
- GEN(x, z): function enumerating possible parses

for an input x and which have semantics z,
according to the CCG grammar.

- L(y) maps a parse tree y to its logical form.
- Initial parameter vector w0

% Initialise
w← w0

% Loop T times on the training examples
for t = 1...T do

for i = 1...n do
% Compute best parse according to current model
Let y′ = argmaxy∈GEN(xi)

wT · f(xi, y)

% If the decoded parse "= expected parse, update the
parameters
if L(y′) "= zi then

% Search the best parse for utterance xi with se-
mantics zi

Let y∗ = argmaxy∈GEN(xi,zi)
wT · f(xi, y)

% Update parameter vector w
Set w = w + f(xi, y

∗)− f(xi, y
′)

end if
end for

end for
return parameter vector w

3.4 Features
As we have seen, the parse selection operates by
enumerating the possible parses and selecting the
one with the highest score according to the linear
model parametrised by w.

The accuracy of our method crucially relies on
the selection of “good” features f(x, y) for our
model - that is, features which help discriminat-
ing the parses. They must also be relatively cheap
to compute. In our model, the features are of four
types: semantic features, syntactic features, con-
textual features, and speech recognition features.

3.4.1 Semantic features
What are the substructures of a logical form which
may be relevant to discriminate the parses? We de-
fine features on the following information sources:

1. Nominals: for each possible pair
〈prop, sort〉, we include a feature fi in

Figure 3: graphical representation of the HLDS
logical form for “I want you to take the mug”.

f(x, y) counting the number of nominals
with ontological sort sort and proposition
prop in the logical form.

2. Ontological sorts: occurrences of specific
ontological sorts in the logical form.

3. Dependency relations: following (Clark and
Curran, 2003), we also model the depen-
dency structure of the logical form. Each
dependency relation is defined as a triple
〈sorta, sortb, label〉, where sorta denotes
the sort of the incoming nominal, sortb the
sort of the outgoing nominal, and label is the
relation label.

4. Sequences of dependency relations: number
of occurrences of particular sequences (ie. bi-
gram counts) of dependency relations.

The features on nominals and ontological sorts
aim at modeling (aspects of) lexical semantics -
e.g. which meanings are the most frequent for a
given word -, whereas the features on relations and
sequence of relations focus on sentential seman-
tics - which dependencies are the most frequent.
These features therefore help us handle lexical and
syntactic ambiguities.

3.4.2 Syntactic features
By “syntactic features”, we mean features associ-
ated to the derivational history of a specific parse.
The main use of these features is to penalise to a



correct extent the application of the non-standard
rules introduced into the grammar.

pick
s/particle/np

cup
up corr

particle
s/np

>

the
np/n

ball
n

np >

s >

Figure 4: CCG derivation of “pick cup the ball”.

To this end, we include in the feature vector
f(x, y) a new feature for each non-standard rule,
which counts the number of times the rule was ap-
plied in the parse.

In the derivation shown in the figure 4, the rule
corr (correction of a speech recognition error) is
applied once, so the corresponding feature value is
set to 1. The feature values for the remaining rules
are set to 0, since they are absent from the parse.

These syntactic features can be seen as a penalty
given to the parses using these non-standard rules,
thereby giving a preference to the “normal” parses
over them. This mechanism ensures that the gram-
mar relaxation is only applied “as a last resort”
when the usual grammatical analysis fails to pro-
vide a full parse. Of course, depending on the
relative frequency of occurrence of these rules in
the training corpus, some of them will be more
strongly penalised than others.

3.4.3 Contextual features
As we have already outlined in the background
section, one striking characteristic of spoken dia-
logue is the importance of context. Understanding
the visual and discourse contexts is crucial to re-
solve potential ambiguities and compute the most
likely interpretation(s) of a given utterance.

The feature vector f(x, y) therefore includes
various features related to the context:

1. Activated words: our dialogue system main-
tains in its working memory a list of contex-
tually activated words (cfr. (Lison and Krui-
jff, 2008)). This list is continuously updated
as the dialogue and the environment evolves.
For each context-dependent word, we include
one feature counting the number of times it
appears in the utterance string.

2. Expected dialogue moves: for each possible
dialogue move, we include one feature indi-
cating if the dialogue move is consistent with
the current discourse model. These features
ensure for instance that the dialogue move

following a QuestionYN is a Accept, Re-
ject or another question (e.g. for clarification
requests), but almost never an Opening.

3. Expected syntactic categories: for each
atomic syntactic category in the CCG gram-
mar, we include one feature indicating if the
category is consistent with the current dis-
course model. These features can be used to
handle sentence fragments.

