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WP3 deals with qualitative spatial cognition, i.e. the acquisition of spatial
(room level) knowledge and reasoning within that knowledge to support effi-
cient and robust task execution in an environment that presents incomplete
and uncertain information, as well as to support human robot interaction
(HRI) for communicating these tasks. Over the 4 years of CogX project we
developed increasingly powerful enabling technologies to support the kind
of reasoning required for a cognitive system that reflects on its knowledge
and identifies gaps and accordingly opportunities for exploration. We fur-
thermore integrated these enabling technologies into a framework for multi-
layered conceptual spatial mapping which forms part of the CAST framework
instantiation in the Dora demonstrator.

The present report deals with two bodies of work. First, an integrated
model for representing spatial knowledge for situated action and human-
robot interaction, and second a set of methods for functional understanding
of space. These latter include segmentation and labelling of a geometric map
of the environment, where the segmentation is based on functional definitions
of the different room concepts, as well as identifying functional spatial regions
within a room from spatial relations of objects in the room. Furthermore two
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methods for augmenting object search with higher level information, using
either web searches to extract Common Sense about Object Locality (CSOL)
or 3D context learned from a large set of labelled 3D training images, such
as collected in the newly established project Kinect@Home.
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Executive Summary

Over the 4 years of the CogX project we developed a large body of work
related to spatial cognition. Work was driven by the need of cognitive sys-
tems to deal with uncertain and incomplete information and reason with
that knowledge to support efficient and robust task execution as well as
communicating these tasks to the robot. Accordingly we developed various
probabilistic methods (e.g. for room categorisation, for planning over uncer-
tain information in large domains) and integrated these into a comprehensive
framework as demonstrated in the Dora scenario.

This report deals with two aspects within this larger context of spatial
cognition. First, a model for representing spatial knowledge for situated
action and human-robot interaction, addressing Task 3.4 Establishing ref-
erence to spatial entities for human-robot interaction. The problems here
are that the robot is faced with changing and incomplete spatial informa-
tion about the environment, and needs to communicate the semantics of
this spatial information at different levels of abstraction in a natural way,
to support situated human-robot interaction. We developed the enabling
techniques, such as room categorisation and reasoning about typical objects
present in a room, and integrated these into a comprehensive probabilis-
tic framework, enabling planning and task execution with uncertain and
incomplete information.

Secondly, we present work related to Task 3.5: Functional understanding
of space. Here we present a method that uses learned spatial relations be-
tween objects in the room together with analogy to define functional regions
such as “the front of the room”. A complementary method uses informa-
tion provided by the web rather than learning by the system for segmenting
and labelling a geometric map of the environment, where the segmentation
is based on functional definitions of the different room concepts, based on
the definition in the Oxford online dictionary, defining e.g. a kitchen as a
room where food is cooked. We furthermore use knowledge from the web to
extract Common Sense about Object Locality (CSOL). For this we calcu-
late the likelihood of finding objects at certain locations from search query
results such as “the cup was on the table” or “the mug was on the shelf”,
and use these locations to direct search for these objects. A complemen-
tary approach is independent of room category and uses surrounding 3D
structure (termed 3D context) to direct search for a given object, avoiding
the need to explicitly detect supporting surfaces such as shelves. This 3D
context is learned from labelled 3D training data. To collect a wide vari-
ety of different typical indoor scenes, we initiated the Kinect@Home project
(http://www.kinectathome.com), where users can upload 3D image se-
quences, where special care had to be taken to handle the enormous amount
of point cloud data using special compression techniques.
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Role of spatial cognition in CogX

Spatial cognition here serves two roles: First as the process of abstracting
raw metric spatial information into semantically meaningful information to
support task planning and execution with uncertain information situated
and to support human robot interaction. Secondly, as top down context
information for object search, e.g. for a cup on a kitchen counter.

Contribution to the CogX scenarios and prototypes

The work presented here is mainly used in the Dora scenario, where the robot
recognises different room types (based on functionality) and uses these to
communicate with the user. Also object search at room level, e.g. for fetch
and carry tasks, is most associated with the Dora scenario.
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1 Tasks, objectives, results

1.1 Planned work

Task 3.4: Establishing reference to spatial entities for human-robot
interaction. The goal is to investigate, in the context of human-robot
interaction, how the robot can refer to objects based on their spatial
relations and how to learn this.

Task 3.5: Functional understanding of space. The goal is to investi-
gate how to gain knowledge about the function of space by analyzing
spatial models over time.

Task 3.4 originally had a focus on learning spatial relations between objects
in a scene and using these for human robot interaction (HRI). The actual
work performed in this task then concentrated more on the room level,
building a hierarchy of spatial concepts for HRI, which turned out to be
more relevant to work in the scenarios. Task 3.5 aimed at learning from
analysis over time. Instead we chose to learn from large corpora on the
web, which is a promising route of research especially when requiring large
amounts of training data.

The work presented in this deliverable contributed to the following of
the CogX objectives:

• 2. Specific representations of beliefs about beliefs for the specific cases
of dialogue, manipulation, maps, mobility and some types of vision.
[WPs 2,3,6]

• 3. Representations of how actions will alter the belief state of the
cognitive system, and those of other agents, as represented in the first
two objectives, i.e. models of the effects of actions on beliefs about
space, categorical knowledge, action effects, dialogue moves etc. [WPs
1,2,3,4,5,6]

• 7. Methods for perception and spatial modelling that enable a robot
to identify gaps in its spatial models (e.g. maps) and to extend them
so as to support natural communication with humans. [WP 3]

• 11. A robotic implementation of our theory able to complete a task
involving mobility, interaction and manipulation, in the face of nov-
elty, uncertainty, partial task specification, and incomplete knowledge.
[WPs 2,3,6,7]

We address objectives 2, 3 and 7 by providing a multi-layered conceptual
spatial mapping framework that on top of metric and topological maps rep-
resents probabilistic knowledge about room categories and relations between
rooms and objects found in them. We also provide the planning techniques

EU FP7 CogX 1



DR 3.3: Spatial entities for HRI and functional understanding of space Zillich et al.

required to deal with this kind of uncertain information in large planning
domains. Objective 11 is addressed by demonstrating the validity of our
approaches in numerous experiments in the Dora scenario.

1.2 Actual work performed

1.2.1 Task 3.4: Establishing reference to spatial entities for human-
robot interaction

Intelligent autonomous robots that efficiently collaborate with humans in
everyday tasks must have the capabilities to engage in situated human-robot
interaction. This implies that they must be able to understand their spa-
tial environment and its semantics in a way that is compatible to the way
their human users do. If they are furthermore expected to conduct situated
spoken dialogues, their spatial conceptualization must be expressible in nat-
ural language. On the other hand, however, intelligent mobile robots must
be endowed with navigation capabilities that take into account the specific
sensors and actuators the robot is equipped with.

The kinds of autonomous mobile robots that we consider in CogX ulti-
mately operate in dynamic, large-scale environments. These environments
are subject to change and cannot be apprehended as a perceptual whole.
At the same time, the robots have the possibility to alter the world around
them, and to perform actions that allow them to extend their own knowl-
edge. For this to be successful, their knowledge representation must be able
to deal with changing and incomplete information.

In [44] (Annex 2.1) we present a consolidated and integrated approach to
multi-layered conceptual spatial mapping that addresses the aforementioned
challenges. In this approach, spatial knowledge is represented at different
levels of abstraction, ranging from low-level metric maps to symbolic con-
ceptual representations. We also discuss reasoning methods that can be
performed using such spatial conceptual knowledge in order to overcome
the problem of partial information at the sensory-symbol interface, as well
as the bootstrapping of ontological knowledge from available linguistic and
commonsense databases, and how such knowledge can be quantified in order
to support probabilistic action planning for more efficient robot behaviour
in human-oriented environments.

The work presented here summarises the underlying representations for
reference resolution in spatial contexts reported previously in DR.6.4, Annex
2.1.

1.2.2 Task 3.5: Functional understanding of space

When interacting with people, human level concepts such as room labels
are very important. In [33] (Annex 2.2) we present a method for simulta-
neously segmenting and labeling a geometric map of the environment. The
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segmentation is based on commonsense definitions from the Oxford online
dictionary – for example, a kitchen is defined as “That room or part of a
house in which food is cooked; a place fitted with the apparatus for cooking.”
We note that the definitions are crucially bound up with aspects of func-
tion – e.g., what ultimately makes something a kitchen is that food can be
cooked there – and consequently we posit concrete numerical interpretations
of these functional apects. Combining these values into an energy function
which is then maximized, we produce a function-sensitive segmentation of
space. It is also shown how the segmentation can adjust to accommodate re-
ferring expressions. For example, if the human were to mention the “kitchen
next to the corridor” when speaking to the system it would be able to use
this as an indication that the segmentation needs to produce at least one
kitchen and at least one corridor, next to each other.

In the work discussed in [21] (Annex 2.3) we define spatial regions (such
as the front of a room) by functional use, but this time derived from spatial
relations of objects in the room (such as chairs all pointing in a certain
direction). We present a cognitive system able to learn context-dependant
spatial regions by combining qualitative spatial representations, semantic
labels, and analogy and evaluate it against human annotations of real world
scenes.

In the work on object search previously reported in CogX we used the
assumption that objects are often to be found on tables or other support-
ing surfaces. This assumption was taken for granted and hard-coded into
parts of the system. Starting with our work in [19], and also DR.6.4, An-
nex 2.2, [44] (DR.3.3, Annex 2.1) and [1] (DR.3.4, Annex 2.1), we showed
how this common sense knowledge can be extracted from web queries in a
probabilistic fashion, which significantly improves the performance of visual
search. There we employed knowledge like “cups are likely to be located in
kitchens” in a visual search task using a planner switching between contin-
ual symbolic planning and decision theoretic planning, which was capable
of dealing with the uncertain information (cups are not always in kitchens
after all) as well as the large planning domain. In the work presented here
in [47, 48] (Annexes 2.4 and 2.5) we expanded on the way in which those
queries are formed. Additionally to the image search engine employed in
our previous work we also employed a web text mining technique using se-
quential pattern retrieval to extract Common Sense about Object Locality
(CSOL) for linking the search of objects with their potential localities. We
calculate the object location belief OLB(O,L) of finding object O at loca-
tion L by searching for patterns like ’object’ + ’be’ + ’on’ + . . . + ’location’,
such as “the cup was on the table”. We use specific databases like the Open
Mind Indoor Common Sense database (OMICS)1 or generic web searches on
google, yahoo or bing. The result is a probability distribution over locations

1openmind.hri-us.com, Honda Research Institute USA
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an object is most likely to be found. These locations then map to constraints
for the visual search task. Experiments using an indoor mobile robot for an
Active Visual Search (AVS) task (e.g. for a cup or can) demonstrate the
benefits in terms of reduced search time.

The above approach exploits spatial relations between objects (support-
ing surfaces and objects on them in that case) to perform the search more
efficiently. One of the bottlenecks with this is that we rely heavily on the
perception system to categorize objects. Unless finding the larger support-
ing object is easy it might not help enough in finding the small objects on
it. One strand of work therefore investigated ways to build models for cal-
culating the likelihood of finding objects not based on the detection of other
objects but by surrounding 3D structure (we call this the 3D context) which
gives strong cues as to what objects could be found there. So, instead of
learning that cups are on tables, we learn that the local surrounding of a
cup is typically planar and horizontal. This results in a more flexible model
presented in [3] (Annex 2.6).

When working on the 3D context we initially gathered a dataset from
the different sites within CogX (reported on last year in DR.3.2). We soon
realized that if we are serious about understanding real-world spaces we
need to have data from such environments and data from robot labs gath-
ered by roboticists across Europe might not be all that representative. We
have therefore started an effort (http://www.kinectathome.com) to gather
a large dataset of data from Microsoft’s new sensor, the Kinect. We are
working on the final details for the launch of this and plan to announce it
widely at the end of the summer. The idea behind this effort was presented
in [2] (Annex 2.7).

1.3 Relation to state-of-the-art

The work reported in Annex 2.1 builds upon and extends the author’s pre-
vious research on multi-layered conceptual spatial mapping [45, 46] in the
tradition of approaches like the (Hybrid) Spatial Semantic Hierarchy by
Kuipers et al. [24, 25, 5], the Route Graph model by Krieg-Brückner et al.
[43, 23], Buschka and Saffiotti’s hybrid maps [8], as well as multi-hierarchical
semantic maps for mobile robots by Galindo et al. [18, 17].

A number of methods originating in robotics research have been pre-
sented that construct multi-layered environment models. These layers range
from metric sensor-based maps to abstract conceptual maps that take into
account information about objects acquired through computer vision meth-
ods. Vasudevan et al. [39] suggest a hierarchical probabilistic representation
of space based on objects. The work by Galindo et al. [18, 17] presents an
approach containing two parallel hierarchies, spatial and conceptual, con-
nected through anchoring. Inference about places is based on objects found
in them. This approach is based on the Multi-AH-graph model by Fernan-
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dez and Gonzalez [14]. The work by Diosi et al. [11] creates a metric map
through a guided tour. The map is then segmented into discrete rooms
according to the labels given by the instructor. Furthermore, the Hybrid
Spatial Semantic Hierarchy (HSSH), introduced by Beeson et al. [5], allows
a mobile robot to describe the world using different representations, each
with its own ontology.

More recently, Pronobis et al. [32] have presented a refined approach to
multi-layered mapping, in which, inter alia, the representations of the lower
map layers were re-defined, and a probabilistic inference engine is used for
reasoning with the discrete symbols in the conceptual map layer.

Lemaignan et al. [26] present a similar approach to endowing robots
with spatial representations that allow them to act in and talk about their
environment. Their framework has the advantage of providing a kind of
theory of mind that allows the robot to reason about the perspective of its
interlocutor in order to disambiguate and ground natural-language instruc-
tions. While our approach addresses the specific challenges involved when
engaging in dialogues about spatial environments that are larger than what
can be perceived at once, their approach focusses on adequate reasoning
techniques for shared visual scenes, like, e.g. tabletop scenarios.

With the availability of affordable 3D sensors and appropriate techniques
for using them for robotic mapping purposes, a number of approaches for
building layered representations of 3D space have been proposed recently.
The KnowRob-Map framework [36] combines low-level metric costmaps,
maps of 3D point clouds, and ontological knowledge bases into a semantic
environment model of places, object locations, and afforded actions. Panger-
cic et al. [30] use natural-language task instructions from the WWW to
construct a Description Logics-based knowledge base for tabletop scenarios.
Tenorth et al. [35] present a framework that allows mobile service robots to
use multiple web-based knowledge sources (including OMICS, WordNet and
an internet image search engine) in order to perform everyday manipulation
tasks. While these approaches are especially useful for (mobile) manipula-
tion in human-oriented environment (e.g., kitchens [6]), our approach has a
stronger focus on human-robot interaction and situated human-robot dia-
logues.

Viswanathan et al. [40, 41] propose another approach that makes use of
existing commonsense knowledge resources. They use the LabelMe dataset
to train an automated place classifier that relies on the presence of detected
objects to infer which other objects are likely to occur nearby and which
kind of place (e.g., kitchen or office) is seen in the scene.

Given a discretization of space, for example in the form of a Voronoi
diagram, Diosi et al.[10] and Milford et al. [29] let a user impose labels
for different locations. In [28] metric features are used to classify regions,
while [38] utilize spatial relations between objects. Friedman et al. [15] use
a graph-based approach in which place classification is based on potentials
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defined on nodes in a graph. The model is more local, and learned as opposed
to specified by functional criteria as in our work. In the work by Friedman
et al. the world is segmented into either belonging to the class of corridor
or room, but no distinction is made between different rooms or corridors.
In our work in Annex 2.2 we identify the individual areas as well as label
them.

Knowledge acquisition from the web or sharing databases have been
adopted to supply a large corpus of training data [13] for visual recogni-
tion, to build 3D models for robot manipulation [22], improve visual object
recognition [27], to complete qualia structures describing an object [9], to
guide robot planning for specific tasks such as table setting for a meal [31],
and even more ambitiously to fill knowledge gaps when an indoor robot is
executing sophisticated tasks [42]. [19] showed how web queries revealing
probabilistic knowledge about the most likely room locations of various ob-
jects significantly improves search for a given object in a robotic system able
to plan with uncertain knowledge. In the work presented in Annexes 2.4 and
2.5 we expand on the way in which those web queries are performed and
incorporate queries from image as well as text databases.

The work closest to our work on using the 3D shape context (Annex 2.6)
to predict object locations is probably [37] where low-level features are ex-
tracted from the whole image for context driven attention and object detec-
tion. We make use of the 3D information and propose a conceptually simple
method to capture and exploit this information.

Work presented in Annex 2.3 created representations of spatial regions
that may be referenced by humans in task descriptions, e.g. the instruction
for the robot to “go to the front of the classroom”. These regions are de-
fined using Qualitative Spatial Relations based on the objects present in a
room and their configuration. Whilst mobile robots exist which can deter-
mine the type of a room from the objects found in it [20, 16], these works
only concern themselves with the types of whole rooms, and cannot rep-
resent subregions within them. This is also true for those robotic systems
which use some elements of QSR [4]. The need for an autonomous system to
ground references to human-generated descriptions of space has been recog-
nised in domains where a robot must be instructed to perform a particular
task, however existing systems are restricted to purely geometrically-defined
regions [34, 12, 7], rather than the qualitatively-defined, functional regions
in our work.
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2 Annexes

2.1 H. Zender, “Multi-Layered Conceptual Spatial Mapping
– Representing Spatial Knowledge for Situated Action
and Human-Robot Interaction

Bibliography H. Zender. “Multi-Layered Conceptual Spatial Mapping
– Representing Spatial Knowledge for Situated Action and Human-Robot
Interaction.” in In Y. Amirat, A. Chibani, and G. P. Zarri, editors, Bridges
Between the Methodological and Practical Work of the Robotics and Cogni-
tive Systems Communities – From Sensors to Concepts, Intelligent Systems
Reference Library. Springer Verlag, Berlin/Heidelberg, Germany, 2012 (to
appear).

Abstract In this book chapter, we present the principle of multi-layered
conceptual spatial mapping. In multi-layered conceptual spatial mapping,
spatial knowledge is represented at different levels of abstraction, ranging
from low-level metric maps to symbolic conceptual representations. It ad-
dresses the diverse needs involved in representing spatial knowledge for sit-
uated action and human-robot interaction. We give an overview of relevant
topics in human cognition that need to be taken into account when designing
robotic systems that are supposed to act for and among humans. We then
describe different existing individual mapping techniques that can be inte-
grated into a multi-layered conceptual spatial map, with a special emphasis
on ontological reasoning techniques that can be employed at the highest level
of abstraction in order to link the internal robotic spatial representations to
human-compatible concepts and symbols.

Relation to WP Abstracting from raw metric sensor data to a spatial
representation that is meaningful in a situated human robot dialogue (Task
3.4) is a crucial capability for any cognitive robot, as demonstrated in the
Dora scenario,
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2.2 K. Sjöö, “Semantic map segmentation using function-
based energy maximization”

Bibliography K. Sjöö, “Semantic map segmentation using function-based
energy maximization”, In Proc. of the International Conference on Robotics
and Automation (ICRA), 2012

Abstract This work describes the automatic segmentation of 2-dimensional
indoor maps into semantic units along lines of spatial function, such as con-
nectivity or objects used for certain tasks. Using a conceptually simple and
readily extensible energy maximization framework, segmentations similar
to what a human might produce are demonstrated on several real-world
datasets. In addition, it is shown how the system can perform reference res-
olution by adding corresponding potentials to the energy function, yielding
a segmentation that responds to the context of the spatial reference.

Relation to WP The work presented in this paper details one possibility
to abstract from metric floor plans into functionally relevant spatial regions
(Task 3.5), thus feeding into the multi-layered conceptual spatial map de-
scribed in the work in Annex 2.1.
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2.3 N. Hawes et al., “Towards a Cognitive System That Can
Recognize Spatial Regions Based on Context”

Bibliography N. Hawes, M Klenk, K. Lockwood, G.S. Horn and John
D. Kelleher, “Towards a Cognitive System That Can Recognize Spatial Re-
gions Based on Context”, Proceedings of the 26th National Conference on
Artificial Intelligence (AAAI), 2012

Abstract In order to collaborate with people in the real world, cognitive
systems must be able to represent and reason about spatial regions in human
environments. Consider the command “go to the front of the classroom”.
The spatial region mentioned (the front of the classroom) is not perceivable
using geometry alone. Instead it is defined by its functional use, implied by
nearby objects and their configuration. In this paper, we define such areas
as context-dependent spatial regions and present a cognitive system able
to learn them by combining qualitative spatial representations, semantic
labels, and analogy. The system is capable of generating a collection of
qualitative spatial representations describing the configuration of the entities
it perceives in the world. It can then be taught context-dependent spatial
regions using anchor points defined on these representations. From this we
then demonstrate how an existing computational model of analogy can be
used to detect context-dependent spatial regions in previously unseen rooms.
To evaluate this process we compare detected regions to annotations made
on maps of real rooms by human volunteers.

Relation to WP This paper presents a new approach to representing
regions of space whose presence and shape are dependent on spatial context,
i.e. the objects present in a scene and their configuration. Regions of this
nature are of particular relevance to this WP because they represent an
approach to building functional models of space (Task 3.5) without explicitly
representing human activity, and they are a type if regions that humans may
make reference to when talking to a robot (Task 3.4).
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2.4 K. Zhou et. al, “Web Mining Driven Semantic Scene
Understanding and Object Localization”

Bibliography K. Zhou, K. M. Varadarajan, M. Zillich, M. Vincze, “Web
Mining Driven Semantic Scene Understanding and Object Localization”,
IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.
2824-2829, 2011

Abstract Knowledge acquisition from the Internet for robotic applications
has received widespread attention recently. It has turned out to be an impor-
tant supplementary or even a complete replacement to conventional robotic
perception. In this paper, we investigate state-of-the-art online knowledge
acquisition systems for robotic vision applications and present a framework
for further fusion and tighter integration. Boot-strapped by an intercon-
nected process wherein modules for object detection and supporting struc-
ture detection co-operate to extract cross-correlated information, a web text
mining technique using sequential pattern retrieval is introduced for linking
the search of objects with their potential localities. Experiments using an
indoor mobile robot for an Active Visual Search (AVS) task demonstrate the
benefits of our coherent framework for visual representation and knowledge
acquisition from the Internet.

Relation to WP One of the reasons for the importance of knowing about
the semantics of space is that it allows to formulate expectations of what
to find there, where the semantics of a space is related to the function it
provides (Task 3.5). In the above work we use information from the web to
identify typical object locations.
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2.5 K. Zhou et. al, “Web Mining Driven Object Locality
Knowledge Acquisition for Efficient Robot Behavior”

Bibliography K. Zhou, M. Zillich, M. Vincze, “Web Mining Driven Ob-
ject Locality Knowledge Acquisition for Efficient Robot Behavior”, submit-
ted to the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2012

Abstract As an important information resource, visual perception has
been widely employed for various indoor mobile robots. The common-sense
knowledge about object locality (CSOL), e.g. a cup is usually located on
the table top rather than on the floor and vice versa for a trash bin, is a
very helpful context information for a robotic visual search task. In this pa-
per, we propose an online knowledge acquisition mechanism for discovering
CSOL, thereby facilitating a more efficient and robust robotic visual search.
The proposed mechanism is able to create conceptual knowledge with the
information acquired from the largest and the most diverse medium – the
Internet. Experiments using an indoor mobile robot demonstrate the effi-
ciency of our approach as well as reliability of goal-directed robot behaviour.

Relation to WP One of the reasons for the importance of knowing about
the semantics of space is that it allows to formulate expectations of what
to find there, where the semantics of a space is related to the function it
provides (Task 3.5). In the above work we use information from the web to
identify typical object locations.
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2.6 A. Aydemir and P. Jensfelt, “Exploiting and modeling
local 3D structure for predicting object locations”

Bibliography A. Aydemir and P. Jensfelt, “Exploiting and modeling local
3D structure for predicting object locations”, submitted to the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2012

Abstract In this paper, we argue that there is a strong correlation between
local 3D structure and object placement in everyday scenes. We call this
the 3D context of the object. In previous work, this is typically hand-
coded and limited to flat horizontal surfaces. In contrast, we propose to
use a more general model for 3D context and learn the relationship between
3D context and different object classes. This way, we can capture more
complex 3D contexts without implementing specialized routines. We present
extensive experiments with both qualitative and quantitative evaluations of
our method for different object classes. We show that our method can be
used in conjunction with an object detection algorithm to reduce the rate
of false positives. Our results support that the 3D structure surrounding
objects in everyday scenes is a strong indicator of their placement and that
it can give significant improvements in the performance of, for example, an
object detection system. For evaluation, we have collected a large dataset
of Microsoft Kinect frames from five different locations, which we also make
publicly available.

Relation to WP Similar to Annex 2.4 this work deals with object search,
where in this case the local 3D context around an object encodes local
functional understanding (Task 3.5), e.g. a door handle being attached to
the vertical door blade next to the door frame.

EU FP7 CogX 12
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2.7 A. Aydemir et. al, “Kinect@Home: Crowdsourcing a
Large 3D Dataset of Real Environments”

Bibliography A. Aydemir, D. Henell, P. Jensfelt and R. Shilkrot, “Kinect@Home:
Crowdsourcing a Large 3D Dataset of Real Environments”, AAAI Spring
Symposium 2012: Wisdom of the Crowd

Abstract We present Kinect@Home, aimed at collecting a vast RGB-D
dataset from real everyday living spaces. This dataset is planned to be the
largest real world image collection of everyday environments to date, making
use of the availability of a widely adopted robotics sensor which is also in
the homes of millions of users, the Microsoft Kinect camera.

Relation to WP The crowd-sourcing project presented in this work pro-
vides (amongst others) the training data for the learning mechanism in An-
nex 2.6.
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Multi-Layered Conceptual Spatial Mapping
Representing Spatial Knowledge for Situated Action
and Human-Robot Interaction

Hendrik Zender

Abstract In this chapter, we present the principle of multi-layered conceptual spa-
tial mapping. In this approach, spatial knowledge is represented at different levels
of abstraction, ranging from low-level metric maps to symbolic conceptual repre-
sentations. The approach addresses the diverse needs involved in representing spa-
tial knowledge for situated action and human-robot interaction. In the beginning of
this chapter, we give an overview of relevant topics in human cognition. We then
describe existing robotic mapping techniques that can be integrated into a multi-
layered conceptual spatial map, with a special emphasis on ontological reasoning
techniques that can be employed at the highest level of abstraction to link the robot’s
spatial representations to human-compatible concepts and symbols. We conclude
with a discussion of how ontological knowledge can be bootstrapped from available
linguistic and commonsense databases, and how such knowledge can be quantified
in order to support probabilistic action planning for more efficient robot behavior.

1 Introduction

If we want intelligent autonomous robots to efficiently collaborate with humans in
everyday tasks, they must have the capabilities to to engage in situated human-robot
interaction. This implies that they must be able to understand their spatial environ-
ment and its semantics in a way that is compatible with the way their human users
do. If they are furthermore expected to conduct situated spoken dialogues, their spa-
tial model must be expressible in natural language. The problem is complicated by
the fact that intelligent mobile robots must be endowed with navigation capabili-
ties that take into account the specific sensors and actuators the robot is equipped
with. Such autonomous, interactive, mobile robotic systems must thus have access

H. Zender
Language Technology Lab, German Research Center for Artificial Intelligence (DFKI),
Saarbrücken, Germany, e-mail: zender@dfki.de
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to low-level spatial representations that are suitable for fine-grained control, while at
the same time their representations must afford a human-compatible spatial under-
standing. The challenge is to establish such qualitative representations on the basis
of low-level maps that are built from sensor input.

The kinds of autonomous robots that we consider in this work operate in dy-
namic, large-scale environments. These environments are subject to change and
cannot be apprehended as a perceptual whole. At the same time, the robots have
the possibility to alter the world around them, and to perform actions that allow
them to extend their own knowledge. For this to be successful, their knowledge
representation must be able to deal with changing and incomplete information.

In the following, we will discuss an approach to multi-layered conceptual spa-
tial mapping that addresses the aforementioned challenges. In this approach, spatial
knowledge is represented at different levels of abstraction, ranging from low-level
metric maps to symbolic conceptual representations. We will also discuss reasoning
methods that can be performed using such spatial conceptual knowledge in order to
overcome the problem of partial information at the sensory-symbol interface.

Two different instantiations of the multi-layered conceptual spatial mapping
approach have been implemented in the two integrated robotic systems “Dora”
[93, 36, 35, 34] and its predecessor the “CoSy Explorer” [48, 100, 37, 80] shown in
Figure 1. The principles discussed here will be illustrated with examples from these
integrated systems.