3.4.4 Speech recognition features
Finally, the feature vector f(x, y) also includes
features related to the speech recognition. The
ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice. One exam-
ple of such a structure is given in Figure 5. Each
recognition hypothesis is provided with an asso-
ciated confidence score, and we want to favour
the hypotheses with high confidence scores, which
are, according to the statistical models incorpo-
rated in the ASR, more likely to reflect what was
uttered.

To this end, we introduce three features: the
acoustic confidence score (confidence score pro-
vided by the statistical models included in the
ASR), the semantic confidence score (based on a
“concept model” also provided by the ASR), and
the ASR ranking (hypothesis rank in the word lat-
tice, from best to worst).

Figure 5: Example of word lattice

4 Experimental evaluation

We performed a quantitative evaluation of our ap-
proach, using its implementation in a fully inte-
grated system (cf. Section 2). To set up the ex-
periments for the evaluation, we have gathered a
corpus of human-robot spoken dialogue for our
task-domain, which we segmented and annotated
manually with their expected semantic interpreta-
tion. The data set contains 195 individual utter-
ances along with their complete logical forms.

4.1 Results
Three types of quantitative results are extracted
from the evaluation results: exact-match, partial-



Size of word lattice
(number of NBests)

Grammar
relaxation

Parse
selection Precision Recall F1-value

(Baseline) 1 No No 40.9 45.2 43.0
. 1 No Yes 59.0 54.3 56.6
. 1 Yes Yes 52.7 70.8 60.4
. 3 Yes Yes 55.3 82.9 66.3
. 5 Yes Yes 55.6 84.0 66.9

(Full approach) 10 Yes Yes 55.6 84.9 67.2

Table 1: Exact-match accuracy results (in percents).

Size of word lattice
(number of NBests)

Grammar
relaxation

Parse
selection Precision Recall F1-value

(Baseline) 1 No No 86.2 56.2 68.0
. 1 No Yes 87.4 56.6 68.7
. 1 Yes Yes 88.1 76.2 81.7
. 3 Yes Yes 87.6 85.2 86.4
. 5 Yes Yes 87.6 86.0 86.8

(Full approach) 10 Yes Yes 87.7 87.0 87.3

Table 2: Partial-match accuracy results (in percents).

match, and word error rate. Tables 1, 2 and 3 illus-
trate the results, broken down by use of grammar
relaxation, use of parse selection, and number of
recognition hypotheses considered.

Each line in the tables corresponds to a possible
configuration. Tables 1 and 2 give the precision,
recall and F1 value for each configuration (respec-
tively for the exact- and partial-match), and Table
3 gives the Word Error Rate [WER].

The first line corresponds to the baseline: no
grammar relaxation, no parse selection, and use of
the first NBest recognition hypothesis. The last
line corresponds to the results with the full ap-
proach: grammar relaxation, parse selection, and
use of 10 recognition hypotheses.

Size of word
lattice (NBests)

Grammar
relaxation

Parse
selection WER

1 No No 20.5
1 Yes Yes 19.4
3 Yes Yes 16.5
5 Yes Yes 15.7

10 Yes Yes 15.7

Table 3: Word error rate (in percents).

4.2 Comparison with baseline
Here are the comparative results we obtained:

• Regarding the exact-match results between
the baseline and our approach (grammar re-
laxation and parse selection with all fea-
tures activated for NBest 10), the F1-measure
climbs from 43.0 % to 67.2 %, which means
a relative difference of 56.3 %.

• For the partial-match, the F1-measure goes
from 68.0 % for the baseline to 87.3 % for
our approach – a relative increase of 28.4 %.

• We observe a significant decrease in WER:
we go from 20.5 % for the baseline to 15.7 %
with our approach. The difference is statisti-
cally significant (p-value for t-tests is 0.036),
and the relative decrease of 23.4 %.

5 Conclusions

We presented an integrated approach to the pro-
cessing of (situated) spoken dialogue, suited to
the specific needs and challenges encountered in
human-robot interaction.

In order to handle disfluent, partial, ill-formed
or misrecognized utterances, the grammar used by
the parser is “relaxed” via the introduction of a
set of non-standard combinators which allow for
the insertion/deletion of specific words, the com-
bination of discourse fragments or the correction
of speech recognition errors.

The relaxed parser yields a (potentially large)
set of parses, which are then packed and retrieved
by the parse selection module. The parse selec-
tion is based on a discriminative model exploring a
set of relevant semantic, syntactic, contextual and
acoustic features extracted for each parse. The pa-
rameters of this model are estimated against an au-
tomatically generated corpus of 〈utterance, logical
form〉 pairs. The learning algorithm is an percep-
tron, a simple albeit efficient technique for param-
eter estimation.



As forthcoming work, we shall examine the po-
tential extension of our approach in new direc-
tions, such as the exploitation of parse selection
for incremental scoring/pruning of the parse chart,
the introduction of more refined contextual fea-
tures, or the use of more sophisticated learning al-
gorithms, such as Support Vector Machines.
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