After an introduction to the challenges involved in representing spatial knowl-
edge for situated action and human-robot interaction in Section 2, we discuss simi-
lar approaches and other related work in Section 3. Section 4 presents an overview
of relevant topics in human cognition that need to be taken into account when de-
signing robotic systems that are supposed to interact with humans. In Section 5
we describe an approach to multi-layered conceptual spatial mapping that makes
use of different existing techniques for representing spatial knowledge on different
levels of abstraction. Section 6 continues with a discussion of symbolic reasoning
techniques that can be used at the highest level of abstraction, in order to link the
internal robotic spatial representations to human-compatible concepts and symbols.
In Section 7 we discuss how ontological knowledge can be bootstrapped and dis-
ambiguated using available resources for linguistic and commonsense knowledge
(WordNet and Open Mind Indoor Common Sense Project, respectively). We fur-
thermore describe how a search engine (Bing image search) can be leveraged to
quantify commonsense facts in order to support probabilistic action planning for
more efficient robot behavior. We conclude in Section 8 with a reflection of the
presented approach.

2 Motivation

Both the robotics community and the cognitive sciences are concerned with research
question of spatial understanding and its connection to acting and interacting. While
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Fig. 1: Autonomous mobile robots – the CoSy Explorer (left) and Dora (right) –
operating in an office building.

there has been a lot of progress on the individual, and unrelated, aspects of au-
tonomous robot mapping and navigation on the one hand, and on human spatial
cognition on the other, more intelligent and more interactive robots that are sup-
posed to act as assistants or companions for their human users need to bridge that
gap.

Unless such a robot is equipped with a form of external localization – such as
robots acting in instrumented environments (which, in turn, are faced with their
own challenges [20]) – it must be equipped with sensors that allow it to perceive
its surroundings. In the simplest case, such sensors are only used to prevent the
robot from hitting an obstacle1 or to enable the robot to move to a fixed target
position.2 This, however, does not amount to much spatial understanding other than
a robot-centric frame of reference that captures the here-and-now. An understanding
of larger spatial structures requires that the robot at least be able to represent – i.e.,
remember and retrieve – landmarks that are outside the currently observable part of
space.

We are driven by the research question of spatial understanding and its con-
nection to acting and interacting in indoor environments. We want to endow au-
tonomous robots with the capability to conduct spatially situated dialogues. For this
robots must be able to understand space in terms of concepts that can be expressed

1 For instance, the e-puck educational robot is equipped with eight infrared (IR) proximity sensors,
which measure the presence of nearby obstacles [64].
2 The iRobot Roomba autonomous vacuum cleaner has the capability to find its way to a docking
station by sensing the IR signals that the station emits.



4 Hendrik Zender

in, and resolved from natural language. As soon as human-robot interaction is re-
quired, a further spatial abstraction from the robot’s sensory perception to human-
compatible symbols becomes key.

We start from the assumption that the environment is not instrumented in order
to facilitate the mapping problem. The kinds of environments that we are interested
in are indoor spaces that are designed by humans for humans – and that are in-
tuitively and easily understood by humans. This includes ordinary and everyday
indoor office environments or apartments that are populated by humans working
and living there. We call this class of environments that are made and designed
by humans for being used and populated by humans human-oriented environments.
Figure 1 demonstrates examples of different human-oriented environments in which
autonomous agents have to operate. In order to provide some intuition about what a
robot’s external perception is like, Figure 2 shows how a robot’s sensors (cameras
and laser range finders) observe its environment.

Spatial understanding comprises two aspects. For one, it concerns categorization
of space. That is, which are the concepts that describe spatial units, and how are
they determined? Secondly, it concerns structuring of spatial organization. That is,
how are the units related that a human-oriented environment is composed of? We
call spatial knowledge representations that address these issues human-compatible
representations of space.

3 Related Work

This work builds upon and extends the author’s previous research on multi-layered
conceptual spatial mapping [97, 100] in the tradition of approaches like the (Hybrid)
Spatial Semantic Hierarchy by Kuipers et al. [50, 51, 5], the Route Graph model by
Krieg-Brückner et al. [92, 46], Buschka and Saffiotti’s hybrid maps [10], as well as
multi-hierarchical semantic maps for mobile robots by Galindo et al. [28, 27].

A number of methods originating in robotics research have been presented that
construct multi-layered environment models. These layers range from metric sensor-
based maps to abstract conceptual maps that take into account information about
objects acquired through computer vision methods. Vasudevan et al. [89] suggest
a hierarchical probabilistic representation of space based on objects. The work by
Galindo et al. [28, 27] presents an approach containing two parallel hierarchies, spa-
tial and conceptual, connected through anchoring. Inference about places is based
on objects found in them. This approach is based on the Multi-AH-graph model by
Fernandez and Gonzalez [22]. The work by Diosi et al. [16] creates a metric map
through a guided tour. The map is then segmented into discrete rooms according to
the labels given by the instructor. Furthermore, the Hybrid Spatial Semantic Hierar-
chy (HSSH), introduced by Beeson et al. [5], allows a mobile robot to describe the
world using different representations, each with its own ontology.

More recently, Pronobis et al. [75] have presented a refined approach to multi-
layered mapping, in which, inter alia, the representations of the lower map layers
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(a) Perspective image taken from a digital cam-
era mounted on the top platform of the robot
(height: 140cm, field of view: 68.9◦).

(b) Omnidirectional image taken from a digital
camera facing up towards a hyperbolic mirror
(height: 116cm, field of view: 360◦).
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(c) Frontier of the corresponding laser range scan taken at a vertical height
of 30cm in parallel to the floor plane (field of view: 180◦).

ActivMedia ActivMedia iRobot
PeopleBot at Pioneer-3 at ATRV-Mini at
Saarbrücken Freiburg Ljubljana

Figure 3: Three different mobile platforms employed for image acquisition at the three labs. The portable
socket with the camera setup is shown in the top right corner.

illumination and weather conditions that could be classified into three groups: sunny weather, cloudy
weather and night. For the different illumination conditions, the acquisition procedure was repeated at
least thrice, resulting in a minimum of three image sequences, acquired one after the other, under similar
conditions.

At each lab, two different paths were followed by the robot during image acquisition: (a) the standard
path, where the robot was driven across rooms that are most likely to be found in most labs; (b) the
extended path, where the robot was driven across all the available rooms. Figure 4-5 presents the two
types of paths that the robot followed in each environment. The extended path generally contained
more rooms than the standard path, and the additional rooms are usually specific for each particular
lab. In each case, a set of standard and extended image sequences was collected at each lab. Detailed
information about the number of sequences in the database can be found in Table 3. Table 4 presents a
list of rooms covered by each sequence type at each lab. Due to the manual control of the robot, strong
viewpoint variations can be observed between different sequences, even if they were recorded following
the same type of acquisition path. The total number of frames in each image sequence depends on the
lab and the path that the robot followed (roughly 1000-2800 for Saarbrücken, 1600-2800 for Freiburg
and 2000-2700 for Ljubljana).

5 Data Annotation

In order to label the acquired images, the same procedure as in [3, 2] was followed: the robot pose was
estimated during the acquisition process using a laser-based localization technique [1]. The pose was
represented in a predefined global coordinate system (see Appendix C). Each image was then labeled
as belonging to one of the available rooms according to the position (i.e. estimated coordinates in the
global coordinate system) of the robot at the moment of acquisition. This strategy could not be directly
followed in Ljubljana, because the robot patform did not have a laser scanner. Thus, for the sequences
captured in Ljubljana, the annotation procedure was accomplished using odometry data with manual
corrections. Description of the file format used to store odometry and laser range data can be found in
Appendix B.

For the perspective camera, an important consequence of this annotation procedure is that when the

5

(d) The mobile robot used for acquiring the sensor data. The cameras and the laser scan-
ner can be seen on the top and bottom platforms, respectively.

Fig. 2: Office environment “seen” from the point of view of different robot sen-
sors. Still images and sensor readings taken from the CoSy Localization Database
(COLD) [72].
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were re-defined, and a probabilistic inference engine is used for reasoning with the
discrete symbols in the conceptual map layer.

Lemaignan et al. [54] present a similar approach to endowing robots with spa-
tial representations that allow them to act in and talk about their environment. Their
framework has the advantage of providing a kind of theory of mind that allows the
robot to reason about the perspective of its interlocutor in order to disambiguate
and ground natural-language instructions. While our approach addresses the spe-
cific challenges involved when engaging in dialogues about spatial environments
that are larger than what can be perceived at once (cf. Section 4.2), their approach
focusses on adequate reasoning techniques for shared visual scenes, like, e.g. table-
top scenarios.

With the availability of affordable 3D sensors and appropriate techniques for us-
ing them for robotic mapping purposes, a number of approaches for building layered
representations of 3D space have been proposed recently. The KNOWROB-MAP
framework [84] combines low-level metric costmaps, maps of 3D point clouds, and
ontological knowledge bases into a semantic environment model of places, object
locations, and afforded actions. Pangercic et al. [70] use natural-language task in-
structions from the WWW to construct a Description Logics-based knowledge base
for tabletop scenarios. Tenorth et al. [83] present a framework that allows mobile
service robots to use multiple web-based knowledge sources (including OMICS,
WordNet and an internet image search engine) in order to perform everyday manip-
ulation tasks. While these approaches are especially useful for (mobile) manipula-
tion in human-oriented environment (e.g., kitchens [7]), our approach has a stronger
focus on human-robot interaction and situated human-robot dialogues.

Viswanathan et al. [90, 91] propose another approach that makes use of existing
commonsense knowledge resources. They use the LabelMe dataset to train an auto-
mated place classifier that relies on the presence of detected objects to infer which
other objects are likely to occur nearby and which kind of place (e.g., kitchen or
office) is seen in the scene.

4 Background

An important issue in cognitive science, psychology, and linguistics is the question
how the mind processes sensorimotor stimuli in order to form abstract representa-
tions that are available for higher-level reasoning as well as language production and
understanding. A related question is how words, being arbitrary symbols, get their
meaning and how this meaning is grounded in reality, i.e., how words can refer to
things and circumstances in the world.

On the lowest level of sensorimotor abstraction, the mind performs categoriza-
tion. Categorization is a basic skill of structuring sensory input by abstraction and
simplification. It is an essential capability of every neural system in humans and
animals alike, or as Lakoff and Johnson put it, “every living being categorizes,”
and every “living system must categorize” [52]. By categorization, it is possible
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to reduce the complexity of the input by relating it to previous input patterns, i.e.,
past experiences. With more and more experience, more and more categories are
formed, and existing ones are refined. Most of category-forming and categorization
is a sub-conscious process, while only a small part of it can be subject to conscious,
deliberate cognitive action [52].

Concepts are higher-level cognitive representations of our mental categories. The
concept system is accessible for reasoning and inference and thus part of our con-
scious thinking. Concepts are often formed around prototypes – either ideal or aver-
age representatives of their concept, or ones that possess only elementary properties.
Prototypes allow to draw inferences about category members in the absence of any
special contextual information [52].

4.1 Categorizing space

We are concerned with the question of how one can refer linguistically to a spatial
structure – e.g., a room, a place, or an object in a specific location – in a given
situation, and how one can appropriately act in such a space. Categories determine
how people can interact with, and linguistically refer to entities in the world. By
naming a referent, people categorize it.

Brown identifies that people in one community prefer the choice of one par-
ticular name for classes of things over the many other possible names. “The most
common name is at the level of usual utility” [9]. This theory is regarded as the first
approach towards the notion of basic-level categories further developed by Rosch
[79]. The basic-level category of a referent is assumed to provide enough informa-
tion to establish equivalence with other members of the class while distinguishing
it from non-members. It has also been shown that the concept of an object evokes
certain expectations about how to interact with it [8]. In a nutshell, basic-level cat-
egories represent the most appropriate name for a thing or an abstract concept. The
basic-level category of a referent is assumed to provide enough information to es-
tablish equivalence with other members of the class, while distinguishing it from
non-members.

Our work rests on the assumption that the basic-level categories of spatial entities
in an environment are determined by the actions they afford. Many types of rooms
are designed in a way that their structure and spatial layout afford specific actions,
such as corridors, or staircases. Other types of rooms afford more complex actions.
These are in most cases provided by objects that are located there. For instance, the
concept ‘living room’ applies to rooms that are suited for receiving and entertaining
guests, spending time with the family, and other recreational and leisure activities.
These activities, in turn, can be afforded by certain objects, such as couches, chairs
and tables, or TV sets. Living rooms are typically furnished with such objects. This
means that besides basic geometric properties, such as shape and layout, the objects
that are located in a room are a reliable basis for appropriately categorizing that
room.
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We furthermore assume that the basic-level categories that people use to refer to
spatial areas are located at one level lower than the more general category ‘room’. Of
course, rooms can have proper names and it is common usage in office environments
to label rooms systematically, e.g., by assigning unique, ordered numbers, but still it
is uncommon in everyday talk that people use these proper names to refer to a spatial
entity. People instead refer to rooms with their general names, which correspond to
basic-level categories such as ‘kitchen,’ ‘library,’ or ‘lobby.’

We draw from these notions when categorizing the spatial areas in the robot’s
conceptual map. We are specifically concerned with determining appropriate prop-
erties that allow a robot to both successfully refer to spatial entities in a situated
dialogue between the robot and its user, and meaningfully act in its environment.

4.2 Structuring space

Research in cognitive psychology addresses the inherently qualitative nature of hu-
man spatial knowledge. It tries to answer the question how the human mind rep-
resents spatial information in a so-called cognitive map. Following the results of
empirical studies, it is nowadays generally assumed that humans adopt a partially
hierarchical representation of spatial organization [81, 61]. The basic units of such
a qualitative spatial representation are topological regions [14], which correspond to
more or less clearly bounded spatial areas. The borders may be defined physically,
perceptually, or may be purely subjective to the human. It has been shown that even
in natural environments without any clear physical or perceptual boundaries, hu-
mans decompose space into topological hierarchies by clustering salient landmarks
[40]. In our approach, topological areas are the primitive units of the conceptual map
that is used for human-robot interaction and dialogue, and the basic spatial relation
is topological inclusion.

Recent advances in cognitive neuroscience have found evidence for brain struc-
tures that supply the topological representations of the so-called “place-cells” with
a metric one encoded in the so-called “grid cells” [41]. This does not contradict the
assumption that the global-scale representation of large-scale space in the cogni-
tive map is a topological one. It rather provides insight into how local scenes, i.e.,
small-scale space, might be represented in the human mind and speaks in favor of a
multi-layered, hybrid representation of space in the cognitive map.

Large-scale space and small-scale space

There is an important distinction to make when investigating any kind of spatially
situated behavior, be it acting, planning, observing, learning, or communicating,
namely if it pertains to space that constitutes the agent’s immediate surroundings
(small-scale space), or if it pertains to larger spatial structures (large-scale space)
[39, 38].
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Kuipers defines large-scale space as “a space which cannot be perceived at once;
its global structure must be derived from local observations over time,” whereas
small-scale space consist of the here-and-now. For example, a drawing is a large-
scale space “when viewed through a small movable hole, while a city can be small-
scale when viewed from an airplane” [49]. In more common everyday situations,
an office environment, one’s house, a city, or a university campus are large-scale
spaces. A table-top or a particular corner of one’s office are examples of small-scale
space.

Segmenting and partitioning space

The physical properties of containers and surfaces belong to the “first and most
frequent spatial concepts taught” to children [25]. Since these spatial concepts are
among the first to be experienced through our own embodiment, they give rise to
the basic cognitive schemata for spatial and metaphorical thinking. The so-called
container schema represents one of the most pervasive and intuitive spatial relations,
namely containment [52]. Another schema that is acquired early on is the notion of
surface-support, i.e., the surface schema. In natural language they are expressed by
the topological locatives “in” and “on,” which are among the most frequently used
prepositions [15].

As mentioned earlier, it is important that autonomous agents which are supposed
to interact with humans in a human-oriented environment have a notion of spatial
units that are also meaningful for humans. Topological regions are such units that
are meaningful to humans. We call the units of indoor spaces areas. We distinguish
between two basic kinds of areas. Rooms are spatial areas whose primary purpose
is defined by the kinds of actions they afford. The other major class of indoor areas
are passages whose primary purpose is to link rooms and provide access to other
spatial areas. This very basic distinction already allows mobile robots to employ a
human- and situation-aware motion behavior in the vicinity of humans [95].

The challenge for intelligent agents is to autonomously build spatial represen-
tations that are composed of such areas. The previously mentioned distinction be-
tween physical, perceptual and subjective boundaries of topological areas corre-
sponds to a spatial segmentation along geometric features versus functional fea-
tures. In indoor environments, walls are the physical boundaries of areas. They de-
termine the geometric layout of the space they surround. Functional features, as
mentioned before, can be determined by specific objects – but also by the spatial
layout and the composition of the objects and their surroundings.3 Similarly, the
gateways that link areas can be defined geometrically or on a functional-perceptional
basis.

However, the sensors of a robot are not particularly geared towards perceiving
architectural structures. Neither do computer vision methods exist that allow to vi-

3 Strictly speaking, the presence of a coffee machine alone does not turn a room into a kitchen – it
could as well be a storeroom. The space in the room must afford the preparation of coffee, just as
the coffee machine must be reachable and usable.



10 Hendrik Zender

sually recognize arbitrary objects – let alone their functional affordances. Currently,
the main purpose of robotic exteroceptive sensors is to discriminate free space from
physical obstacles, and to provide a means for localizing the robot with respect to
local landmarks. It is therefore necessary to make use of other cues to segment an
environment into topological units.

A special kind of free space are geometrically bounded gateways. In a spatial rep-
resentation that is based upon free space and its inter-connectivity, gateways play an
important role in structuring and segmenting free space. In a map that only implic-
itly represents the boundaries of spatial areas, gateways divide space into regions
that belong to one spatial area from regions that belong to other spatial areas. “Cog-
nitively this allows the world to be broken up into smaller pieces” [11]. Gateways
constitute an important factor for spatial cognition and navigation of autonomous
agents in large-scale space [12]. Chown et al. [13] explain the special role of gate-
ways for autonomous robots like this:

“In buildings, these [gateways] are typically doorways; [. . . ] Therefore, a gateway occurs
where there is at least a partial visual separation between two neighboring areas and the
gateway itself is a visual opening to a previously obscured area. At such a [location], one
has the option of entering the new area or staying in the previous area.”

Later we show how our approach makes use of information about doorways in
order to maintain a representation that is composed of rooms as spatial units that
correspond to how humans segment indoor environments.

Hierarchical subdivision of space

One prominent spatial relation we experience physically and abstractly every day
is spatial containment. Egenhofer and Rodriguez [17] consider the space within a
room as a small-scale space in which people experience cognitive image schemata,
e.g., the container-surface schema. However, people routinely employ the same
schemata to larger structures, for example when saying “the bench is in the gar-
den” [52]. Similar to objects that are inside a room, streets are in a city, and several
districts form a country. The space around us can thus be decomposed into smaller
units, or can combine with other spatial units to larger regions. The container schema
can – with a few constraints – also be applied to large-scale space – at least when
considering objects of comparable size and similar observation scale [78]. Figure 3
illustrates such a spatial containment hierarchy for a large-scale space environment.

Containment of objects or spatial units is a productive schema for spatial lan-
guage [15], and one of the structuring principles in the cognitive map [81, 61].
Likewise, hierarchical subdivisions of space are a basic topological relation for ge-
ographical information systems (GIS) [60, 88].

Topological hierarchies can be expressed as spatial-relation algebras, which, un-
like usual computational geometry-based calculations, “rely on symbolic computa-
tions over small sets of relations. This method is very versatile since no detailed
information about the geometry of the objects, such as coordinates of boundary
points or shape parameters, is necessary to make inferences” [17]. This makes them
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Fig. 3: Example for a hierarchical subdivision of an office environment. The arrows
denote the containment relation.

a prime candidate for a basic human-compatible relation to structure and subdivide
space.

Conceptually, containment does not form a strict hierarchy. One spatial region
can be contained in several different spatial regions, which, in turn, might not be
in a containment relation. Consider, for example, an intersection of two corridors.
While the intersection itself forms a spatial region, it can also be assumed to be a
part of each individual corridor. The representation of spatial abstraction hierarchies
is thus rather a partially ordered set (poset) [42].

5 Multi-Layered Conceptual Spatial Mapping

If an autonomous robot is required to perform navigation tasks, it must have access
to low-level spatial representations that are suitable for fine-grained hardware con-
trol. These are typically quantitative spatial representations, such as metric coordi-
nate systems. Metric maps rely on accurately measurable distances and dimensions.
The sensors modern robots are typically equipped with, such as time-of-flight cam-
eras or laser range finders, provide quite exact measurements of free and occupied
space in the robot’s surrounding. Such sensor readings are hence often stored in
metric maps of different kinds.

Humans, on the other hand, use the topological structuring of space to form a
more qualitative sense of space. This is reflected in natural language, which is full
of vague, qualitative spatial expressions. In order to be able to communicate success-
fully and naturally with humans, robots must be able to establish such a quantitative
spatial understanding on the basis of the low-level maps they can build from their
sensory input.

To this end, we present multi-layered conceptual spatial mapping. The ap-
proach addresses the problems of human-compatible structuring and categorization
of space. It comprises spatial representations at different levels of abstraction, rang-
ing from low-level metric maps to symbolic conceptual representations, as illus-
trated in Figure 4.
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In order to address the diverse requirements ranging from “low-level” robot con-
trol and “high-level” human-robot interaction, a multi-layered conceptual spatial
map can be divided into three major strata. The low-level metric map layer en-
compasses sensor-based maps with specialist representations for robot navigation,
localization, and control. The intermediate topological map layer provides a ba-
sic abstraction of metric space into regions. On the highest level of abstraction,
the conceptual map layer augments spatial units with human-compatible symbols
inside a representation that allows for reasoning and inferencing. In the presented
approach, the available spatial information gets coarser while the conceptual knowl-
edge increases with each abstraction step. The details of performing reasoning in the
conceptual map layer will be described in Section 6.

5.1 The metric map layer

The lowest level of robot mapping (also referred to as the sensory map layer) typi-
cally makes use of metric maps that serve the principal purpose of allowing the robot
to safely navigate its environment while staying localized within its representation
of large-scale space.

This self-localization can be performed in an absolute frame of reference or in
a relative frame of reference with respect to a local landmark. Different existing
approaches to robot mapping of large-scale space hence generate metric maps of
different sizes. While several approaches construct global metric maps of the whole
operating environment [24, 23, 77], there is a tendency to reduce mapping complex-
ity by representing larger environments by means of interrelated local maps [6, 43].
Many of these metric maps are constructed using the Simultaneous Localization
and Mapping technique (SLAM) [55]. This has the consequence that the features
of the spatial representation are typically only meaningful with respect to the algo-
rithms that work on these representations. These include, for instance, occupancy
grid maps (cf. Figure 5a), which address the challenge of representing which parts
of an environment are likely to be free and unobstructed, and which ones contain po-
tential obstacles [85], or line maps that represent static features of the environment
that facilitate SLAM (cf. Figure 5b).

As a result, such maps are essentially metric representations of positions of free
versus occupied space, rather than faithful models of the architectural structure
around that free space. In contrast to this, what we need are human-like features.
In order to be able to talk in and about space, the agent needs to abstract from its
internal, machine-compatible representations of space to a level that is at least com-
parable to the way humans perceive of space.
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Fig. 4: The different layers of a multi-layered conceptual spatial map.

5.2 The topological map layer

In order to allow for efficient path planning it is common practice to abstract away
from sensor-based metric maps. The first abstraction step is discretization of the
continuous metric space. Examples of such a discretization are free-space markers
[53, 69] which are used to form a navigation graph map layer in the implementa-
tion of the CoSy Explorer [100]. Recently [74] introduced the notion of places to
form an intermediate map layer, which is part of the integrated robotic system Dora
[34]. Such representations of the connectivity of free space provide the input to effi-
cient graph-based path planning algorithms, e.g., A*. Often, such graph nodes (i.e.,
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Chapter 5: Tests and Results 40

Figure 5.2: Results after running on St.Pere Pescador Dataset(a) Underwater grid map of a marina in San Pere
Pescador, Spain [77, 45].

(b) Sparse line-feature map of
an indoor environment [100].

Fig. 5: Examples of robotic spatial representations for SLAM.

distinct places) are augmented with semantic mapping information based on place
classification [66] or place categorization [73].

This level of discretization provides a basic notion of the topological structure
of an environment. However, the discrete units are not guaranteed to be meaningful
to humans. It is thus necessary to aggregate the units of the intermediate layer into
human-compatible spatial units, such as rooms. This then provides a topological
partitioning that can be used for human-compatible structuring and categorization
of space. In this view, the exact shape and boundaries of an area are irrelevant. Basic
notions that are represented in such a map are adjacency and connectivity.

As discussed earlier in Section 4.2, the boundaries between such human-compatible
units can be established on the basis of gateways, based on geometric, or perceptual
features.

Martinez Mozos et al. [66] extract a topological semantic map from a metric one
using appearance-based features derived from laser range and visual data. Alterna-
tively, Friedman et al. [26] use Voronoi Random Fields for extracting the topological
structure from a fully explored grid map. Tapus et al. [82] describe an approach to
topological segmentation using a Bayesian door detector.

The approaches used in the CoSy Explorer [100] and in the Dora robot system
as described in [93, 35] use a door detector for on-line room segmentation dur-
ing the system’s exploration of the environment. Based on the information about
the connectivity of places and whether they constitute gateways or not, the topo-
logical layer forms rooms by clustering places that are transitively interconnected
without passing a doorway. Since door detection can malfunction (e.g., a doorway
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Fig. 6: The line feature map from Figure 5b overlaid with a graph of visited places.
The coloring of the nodes indicates their segmentation into rooms, based on detected
doorways (large red stars).

is not identified correctly and only later it is found and added to the map; or an
erroneous door detection is removed later in the light of new sensor information),
room formation must be a non-monotonic process in order to support the potential
for knowledge revision. Such an approach can be used as an on-line process that is
continuously operating during the robot’s run-time, maintaining instances of places
and rooms with acquired connectivity relations.

Figure 6 shows a graph of visited places within a metric line-feature map. Figure
7 illustrates the inherent non-monotonic nature of the mapping process we model.
(1) shows the initial state. Blue points indicate laser range readings, gray rectangles
are walls, and colored circles are (linked) nodes on a navigation graph. If nodes have
the same color, they are interpreted as belonging to the same room. (2) shows a se-
quence of nodes formed after moving around. All nodes belong to a single room (the
corridor) because the robot failed to detect the door it was passing through. In (3)
the robot has passed through, and successfully detected, a doorway (red node). This
triggers the creation of a new room. In (4) the robot has exited this room through an-
other doorway, re-entering the corridor. At this point, the robot is unaware that it has
returned to the same corridor as before. Only in (6) nodes become fully connected.
Now, the hypothesis for a new room raised in (4) is fused with the already existing
corridor hypothesis, creating a single room. In (7), the robot detects the doorway that
it had not spotted earlier, i.e., in (2). This leads to a separation of already observed
nodes, creating a new room (8).

Together, the intermediate place discretization layer and the topological layer
presented above provide an abstraction over continuous, sensor-based metric data.
The discrete units of the respective maps (e.g., places, navigation nodes, areas, ob-
jects, and landmarks) and the relations that hold between them (e.g., adjacency,
inclusion, visibility) serve as the symbolic basis for the conceptual map layer.
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Fig. 7: Exploration sequence of the robot Dora. Red nodes are doorways, colored
circles are free space nodes. Nodes having the same color are interpreted as be-
longing to the same room. Color changes of a node indicates a revision of a room
hypothesis, e.g., fusion of nodes into a single room (5→ 6) or separation into a new
room after observing a doorway (7→ 8).
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Room categorization

In recent years, the task of autonomous sensor-based room categorization for mobile
robots has received a lot of attention. Below we will briefly introduce room catego-
rization techniques that have been used with the multi-layered conceptual mapping
approach presented here.

A robust room categorization can be achieved by performing local semantic clas-
sifications of distinct places inside a room (cf. Section 5.2), and integrating these
classifications into a coherent room categorization. The multi-layered mapping ap-
proach by Zender et al. [100], a predecessor to the work presented here, makes use
of a semantic place classifier [66] that can classify a place belonging to either a room
or a corridor. A majority vote approach is then used to determine the area category
(i.e., either room or corridor).

The approach by Pronobis and Jensfelt [73] is a more recent technique for room
categorization that has been used for multi-layered conceptual spatial mapping.
Their approach derives properties (shape, size, appearance, topology, and occur-
rences of certain objects, inter alia) from low level sensory data (laser range scans
and camera images). A chain graph representation that supports incrementality and
non-monotonicity is then used to perform probabilistic inference of room categories
(anteroom, bathroom, computerlab, conferencehall, doubleoffice, hallway, kitchen,
meetingroom, professorsoffice, robotlab, and singleoffice). For each room, their ap-
proach then estimates the probability distribution of these category labels, over
which then the maximum a posteriori estimate is computed in order to obtain the
single best room category. More details can be found in [73].

Object detection

Besides information about rooms and their topology, the conceptual map layer needs
information concerning the locations and categories of concrete objects that exist in
the environment. This kind of information is provided by computer vision modules
that are trained on detecting and recognizing certain household or office environ-
ments. While these approaches are not discussed in detail, the following pointers
might act as starting points for further reading for the interested reader. The Scale
Invariant Feature Transform (SIFT) by Lowe [58] is a widely used algorithm for
object detection. The multi-layered conceptual mapping instantiation in the CoSy
Explorer [100, 29] makes use of a SIFT detector, combined with receptive field
cooccurrence histograms (RFCH) [18] for detecting smaller objects according to
the approach put forward by Ekvall et al. [19]. The Dora robotic system [34] uses
the vision algorithms from the BLORT toolkit [65] to detect objects in the images
from the robot’s cameras. Whenever an object is detected, its existence is stored in
the conceptual map along with its detected type and its location (see [100] for more
details).



18 Hendrik Zender

5.3 The conceptual map layer

The basic spatial unit of the conceptual map are the rooms of an environment. The
topological segmentation of the environment into rooms is provided by the lower
map layers. The conceptual map layer allows to reason about the types of those
rooms and about the kinds of objects that they contain. The rooms are assigned
their respective class, as determined by the room categorization module (e.g., [66]
or [73], see above)

In addition to information stemming from computer vision and sensor-based
room categorization, the conceptual map stores and incorporates information that
is given to the robot in natural language. This is typically done in situated dialogues
with a human user or tutor, e.g., in a so-called human-augmented mapping guided
tour [86, 87, 71]. This allows, for instance, to represent that the human user said
that “this room is the living room.” Kruijff et al. [48] explain natural language inter-
pretation for human-augmented multi-layered conceptual spatial mapping in more
detail.

Using a reasoner, new knowledge can then be inferred. The conceptual map af-
fords different kinds of reasoning (see Section 6) in order to provide a human-
compatible structuring and categorization of space that can be used for situated
human-robot interaction. This reasoning comprises instance knowledge about the
given environment as well as conceptual knowledge about indoor environments in
general. For example, suppose the robot knows that it is in an area classified as
“room” where there is a coffee machine and an oven, and suppose that it has the
knowledge that a kitchen typically contains such kitchen appliances, it can then infer
that this area is a kitchen. Like this, linguistic references to areas can be generated
and resolved even if the robot’s observations did not yield complete information.
This is a typical case of partial information that occurs, for instance, in human-
augmented mapping: the human user shows the robot where the coffee machine is,
and later asks the robot to “go to the kitchen” [87].

More information on linking natural language expressions to the spatial repre-
sentation can be found in [48, 100]. An approach to generating natural language
descriptions to spatial entities in large-scale space that makes use of the spatial rep-
resentations presented here can be found in [98, 99, 96]. Kruijff et al. [47] present
a comprehensive account on interpreting situated natural language in human-robot
interaction.

In the following, we describe how inference over known instances can be per-
formed in the conceptual map, and how hypotheses about unknown parts of the
environment can be generated.

6 Reasoning with Changing and Incomplete Spatial Knowledge

Our approach models conceptual knowledge in an ontological taxonomy. It is com-
posed of a commonsense ontology for indoor environments that describes necessary
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Fig. 8: A part of a handcrafted commonsense ontology of an indoor office environ-
ment. Solid arrows denote the taxonomical subclass relation. Labeled edges express
that the given subclass of Room is defined as being a Room that contains at least
one instance of the pointed-to Object subclass. T stands for the universal top-level
concept.

and sufficient conditions that spatial entities must fulfill in order to qualify for be-
longing to a certain concept. Our definitions of the concepts in the terminological
taxonomy are inspired by the way humans categorize spatial areas.

6.1 Ontologies

An ontology is a formal “explicit specification of a conceptualization” of an area of
interest [33]. Ontologies describe classes of objects, their properties, and relations
that can hold between them. Ontologies are used to formally define a shared termi-
nology, and to provide a semantic interpretation. They can be used as knowledge
base for automated reasoning. Description Logics (DL) comprise a family of logical
formalisms for ontology-based reasoning. Ontologies are suitable for representing
the knowledge about a given domain in a way that is understandable by humans and
computers.

In order to allow the robot to draw conclusions about its domain, the conceptual
map is equipped with an ontology of an indoor environment. This contains tax-
onomies (i.e., subclass relations) of room types, and couples room types to typical
objects found therein through contains relations. Figure 8 shows the handcrafted
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commonsense ontology that underlies the previous examples and that was used in
the Explorer robot [100].

6.2 Description Logics

We make use of the Web Ontology Language OWL4, more specifically its sub-
language OWL-DL, as the ontology language for the present work because of the
availability of different OWL reasoning software, its wide acceptance as a standard
for ontology engineering, and the resulting re-usability of resources. OWL-DL is
one kind of Description Logic.

Description Logics comprise a whole family of knowledge representations and
associated reasoning formalisms that are based on fragments of first-order logic [2].
DL-based knowledge representations distinguish three kinds of knowledge. Firstly,
a taxonomy of concepts represents the so-called terminological knowledge of the
domain. This part of the knowledge base is referred to as TBox. Secondly, the ABox
(for assertional knowledge) holds the knowledge about individuals in the domain.
We say that an individual a is an instance of a concept A if a instantiates A or
any of its subconcepts. Finally, DL ontologies contain a set of roles, sometimes
referred to as RBox, that can hold between individuals, and which are defined over
concepts. While the TBox expresses general, abstract knowledge of the domain, the
ABox contains a description of a specific state of affairs of the world. The interested
reader is referred to the Description Logic Handbook [2] for a more detailed account
of Description Logics, especially the formal DL syntax and semantics [3].

6.3 Reasoning

Subsumption and instance checking are the standard reasoning services that DL af-
fords [67]. The iterative process in which the different DL reasoning services infer
new facts from the TBox, ABox, and RBox axioms is called expansion. In pure De-
scription Logics, this is a monotonic process, i.e., the full expansion of a knowledge
base results from repetitive applications of the DL rules, irrespective of their order.
Unless the knowledge base is inconsistent, there is exactly one full expansion for a
given knowledge base.

Robotic systems, however, are faced with a world that is dynamic and only par-
tially observable at any point in time. Moreover, the robot’s perception of the world
might be incomplete or error-prone. As a consequence, its representation of the
world might be initially false and only over time become more accurate. Spatial
knowledge representations for autonomous mobile robots should thus be able to

4 http://www.w3.org/TR/owl/
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address these two challenges: reasoning with changing information, and reasoning
with incomplete information.

Belief revision

Belief Revision provides mechanisms for reasoning with changing information [30,
31, 68]. This is the case, e.g., in a world that is not static, or if the agent acquires
new information that invalidates older, potentially erroneous information.

The Jena reasoning framework5 offers built-in OWL-DL reasoning and rule in-
ference facilities. It allows for a basic form of belief revision by re-classifying the
knowledge base if a fact is withdrawn from it. This leads to the retraction of pre-
viously inferred facts once the conditions that allowed to draw the inference are
invalidated.

Default reasoning

The approach presented so far allows a mobile robot to reason about the known parts
of an environment, including reasoning with changing information.

However, if the robot needs to reason about (partially) unknown parts of its envi-
ronment, it is faced with potentially incomplete information. In order to overcome
this, and still come up with hypotheses and expectations about the unknown part
of its environment, it must be equipped with some form of background knowledge,
e.g., about what is typically found where. This, in turn, enables a planning module
to infer where an action might have its intended effect.

In one implementation of the Explorer system [37, 80], we presented an approach
to deriving default knowledge from OWL-DL ontologies. In brief, Default Logic
[76] allows to draw risky (i.e., potentially false or contradicting) conclusions from a
set of certain, but possibly incomplete, facts using rules called defaults [1]. Inference
from defaults differs from usual entailment in that defaults permit the derivation of
their consequences based on the absence of counter-evidence for their truth.

The standard syntax of a default δ is [1]:

δ =
α : β

γ

α , β , γ are first-order logic formulae. α is the prerequisite of the default rule,
β is called the justification, and γ is its consequent. Informally speaking, a default
δ can be interpreted like this: if α is true, and if it is consistent to assume β , then
conclude γ .

A special form of default reasoning is prototypical reasoning, which expresses
typical properties of instances of a concept. This notion is closely related to the

5 available online at http://jena.sourceforge.net/
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intuition behind the ontological knowledge representation we chose for our concep-
tual spatial knowledge base. Below we briefly sketch how generalized introspective
mechanisms can be applied to derive defaults from existing OWL-DL ontologies
in a principled way. The interested reader is referred to [94] for a more detailed
discussion.

Let us start with the following example that expresses the commonsense knowl-
edge that ovens are usually found in kitchens:

δoven =
Oven(x)∧Kitchen(y) : in(x,y)

in(x,y)
(1)

The above default contains free variables. It is a so-called open default that repre-
sents a set of defaults, where all variables are assigned values. Practically only those
substitutions are considered for which the prerequisite is satisfiable, i.e., in our case
only oven instances would be used to substitute the free variable x in the first place.
The same holds for the other free variable y. Note that this explicitly rules out hy-
pothesizing about unknown individuals. Nevertheless such a closed default would
allow an autonomous robot to hypothesize about the whereabouts of certain objects
in case their existence can be assumed. The robot could use this default knowledge
to come up with an informed guess where to look first for an oven. This can be
helpful both for the purely epistemic goal of achieving a better and more complete
knowledge of the world, and for executing a task, like finding a particular object.
Hawes et al. [37] illustrate how this kind of reasoning helps to infer facts that a
symbolic planner can use for goal-directed knowledge gathering, and planning of
complex actions.

Such prototypical knowledge is implicitly already represented in OWL-DL knowl-
edge bases. In order to generate a default from a concept definition, we propose to
use introspective meta-reasoning over necessary conditions. The concept definition
of Kitchen in Figure 8 can be decomposed into the following two necessary condi-
tions: Kitchen v Room and Kitchen v ∃ contains.KitchenObject. On the basis of such
concept definitions, open defaults like the following one can be constructed:

δcontains =
Kitchen(x)∧KitchenObject(y) : contains(x,y)

contains(x,y)
(2)

Following up on the human-augmented mapping example given in Section 5.3,
the robot knows which room contains the coffee machine, and it has already suc-
cessfully inferred that that room (let us call it AREA1) is of type Kitchen. Suppose
the robot is then asked to “turn off the oven.” So far the robot hasn’t known anything
about the existence of an Oven instance in the environment. The human’s mention
of “the oven” warrants the creation of a new symbol (let us call it OBJ5) of type
Oven in the knowledge base. This process is called presupposition accommodation,
and reflects the fact that if someone intends to make a felicitous reference to an
object, then that object must exist [44]. Given all this, it makes sense as a case of
prototypical default reasoning for the robot to assume that the given kitchen object
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is contained in a known kitchen.6 The open default above can then be instantiated
like this:

δcontains1 =
Kitchen(AREA1)∧Oven(OBJ5) : contains(AREA1,OBJ5)

contains(AREA1,OBJ5)
(3)

Note that the substitution of Oven for KitchenObject follows directly from onto-
logical class subsumption. The following tentative fact can then be concluded: con-
tains(AREA1, OBJ5). Through ordinary DL inference (inv contains−, role inversion),
the robot can infer: in(OBJ5, AREA1), allowing the planner to start its search for an
oven in the kitchen. An approach to distinguishing tentative facts (derived from ap-
plying default reasoning) and crisp facts (pure DL reasoning) in the knowledge base
through reification is discussed in [94].

7 Commonsense Knowledge for Situated Action and Interaction

While the ontologies mentioned so far were handcrafted, it is possible to leverage
existing resources of commonsense and linguistic knowledge for bootstrapping an
ontology of typical indoor places and objects.

Object and location types that are relevant for our domain are taken from the
Open Mind Indoor Common Sense7 (OMICS) project conducted by the Honda Re-
search Institute USA Inc. The OMICS project offers a large collection of user-
submitted common-sense facts that were collected with the express aim of making
indoor mobile robots more intelligent. Its advantage is its focus on indoor household
environments, which makes it valuable for our purposes.

The OMICS locations database (henceforth referred to as OMICS-L) com-
prises more than 5,800 user-given associations between common everyday objects
(ca. 2,900 unique types) and their typical locations (ca. 500 unique types). This pro-
vides us with a rich set of objects and locations, and their typical co-occurrence,
that are relevant for intelligent mobile indoor robots. Table 1 shows an excerpt from
OMICS-L.

Using the thus collected object and location terms, we then construct a taxonomy
that puts these terms in a subclass/superclass relation using the WordNet lexical
database8. WordNet [62, 21] is an extensive lexical database of English that has
found wide use for the word sense disambiguation task, e.g., [57, 4], but has also
been employed in the context of robotics [59].

6 Of course it is impossible to know for sure – without actually trying to perceptually verify its
truth. That is why it is not desirable to add the consequents as crisp facts to the OWL-DL knowledge
base, but instead only make it available as tentative fact to the planning domain [80].
7 http://openmind.hri-us.com/
8 http://wordnet.princeton.edu/
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Fig. 9: Part of the WordNet taxonomy with OMICS-L-asserted co-occurrences.
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Table 1: Some contributor asserted occurrences of ‘sink’.

object location
sink kitchen
sink laundry
sink washroom
sink bathroom
sink restroom
sink garage
sink bar
sink laundry room

The WordNet hypernym/hyponym relation constitutes a taxonomical order over
synsets. Combining the lexical taxonomy of WordNet with the commonsense knowl-
edge from OMICS-L therefore allows us to relate object and location types in an
ontology. In order to restrict the ontology to cover commonsense knowledge about
the indoor environment domain, we performed a bottom-up taxonomy extraction
based on the distinct synsets in OMICS-L.

Figure 9 shows a small and sparse subset of the extracted taxonomy, along with
links that express OMICS-L co-occurrence statements.9

The resulting ontology is stored as an OWL-DL domain ontology. It can readily
be used as symbolic spatial knowledge base in the conceptual map of our multi-
layered conceptual spatial mapping approach, and it can be manually aligned with
the smaller handcrafted ontology described earlier.

7.1 Quantifying commonsense knowledge

The approach to default reasoning described earlier relies on the presence of De-
scription Logics concept definitions like the ones in our handcrafted ontology. Such
a kind of information can not necessarily be assumed to be present in the automat-
ically built ontologies presented above. Moreover, there are many kinds of objects
that are not uniquely defining for the kind of room they are located in. On the other
hand, knowing what kinds of rooms exist in the environment, gives indications of
where certain objects are more likely to occur than elsewhere.

As an example, suppose that the robot is asked to “find a cornflakes box.” Such
boxes can be in many places: in the cabinet, in the storeroom, in the kitchen, in the
dining room, but it could also have been left on someone’s desk – all of which are
possible, but arguably not equally likely. A planner that is able to deal with proba-
bilities assigned to facts [32] can then come up with a plan that efficiently searches
an environment for, e.g., the cornflakes box. A detailed description and discussion

9 Synsets have been replaced with their associated word labels for ease of reading. Solid arrows
denote hyponymy (WordNet), dotted arrows denote a co-occurrence assertion (OMICS-L).
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of this scenario can be found in [34]. Here, we focus on obtaining quantifiable ex-
pectations about object occurrences in the conceptual mapping approach.

The aforementioned OMICS-L database provides us with a rich set of objects
and locations that are relevant for intelligent mobile indoor robots. However, their
respective likelihoods are not quantified. E.g., normally each bathroom has at least
one sink, whereas some garages do contain a sink and some do not (cf. Table 1).
In order for a robot to make judgments about whether it should start searching for
a sink in the bathroom or in the garage, it must have quantitative information that
allow it to assess the expected outcomes of searching either of these rooms.

Using quantitative priors for the likelihood of an observation of the respective
object in a given set of rooms, a decision theoretic planner, e.g., the switching plan-
ner [32] used for the robot Dora [34], is able to decide about the prioritization of the
tasks. To construct such a prior, we obtain co-occurrence frequency estimates for all
unique object types o (e.g., ‘milk’) with all unique location types l (e.g., ‘office’) in
OMICS-L by counting the number of hits an image search engine10 returns when
resolving ‘o in the l’ queries for each of the 1.5 million object-location pairs 〈o, l〉.
Writing #q(o&l) for the number of hits returned by that query, and #q(l) for the
number when we query the noun term l alone, then the co-occurrence prior c(o, l)
that o is located in l is given by Equation 4.

c(o, l) =

(√
#q(o&l)√

#q(l)

)B

with c(o, l) ranging over [0,1],

B=
1
2

if (o, l) in OMICS-L, else B=1

(4)

We avoid using the raw frequencies from the search engine results to mitigate the
problems of: (1) occluded objects being underrepresented in image search queries
– e.g., cups are stored in cupboards, and (2) image search queries are often biased
to human interest, and omit the mundane and ordinary – e.g., ducks and baths are
common, however faucets and baths are rarely mentioned together. We mitigate
those problems by first applying the square root function to the counts, and then
boost counts selectively using B. The resulting prior then arguably better expresses
commonsense knowledge which a contributor to the OMICS project considered rel-
evant for intelligent indoor robots. Table 2 shows some examples of the obtained
co-occurrence priors.

Word sense disambiguation

The resulting co-occurrence matrix associates object words with location words.
Consequently it suffers from the vagueness that penetrates natural language. As

10 http://images.bing.com, September–October 2010
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Table 2: Co-occurrence matrix c(o, l) for some select objects and locations.

kitchen bathroom garage office
sink 0.394958 0.24747899 0.053361345 0.05630252
faucet 0.45874125 0.40419582 0.018181818 0.043776225
computer 0.048387095 0.028830646 0.019112904 0.111693546

mentioned earlier, the same word can have many different meanings, depending
on the context. Although the domain of interest already restricts the context, most
mentioned words can still denote different concepts in the indoor domain. Consider,
e.g., the word ‘fan’, cf. Table 3. It is quite clear that ‘a device for creating a current
of air by movement of a surface or surfaces’ is meant, rather than ‘an enthusiastic
devotee of sports,’ or ‘an ardent follower and admirer.’11 While in that case the
indoor domain provides enough context to disambiguate the different meanings of
the word ‘fan’, consider the word ‘keyboard’, cf. Table 4. We as humans know that
there is one kind of keyboard that is a musical instrument, and that there exists a
different kind of keyboard that constitutes a computer input device and which shares
only rather superficial properties with the musical instrument.

Table 3: Contributor asserted occurrences of ‘fan’.

object location
fan bedroom
fan den
fan kids room
fan entryway
fan office
fan living room
fan attic

In order to address the ambiguities stemming from word polysemy we make
use of the WordNet12 resources. To disambiguate between different senses of the
mentioned words, we linked the OMICS-L terms with WordNet synsets in the spirit
of a semantic concordance [63], in which every noun occurrence is tagged with its
corresponding word sense.

The tagging was done manually. For each term in OMICS-L, all possible synsets
along with their WordNet definition glosses were displayed. An annotator then had
to select the appropriate word sense. In order to overcome the problem of typos and
spelling errors (e.g., ‘jitchen’ for ‘kitchen’) present in the OMICS-L collection, we

11 Definitional glosses are taken from WordNet.
12 http:/wordnet.princeton.edu/
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Table 4: Contributor asserted occurrences of ‘keyboard’.

object location
keyboard bedroom
keyboard office
keyboard study
keyboard basement
keyboard computer room
keyboard computer lab
keyboard music room

employed a Levenshtein-distance based [56] comparison of word forms that could
not otherwise be resolved to words in WordNet.

The version of OMICS-L that we worked with contains 6,293 object-location
statements. Overall these contain 3,338 distinct words, out of which there are 2,906
distinct object and 509 distinct location terms.13 For 942 words (908 words men-
tioned as object, 75 words as location), corresponding WordNet synsets could be
found. Among these words there are polysemous words, so that in total OMICS-
L was tagged with 1,372 distinct WordNet synsets – among which there are 1,264
object synsets and 157 location synsets.

They cover 3,034 of the total 6,293 object-location pairs. The remainder com-
prises both noise (i.e., nonsensical statements that found their way into the OMICS-
L database) as well as concepts that have no clear counterpart in WordNet. A large
portion of the latter are sub-concepts of existing senses, most of which are expressed
by compound nouns, e.g., ‘ceiling fan’, ‘computer room’, or ‘printer paper’. Note
that an object-location pair did not count as linked when at least one of the two
words could not be resolved to a synset. We call the WordNet-tagged subset of the
OMICS-L OMICS-LWN.

As mentioned earlier, we are not just interested in aligning the user-contributed
object-location statements from OMICS-L with WordNet synsets. We want to go
one step further and disambiguate the OMICS-based matrix of co-occurrence priors.
However, only a negligibly small portion of all image data on the world wide web is
tagged with WordNet senses, and by far the biggest part is just indexed with natural
language words. The queries that we retrieve from the image search engine thus
have to be expressed with (ambiguous) words.

Since we are unable to inspect the image search results, we cannot determine
the actual contribution and relevance of each possible synset for the resulting co-
occurrence prior. In order to establish informative priors for the full OMICS-LWN
co-occurrence matrix, we need to revise Equation 4.

The object types o and location types l under consideration are, more precisely
put, words. We write so and sl if so is a synset of o and sl is a synset of l, respectively.

13 The discrepancy of the sum of the distinct objects and locations to the total number of distinct
terms is a result of several words appearing both as objects and as locations.
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We then compute co-occurrence pairs of object synsets with location synsets from
OMICS-LWN as c(so,sl) according to Equation 5.

c(so,sl) =

(√
#q(o&l)√

#q(l)

)B

with c(so,sl) ranging over [0,1],

B=
1
2

if (so,sl) in OMICS-LWN, else B=1

(5)

By selectively boosting the intended word senses of the user contributed OMICS-
L assertions, we achieve a context sensitivity of our quantitative data that differen-
tiates on the level of word meanings, rather than word forms.

8 Conclusions

In this chapter, we have presented the principle of multi-layered conceptual spatial
mapping. In this approach, spatial knowledge is represented at different levels of
abstraction, ranging from low-level metric maps to symbolic conceptual representa-
tions. It addresses the diverse needs involved in representing spatial knowledge for
situated action and human-robot interaction.

The presented approach comprises a symbolic abstraction layer for conceptual
reasoning about the properties of locations in an indoor environment. Being in-
spired by human cognition, it lends itself to being used with state-of-the-art tech-
niques in situated human-robot dialogue processing in that it can be readily used as
a knowledge base for situated natural language generation and interpretation. While
it neglects aspects of representing small, shared, visual scenes (tabletop scenarios,
so-called small-scale space), its main strength is the abstraction over large-scale
spatial environments (e.g., indoor environments consisting of multiple rooms). The
approach has been implemented and integrated in a number of autonomous, intelli-
gent, and interactive mobile robot systems.
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Semantic map segmentation using function-based energy maximization

Kristoffer Sjöö

Abstract— This work describes the automatic segmentation
of 2-dimensional indoor maps into semantic units along lines
of spatial function, such as connectivity or objects used for
certain tasks. Using a conceptually simple and readily extensible
energy maximization framework, segmentations similar to what
a human might produce are demonstrated on several real-world
datasets.

In addition, it is shown how the system can perform reference
resolution by adding corresponding potentials to the energy
function, yielding a segmentation that responds to the context
of the spatial reference.

I. INTRODUCTION

In the field of mobile robotics, one of the main goals is the
integration of robots into the daily lives of humans, aiding
us by carrying out tasks for us at home, at the workplace
or in outdoor environments. There are many challenges still
to overcome before this vision can become reality, however.
One of them is that in order to make sure the robots do the
right thing, and in the right place, means of intuitive commu-
nication between man and machine are needed – in particular,
communication concerning their mutual environment.

Robots will need to parse humans’ statements and requests
and to formulate their own questions and reports in return,
using expressions that can be understood by both human and
machine. The treatment of such expressions are the subject
of this paper; in particular, those describing different parts
of space and which an agent might use for navigation or to
carry out specific tasks.

The fundamental assumption adopted herein is that func-
tional properties are key to dividing up and referring to the
world, see Tversky [1]. An indoor environment is constructed
intentionally with different functions compartmentalized: this
room for eating, this one for sleeping, this for working;
and the words we use to refer to those spaces likewise
pertain to those functional distinctions. Consequently, this
paper attempts to use functional aspects of space to achieve
a subdivision and labeling of 2-D maps that corresponds well
to human intuitions.

A. Related work

There has been a great deal of work related to the
subdivision of maps into discrete units, in many different
contexts. One common approach to discretizing space is by
using Voronoi diagrams [2]. Another is partitioning it on the
basis of the navigational actions it affords, such as in Kuipers

The author is with the Centre for Autonomous Systems at the Royal
Institute of Technology (KTH), Stockholm, Sweden. This work was sup-
ported by the SSF through its Centre for Autonomous Systems (CAS), and
by the EU FP7 project CogX and the Swedish Research Council, contract
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et al. [3]. Milford et al. [4] accomplish a similar structuring
using neural networks. Pronobis et al. [5] discuss the general
problem of partitioning the world into distinct “places” based
on perceptual distinctiveness and spatial relationships.

Given a discretization, the next step is to label the units
in some relevant way. Diosi et al. [6] and Milford et al.
[7] impose labels externally, through a user that the robot
is talking to at different locations. Mozos et al. [8] clas-
sify regions using metric features, while Vasudevan et al.
[9] utilize spatial relations between objects. A graph-based
approach is taken by Friedman et al. [2], by performing place
classification based on potentials defined on nodes in a graph,
with arity up to 4, making it similar to the framework used
in this paper although with a model that is more local, and
learned as opposed to specified by functional criteria.

Work that examines the functional properties of space
include Kuhn [10], who discusses the problem in general
terms on an abstract level; and at the other end of the
spectrum Dornehege and Kleiner [11], in which parts of
a map are classified according to whether they afford a
robot’s moving through them, though not using human or
linguistic concepts. Also related is Fedrizzi et al. [12] where
specific places are defined on the basis of a robot’s ability to
manipulate objects there. Lastly, a debt is owed to Coventry
and Garrod [13] who have pioneered the investigation of
functional aspects of spatial relations in language.

This work is also concerned with mapping linguistic
expressions to portions of space, although in a limited way.
Related work has been done e.g. by Kollar et al. [14],
who also use an energy optimization method to determine
referents for an expression, and Mandel et al. [15], who
choose the referent from among Voronoi nodes using fuzzy
functions. Both of the above deal with route descriptions, and
not with labeling or segmenting maps. Zender et al. [16] also
deal with determining spatial entities referred to by a speaker,
by finding the lowest common context in a hierarchy. Here
too, the set of potential referents is assumed to be given.

B. Contributions

In this paper, a method is presented by which separate,
basic, common-sense criteria of a functional nature, such
as may be found in a dictionary, can be combined in a
single energy maximization and yield an intuitively reason-
able subdivision and labeling of a map. Furthermore it is
demonstrated how the same energy maximization can be
used to find the referents of a linguistic expression, through
translating it into an energy potential in a straightforward
way.



C. Structure

This paper is structured as follows: in Section II the
reasoning behind using functionality as the basis for spatial
segmentation is explained; Section III outlines the energy
maximization framework and the solution algorithm. Exper-
iments on various datasets are described in Section IV and
Section V presents their outcomes. Section VI summarizes
the paper and discusses future work.

II. FUNCTIONAL PROPERTIES OF SPACE

The basic concept this work is based on is the idea that
function is key to the way humans understand space, and thus
also key to any successful robotic representation intended to
interact with humans and human-designed environments.

As an example, consider the concept of a kitchen. For a
robot to be able to follow orders from humans in a home
environment, it will be necessary for it to understand what
the word means. A typical approach is to have a human “tag”
points in space with the fact that a region is a kitchen [7].
The tag might be attached to a single point, or a region,
segmented out by some independent process – such as using
laser scans to detect doorways and grouping places on each
side of the doorway into different regions [8]. The tagging
might be replaced by using machine learning to train models
of different regions’ appearance.

However, what makes a kitchen a kitchen at a fundamental
level is not its appearance, nor a person calling it “kitchen”,
but the fact that it is used to prepare (and store and consume)
food. An appearance-based model might fail if the kitchen
is of a novel layout or unfamiliar design, and an algorithm
that uses doorways as cues might fail for a studio apartment,
where there is no such clear boundary between “kitchen” and
“living room”. But if a robot can be made to recognize the
potential for the function of a kitchen, e.g. food preparation,
this will improve its ability to generalize and its capacity to
communicate effectively with humans.

The semantic labels humans use for space may also vary
depending on context. In the case of the aforementioned
studio apartment, sometimes “kitchen” will be used to refer
to the part of it that houses the sink and oven, while
sometimes “room” will be used of the entire room including
the kitchen area. This context-sensitivity is an additional nec-
essary feature of a robot’s system for spatial understanding.

In the following section, a framework is presented that
attempts to incorporate both functional segmentation and
context-sensitive reference resolution.

III. FRAMEWORK FOR FUNCTIONAL LABELING OF SPACE

The problem is the following: given a 2-dimensional map
of an environment, including an over-segmentation of it into
a number of small units, “places”, find a combination of
clusters of places and labels for these clusters such that
all the labels well describe the functional features of the
associated place cluster. The map that is given may contain
various additional information, such as occupancy data, paths
existing between places, and objects associated with places.

A. Basic definitions

The set of all places in the map is termed P . A region R
is a set of places: R = {p ∈ P}.

A label L is a linguistic symbol corresponding to a
region’s perceived functional purpose. Labels used in this
paper are “room”, “corridor”, “entrance”, “kitchen”, “office”.

A relational label is a label that additionally refers to
another region by its definition. Of the above, “entrance” is
relational; an entrance is always an entrance to something.

A labeling is a set of 3-tuples, each consisting of a region
Ri, a label for that region Li, and a relational index ki
indicating which other region the label relates to if it is
relational. The regions are subject to the constraint that each
place in P is in exactly one region:

L = {〈Ri, Li, ki〉},





⋃Ri = P⋂Ri = �
1 ≤ ki ≤ |L|

B. Energy function

Every 3-tuple in a labeling has an associated energy,
representing how well that particular label describes that
particular group of places. A higher energy means a better
fit.

E(〈Ri, Li, ki〉) = f(Ri, Li, ki,L) ∈ [0, |Ri|] (1)

Note that the energy depends on the entire labeling in gen-
eral. (It also depends on the map; however, that is considered
a constant here and left out of the notation.) Because the
number and size of regions can vary arbitrarily, in order to
avoid any bias for large or small regions the label energies
should be proportional to the size of the region, other things
being equal, and the average energy per place be within [0, 1].

The energy function is the sum of the energies of each
region in the labeling:

E(L) =
∑

i

E (〈Ri, Li, ki〉) (2)

The energies assigned to a label for a given region should
correspond to the degree to which that region possesses
the functional features that define that label. Features are
combined in a weighted sum, where the weights may be
negative:

E(〈Ri, Li, ki〉) =

= max

{∑

k

wl(Li)φl(〈Ri, Li, ki〉), 0
}

(3)

where φl is the value of the lth feature, and wl(Li) is the
weight assigned that feature for label Li. For example, the
food preparation feature has a positive weight for the kitchen
label. The label energy is bounded from below to 0, and the
weights and features must be such that the per-place energy
is in [0, 1] as mentioned previously. The weights used below
are selected manually, and would be a suitable object for
learning in future work.



C. Labels

Below is a list of the labels used for the experiments in this
paper, followed by the formulation of the functional features
used.

1) Room: The Oxford English Dictionary (OED) [17]
provides this definition of a “room”:

A compartment within a building enclosed by walls
or partitions, floor and ceiling, esp. (freq. with
distinguishing word) one set aside for a specified
purpose; (with possessive) a person’s private cham-
ber or office within a house, workplace, etc. [. . . ]

The functional aspects focused on in the following are the
enclosure of a room and the specified purpose associated
with it (the ownership angle is beyond the scope of this
paper as it entails social considerations besides purely spatial
ones). Enclosure affords a room protection from outside
disturbances and influences, and helps an agent form a
definite boundary when speaking or thinking about a region.
The room also supports some purpose or task for agents who
are in it. It will typically do this through some object or set
of objects located in the room, with which an agent interacts.
The agent needs to perceive those objects; if it cannot the task
functionality is undermined. This is encapsulated in a feature
that will be referred to as perceptual convexity, meaning that
each place in the room is visible from the others.

2) Corridor: The following is the OED’s definition of
“corridor”:

A main passage in a large building, upon which in
its course many apartments open.

Here, the functional aspect implied is connecting, i.e. a
corridor serves as a main route of communication between
different parts of the map.

3) Kitchen:

That room or part of a house in which food
is cooked; a place fitted with the apparatus for
cooking.

The focus is here on the function of cooking, as supported
by specific objects. Having room-like features are also of
relevance, although not stated as absolute requirements.

4) Office:

A room, set of rooms, or building used as a
place of business for non-manual work; a room
or department for clerical or administrative work.
[...]

In this case the function is that of work, specifically non-
manual work. Again, room attributes appear as non-essential
aspects of the term.

5) Entrance:

That by which anything is entered, whether open or
closed; a door, gate, avenue, passage; the mouth (of
a river). Also, the point at which anything enters
or is entered.

Evidently entering is the key aspect here.

D. Features

The above labels make use of the following set of function-
related features:

1) Enclosed: The functional feature of being “enclosed”
that applies to rooms is treated as follows:

φencl = |R|
(
1− Bexternal(R)

Btotal(R)

)
(4)

where Bexternal is the length of the boundary shared by
places in this region and places in other regions, and Btotal

is the total boundary length (excluding internal boundaries
between places within the region). This formulation re-
wards labelings where room-labeled regions are compact and
largely delineated by walls. The |R| factor ensures the energy
grows as the size of the region.

2) Perceptually convex: The measure of perceptual con-
vexity within a region is

φperc =

∑
{p,p′}∈R×R V is(p, p

′)

|R| − 1
(5)

where

V is(p, p′) =

{
1, if p and p′ are visible from each other
0, otherwise

Again, the |R| − 1 term is in order to normalize the energy
to the order of the size of the region.

3) Connecting: The connecting function of corridors is
evaluated as the number of pairs of places in the map that
have a shortest path that passes through the (prospective)
corridor. If any path passes through multiple places in the
corridor it counts multiple times. Thus, places that are
crossed by many paths in the map contribute strongly to
the connecting function of a region, while “dead ends” do
not contribute at all. The feature can be expressed:

φconn =
∑

p∈R
{pfrom,pto}∈P×P

C(p, pfrom, pto)

Cmax
(6)

where

C(p, pfrom, pto) =





1,
if p 6= pfrom, p 6= pto

and p is on the shortest
path between pfrom and pto

0, otherwise

Cmax is a normalizing constant equal to the highest value
of
∑
{pfrom,pto} C(p, p

from, pto) for any single p.
4) Entering: The entering feature is similarly defined to

the connecting feature, except only paths leading to the
region specified by the relational index ki are counted,
and paths starting inside the active region are similiarly
discounted:

φent,ki
=

∑

p∈Ri,p
to∈Rki

pfrom∈P\Ri

C(p, pfrom, pto)

|Ri||Rki
| (7)



5) Food-preparing: The potential of food preparation is
here modeled as a function of the distance to objects needed
for the task. Two objects are taken as determinants: “refriger-
ator” and “stove”, although this should only be regarded as an
illustration; more study will be needed to determine exactly
which objects support the function and to what degree, in
humans’ minds. The value falls off as a sigmoid with the
navigation distance (not the straight-line distance):

φfood =
∑

p∈R

(
α

1 + C

ed1(p)/B + C
+ β

1 + C

ed2(p)/B + C

)
(8)

where B and C are constants determining the shape of
the sigmoid, and the d1 is whichever distance (stove or
refrigerator) is smaller, d2 the larger. This formulation allows
a non-zero value even if one object is missing entirely.

6) Working: The working feature is treated analogously
to the food-preparing feature, except that there is only one
object, “desk” and so only one corresponding term in Eq. 8.

E. Referring expression matching

Maximizing the energy described above serves to produce
a context-less labeling of the map. In the following it is
explained how a spatial referring expression, such as “the
room next to the corridor”, can be matched to a part of the
map using the same framework.

A description D consists of a set of attributes and an
n-tuple of regions taken from a labeling, each called an
operand. n is called the arity of the description. Attributes
are similar to labels, but may be defined on more than one
region. Each attribute is associated with some subset of the
descriptions’ n-tuple.

Example: A description of arity 2 might have 3 attributes:
1) Region 1 should be labeled “Corridor” (unary)
2) Region 1 and region 2 should be neighbors (binary)
3) Region 2 should be a room (unary)

This description encodes: “find a room that is next to a
Corridor”.

Attributes each evaluate to a number ai ∈ [0, 1], and their
geometric mean is taken as the “fit” of the description:

F (D) = n
√
a1 . . . an ∈ [0, 1] (9)

The energy of the description is the product of its fit and
the energy of the corresponding labeling:

E(D) = γF (D)E(L) (10)

This energy is added to that of the labeling itself, and when
this sum is maximized it will tend to assign the n-tuple to
regions from the labeling which possess all the attributes –
which may involve influencing the labeling such that there
exists a match, e.g. by reinterpreting two otherwise separate
rooms as a single large room. This effect is desirable,
because the description implicitly injects information that the
unbiased labeling does not have access to about e.g. how a
human user conceptualizes different parts of the map. The
weight constant γ determines how strongly the description

influences the labeling. Its value will in general depend on
the application and the linguistic context; γ = 0.1 is used in
this paper.

Attributes used here are:
• Operand region A should have a specific label
• Operand region A should contain a specific place p∗

• Operand region A should be large
• Operand region A should be located toward a given

direction in the map
• Operand region A should be located in a given drection

relative to operand region B

IV. EXPERIMENTS

This section describes experiments done using the above
framework, operating on three grid maps: FR079, Intel and
SDR (see Figure 1). The maps were thresholded and a mor-
phological closure operation performed to eliminate spurious
holes in walls. In order to obtain the initial oversegmentation
of places P that the framework needs, a set of nodes
and connections were added manually in the manner of an
exploring robot to produce a graph similar to e.g. Mozos
et al. [8]. Each free grid cell was then assigned to the closest
(via free space) node, forming a place and permitting the
computation of border lengths (see Sec. III-D). Objects were
also assigned manually to places in two of the three maps, for
illustrative purposes. The SDR map was left without objects.

A. Energy maximization

The high-level features making up the energy function
make it problematic for standard graphical solving methods.
For the purposes of this paper a stochastic method, simulated
annealing, was found to provide adequate optimization. Sim-
ulated annealing works by taking random moves, and may
move against the energy gradient in order to escape local
minima, but does so at an ever-decreasing probability as time
passes; see Algorithm 1.

All experiments used Tstart = 2 and Tend = 0.001. The
cooling-down rate, κ was set to 0.9998, leading to a step
count of circa 40 000.

The perturb function changes the labeling using one of
the following moves, picked at random:

1) Transfer: A donor region is picked at random, and
a receiver region is picked from among the donor’s
neighbors. Places are transferred from the donor to the
receiver until a random trigger stops it, or that entire
connected component is transferred.

2) Split: A seed place is picked at random from the map,
and another seed is picked from the neighbors of that
place within the same region. The two seeds then grow
competitively within the region, until a random trigger
stops the process or that entire connected component
is covered. Finally one of the grown seeds is picked at
random to generate a new region with a random label.

3) Relabel: A random region is picked and given a
random new label.

4) Reassign index: The relational index ki of a relational
label is set to a new random region



Algorithm 1 Energy maximization procedure
begin
T := Tstart;
while T > Tend

do
Lnew := perturb(Lcur);
if E(Lnew) > E(Lcur)

then
paccept := 1;

else
paccept := e

E(Lnew)−E(Lcur)
T ;

fi;
if rand() < paccept

then
Lcur := Lnew;

fi;
T := T · κ

od;
end

5) Reassign description: If a description is being used,
change one of its operands to a new random region

Note that nothing in these rules keeps a region from be-
coming disconnected in the process. Maintaining a region’s
integrity comes out of the energy maximization.

After each perturb move above (except #5), additionally
the description – if one is in use – is locally optimized
by taking each of the regions that was affected by the
change, and trying it in the place of each current operand
in turn, to see if the description’s value is improved by
switching. This is done before paccept is computed, and
permits the description to effectively steer the labeling toward
an optimum for both description and labels.

V. RESULTS

Figure 1 shows the result of a context-less segmentation
of the three maps. For the most part, the result accords
with what a human might come up with. Some corridors
in the upper half of the SDR map are mislabeled as rooms,
probably because the many loops make for many alternative
paths that “dilute” the connected property compared to the
southern corridor. This might be remedied by normalizing
that property more locally.

Note that this segmentation comes about purely from
commonsense functional semantics, without the training of
perceptual models, heuristics such as detected doorways or
explicit tagging by humans.

No regions are classified as offices or kitchens even where
there is functional support – this is not suprising, since
they are also good representatives of rooms, and there is
no context to decide between them until it is imposed, see
below.

A. Description resolution

Below are some examples of reference resolution per-
formed on the maps as described in Sec. III-E. They
demonstrate that the functional framework can provide both
flexibility and simplicity to spatial reference resolution. The
labelings are shown in Figure 2 (note that some are cutouts
of the full map).

1) Fig. 2(a): “The eastern corridor” (Operand A: Labeled
“corridor”; operand B: Labeled “corridor”, located east
of A). The expression implies there is at least one other
corridor that is less easterly.

2) Fig. 2(b): “A big room” (Operand A: Labeled “room”,
large size).

3) Fig. 2(c): “A kitchen” (Operand A: Labeled “kitchen”).
What is otherwise a single room (Fig. 1(a)) is contextu-
ally reinterpreted as a kitchen and another region (be-
cause the work function crowds out the food function
at the upper end of the room).

4) Fig. 2(d): “The room at place < p∗ >” (Operand A:
labeled “room”, contains p∗). Although not part of a
context-less labeling (Fig. 1(b)), the best fit was found
through extending the room into the corridor.

5) Fig. 2(e): “Entrance to a kitchen” (Operand A: labeled
“entrance”, relational index must point to B; Operand
B: labeled “kitchen”).

An example of a failed resolution is displayed in Figure 2(f):
“Entrance to a big room”. Here the search got stuck in a local
minimum, where any move to reduce the size of the room
led to an energy decrease.

VI. CONCLUSIONS

This paper has shown how a conceptually very simple –
and, consequently, flexible – energy maximization approach
can be used to perform segmentation of 2D maps into units,
using features taken from the functional aspects that form the
core of spatial semantics. The resulting clusters correspond
well to human intuitions. Additionally, it is shown how the
framework can use the same mechanism to find matches
for referring expressions, even adjusting the segmentation
to accommodate the context implicit in those expressions.

A. Future work

The set of different labels used in this work was small.
Future work must investigate how increasing the number
of possible labels affects outcomes and performance. More
complex contexts should also be investigated, as well as the
opportunities for combining the framework with language
parsing or production. In addition, the different parameters
used in the energies for the different labels are good candi-
dates for learning.

The simulated annealing method used for solving the
energy in this paper leaves much to be desired in terms of ef-
ficiency. It might be worthwhile to explore other approaches;
however, because of the general nature of the energies used
few simplifying assumptions can be made by any algorithm.



(a) FR079 map (b) Intel map (c) SDR map

Fig. 1. Labeling of regions. Grey signifies rooms, white corridors and yellow entrances. Red lines delimit regions. Nodes used to create the places are
also shown, with connectivity. A white square represents a refrigerator object; a dot, a stove; a black square, a desk. A red box indicates the place used
in description 4 in Sec. V-A.

(a) “The eastern corridor” (b) “A big room” (c) “A south-easterly room”

(d) “The room at place < p∗ >” (e) “Entrance to kitchen” (f) “Entrance to a big room”

Fig. 2. Fitting descriptions to map. Diagonal stripes indicate the primary operand of the description, horizontal ones the secondary when applicable.
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Abstract

In order to collaborate with people in the real world, cogni-
tive systems must be able to represent and reason about spa-
tial regions in human environments. Consider the command
“go to the front of the classroom”. The spatial region men-
tioned (the front of the classroom) is not perceivable using
geometry alone. Instead it is defined by its functional use,
implied by nearby objects and their configuration. In this pa-
per, we define such areas as context-dependent spatial regions
and present a cognitive system able to learn them by combin-
ing qualitative spatial representations, semantic labels, and
analogy. The system is capable of generating a collection
of qualitative spatial representations describing the configu-
ration of the entities it perceives in the world. It can then be
taught context-dependent spatial regions using anchor points
defined on these representations. From this we then demon-
strate how an existing computational model of analogy can be
used to detect context-dependent spatial regions in previously
unseen rooms. To evaluate this process we compare detected
regions to annotations made on maps of real rooms by human
volunteers.

1 Introduction
Consider a janitorial robot cleaning a classroom. While per-
forming this task, it encounters a teacher working with a stu-
dent. The teacher tells the robot to “start at the front of the
classroom”, expecting it to go to the front of the classroom
and begin cleaning that area. This response requires that the
robot is able to determine the spatial region in the environ-
ment that satisfies this concept.

The ability to understand and reason about spatial re-
gions is essential for cognitive systems performing tasks for
humans in everyday environments. Some regions, such as
whole rooms and corridors, are defined by clearly perceiv-
able boundaries (e.g. walls and doors). However, many re-
gions to which humans routinely refer are not so easily de-
fined. Consider, for example, the aforementioned region the
front of the classroom. This region is not perceivable using
just the geometry of the environment. Instead, it is defined
by the objects present in the room (chairs, a desk, a white-
board), their role in this context (seats for students to watch

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a teacher who writes on the whiteboard) and their configu-
ration in space (the seats point toward the whiteboard). We
refer to such regions as context-dependent spatial regions
(CDSRs).

Current cognitive systems are not capable of representing
and reasoning about CDSRs, yet it is an important ability. If
cognitive systems are to collaborate with humans in every-
day environments then they must be able to understand and
refer to the same spatial regions humans do. Many regions
are best defined in a context-dependent manner, for exam-
ple, a kitchen in a studio apartment, an aisle in a church
or store, behind enemy lines in a military engagement, etc.
In order to represent and reason about such regions, cogni-
tive systems must integrate different types of information,
including geometric, semantic, and functional knowledge.
Creating systems able to integrate such a range of informa-
tion is a key challenge in the cognitive systems paradigm
(Langley in press).

This paper presents an artificial cognitive system (specifi-
cally a mobile robot) able to represent and reason about CD-
SRs. Our approach is founded on two assumptions. The first
assumption is that CDSRs can be defined using qualitative
spatial representations (QSRs) corresponding to sensor data
of the system (Cohn and Hazarika 2001). The second as-
sumption is that semantically and geometrically similar ar-
eas (e.g. two different classrooms) will feature similar CD-
SRs, and that these similarities can be recognised through
analogy. The rest of the paper is structured following these
assumptions. Section 2 describes how we generate QSRs
from sensor data taken from an existing, state-of-the-art,
cognitive system and use these to define CDSRs. Section 3
then describes how we use the structure-mapping model of
analogy (Gentner 1983) to transfer a CDSR from a labelled
example to a new situation. Section 4 presents a worked ex-
ample of the entire process, and Section 5 evaluates our sys-
tem in comparison to data from human subjects performing
the same task.

2 Metric to Qualitative Representations
The context which defines a CDSR is a combination of the
functional and geometric properties of a room, i.e. what can
be done there and where. In this work we implicitly repre-



sent context using the types of objects present in a room and
their location relative to each other. The following sections
describe how we construct symbolic representations of these
ingredients of context from robot sensor data.

2.1 The Dora System
We base our work on Dora, a mobile cognitive robot with
a pre-existing multi-layered spatial model (Hawes et al.
2011). In this paper, we draw on the metric map from
this model. For more information on Dora’s other com-
petences, see recent papers, e.g. (Hawes et al. 2011;
Hanheide et al. 2011).

Dora’s metric map is a collection of lines in a 2D global
coordinate frame. Two example maps are pictured in Fig-
ure 4. Map lines are generated by a process which uses
input from the robot’s odometry and laser scanner to per-
form simultaneous localization and mapping (SLAM). Lines
in this SLAM map represent features extracted from laser
scans wherever a straight line is present for long enough to
be considered permanent. In practice, lines are generated at
the positions of walls and any other objects that are flat at the
height of the laser (e.g. bins, closed doors etc.). The robot’s
location in the metric layer is represented as a 2D position
plus an orientation.

Dora is capable of using vision to recognize pre-trained
3D object models. Recognition can either be triggered
through autonomous visual search or at a user’s command.
When an object is detected it is represented in the metric
map by placing a copy of the model at the detected pose.
The recognizer associates each object with a semantic type
that was provided during a training phase.

To enable us to generate a range of different evaluation
situations in a reasonable length of time, we have gener-
ated data from Dora in both real rooms and in simulation.
Simulation is performed using the Player/Stage hardware
abstraction layer (Gerkey, Vaughan, and Howard 2003) al-
lowing us to run the system mostly unchanged in a pre-
defined environment. Also, to enable us to detect a wider
range of objects than is usually possible (from armchairs to
whiteboards), we used a simulated object recogniser in all
runs. The recogniser was configured with types and posi-
tions of objects in the environment and was guaranteed to
detect them when the robot was orientated towards them.
This eliminated any errors from the recognition process, but
was still influenced by errors in robot localisation.

2.2 Qualitative Spatial Representation Extraction
For each object that Dora detects we compute the strengths
of 8 spatial relations between that object and each of the ob-
jects adjacent to it; adjacency is determined using a voronoi
diagram, as is standard in geometric reasoning (Forbus,
Usher, and Chapman 2003). The strength of a computed
relation for a given pair of objects represents the applica-
bility of that relation to the pair. Strength ranges from 0
to 1, with 0 being unsuitable. The model used to compute
these relations was inspired by the literature on modeling
the semantics of spatial terms (Kelleher and Costello 2009;
Kelleher and van Genabith 2006; Regier and Carlson 2001;

Gapp 1994). The model accommodates both direction and
distance as factors in the relative position of objects.

The relations we compute between each given landmark
object and its adjacent neighbours are analogous to the car-
dinal and intermediate points on the compass when the
compass is centered on the object. The canonical direc-
tions of these relations are defined using the following
vectors: 〈0, 1〉, 〈1, 1〉, 〈1, 0〉, 〈1,−1〉, 〈0,−1〉, 〈−1,−1〉,
〈−1, 0〉, 〈−1, 1〉. The predicates used to denote these rela-
tions are named accordingly, e.g. xZeroYPlus, xPlusYPlus,
xPlusYZero, xPlusYMinus, etc.

We generate the strengths of these spatial relations as fol-
lows. First we compute the maximum distance dmax be-
tween any two points in the room, this value is used to nor-
malize the distances between objects. Next, taking each ob-
ject in turn to be the landmark, we translate the origin of the
room to the landmark’s centroid. This results in the coordi-
nates of the all the other objects in the room being translated
into a frame of reference whose origin is the centroid of the
landmark. We then compute the strength of each of the 8
spatial relations between the landmark and each of the ob-
jects adjacent to it by calculating: (a) the distance d between
the landmark’s centroid and the adjacent object’s location,
and (b) the inner angle θ between the direction vector of the
relation and the vector from the origin (the landmark’s cen-
troid) to the neighbour’s location. These two spatial com-
ponents are integrated to compute the strength s of a given
relationship using Equation 1. Figure 1 provides a visualiza-
tion of a spatial relationship across a region.

s =

{ (
1− θ

90

)
∗
(

1− d
dmax

)
if θ ≤ 90◦

0 otherwise
(1)

These spatial relationships between adjacent objects pro-
vide the structure necessary for analogical processing. Gen-
erating the relationships in this way (as opposed to, for ex-
ample, simple coordinate-based thresholding) has the advan-
tage that the presence and absence of relationships is repre-
sented on a continuous scale. This provides our representa-
tions with the flexibility necessary to manage the variation
in perceptual information (i.e. the position of walls and ob-
jects) inevitable in human environments and robot percep-
tion.

In addition to spatial relations, we also create grouping
entities from the robot sensor data. Grouping entities collect
together sets of adjacent objects of the same type. For ex-
ample, a classroom would likely have a group entity created
in which all of the students’ desks were members.

2.3 Representing CDSRs
We use anchor points (Klenk et al. 2005) to define the
boundaries of CDSRs. Anchor points are symbolic descrip-
tions which link a conceptual entity to a perceived entity.
The perceived entities we use are the objects recognised
by Dora, and the room itself. The room representation is
created by putting a convex hull around the lines in Dora’s
SLAM map. Anchor points are created from perceived enti-
ties using unary functions, e.g. (XMaxYMostFn Desk1)



Figure 1: A visualisation of a the strength of a spatial re-
lation across a region. The landmark is the red square and
the direction vector used was 〈0, 1〉 (i.e. above of the land-
mark). The lighter the pixel the stronger the spatial relation
is deemed to be at that point.

represents the point on the Desk1 with the largest x coordi-
nate taken from the set of points with a y coordinate within
5% of the maximum y coordinate. Anchor points are linked
to particular CDSRs using a boundarySegment ternary
relation. After we have defined the boundary of the region,
we assign it a semantic label using the regionType re-
lation. Therefore, each CDSR has one type and a variable
number of boundary segments.

(regionType CDSR9 FrontRegion)

(boundarySegment CDSR9

(YMaxXFewestFn Room3)

(YMinXFewestFn Room3))

(boundarySegment CDSR9

(YMinXFewestFn Room3)

(YMinXFewestFn Group1))

Figure 2: Three of the five expressions representing the front
of the classroom context-dependent region CDSR9

Figure 2 contains three of the five expressions defining the
front of classroom Room3 which is pictured in the top of
Figure 4. The boundary segments (shown in orange in Fig-
ure 4) define the extent of the region. (YMaxXFewestFn
Room3) and (YMinXFewestFn Room3) are the points
with the highest and lowest y coordinate out of the set of
points within 5% of the minimum x coordinate of Room3.
The next segment connects the lower left coordinate in
the figure to the (YMinXFewestFn Group1), where
Group1 includes the eight desks. There are two more
boundary segments completing a polygon for this region.
The semantic label FrontRegion ties this polygon to a
conceptual region, “the front of the room”. This definition
for the front of the room is specific to Room3 and its en-
tities. It is clearly context-dependent because its extent is
dependent on the arrangement of the anchor points used to
define its boundary. If the desks were in a different position
then the region would cover a different extent (e.g. if they
were further to the left then the region would be smaller).

3 Analogical Transfer of Spatial Regions
We assume that a cognitive system will have a way of ini-
tially acquiring examples of CDSRs, e.g., by being taught
through dialogue, sketching, or hand-coding. To avoid bur-
dening potential users with the task of teaching the system
every CDSR individually, it is desirable for a cognitive sys-
tem to be able to automatically recognize similar regions af-
ter initial training. For example, after a janitorial robot has
been taught where the front of one classroom is, it should be
able to identify the fronts of other classrooms in the building.
Our system uses analogy to solve this problem. We chose
this approach because analogy has been previously used to
successfully combine semantic and geometric information
in spatial reasoning tasks (Lockwood, Lovett, and Forbus
2008).

Analogy is an essential cognitive process. In humans,
analogical processing has been observed in language com-
prehension, problem-solving, and generalization (Gentner
2003). The structure-mapping theory of analogy and sim-
ilarity postulates this process as an alignment between
two structured representations, a base and a target (Gen-
tner 1983). We use the Structure-Mapping Engine (SME)
(Falkenhainer, Forbus, and Gentner 1989) to perform ana-
logical matching in our system. Given base and target rep-
resentations as input, SME produces one or more mappings.
Each mapping is represented by a set of correspondences
between entities and expressions in the base and target struc-
tures. Mappings are defined by expressions with an identi-
cal relation and corresponding arguments. When provided
with expression strengths, such as, our spatial relationships,
SME prefers mappings with closely aligned fact strengths.
SME can be given pragmatic constraints that require certain
entities in the base to be included in the mapping. Map-
pings also include candidate inferences which are conjec-
tures about the target using expressions from the base which,
while unmapped in their entirety, have subcomponents that
participate in the mapping’s correspondences. SME oper-
ates in polynomial time, using a greedy algorithm (Forbus,
Ferguson, and Gentner 1994).

Figure 3: Analogical mapping between six base expressions
and three target expressions.



Figure 3 illustrates a sample mapping between six
base expressions and three target ones. Each oval rep-
resents a predicate, and the entity arguments are rep-
resented by squares. SME generates a mapping be-
tween the base expressions (group Desk1 Desk2) and
(xMinusYZero Desk1 Desk2), and the target expres-
sions (group Desk11 Desk12) and (xMinusYZero
Desk11 Desk12) as well as between the regionType
expressions in each case in the following manner. First,
the predicates of these expressions are placed in correspon-
dence, as identical predicates are preferred by SME. Then
SME aligns the arguments of the aligned predicates, Desk1
with Desk11, Desk2 with Desk12, and CDSR1 with
CDSR2. While there is another XMinusYZero statement
in the base about two desks, it cannot correspond to either of
the target expressions in the same mapping due to the one-
to-one constraint in SME which allows each element in the
target to map to at most one element in the base and vice
versa. In Figure 3, the correspondences are highlighted by
the hashed bi-directional arrows. Next, SME creates a candi-
date inference for the boundary segment expression, because
both the mapped Group and regionType predicates par-
ticipate in the mapping. The candidate inference is shown
in red in the figure. Note that inference is selective, with
no candidate inferences generated for the entirely unmapped
expressions.

In our system, the base and target representations consist
of the entities Dora has perceived in two different rooms, the
QSRs between them and any groups that have been identi-
fied. The base also contains a labeled CDSR of the type
sought in target. The result of running SME on these rep-
resentations is a set of correspondences between the base
and target, and a set of candidate inferences about the tar-
get. We use these to transfer the CDSR from base to target
(i.e. recognizing the CDSR in the target) as follows. First,
we identify the CDSR of the sought type in the base and
use SME’s pragmatic constraints to ensure that the entities
referred to its anchor points participate in the mapping. To
transfer the CDSR to the target, we collect the candidate in-
ferences that result from boundarySegment statements
mentioning the base CDSR. The second and third arguments
of these candidate inferences are anchor points in the target
environment. We use these to define the boundary of the
CDSR in the target.

4 Example System Run
To elucidate the workings of our system, we now present an
example of how it can transfer a CDSR describing the front
of a known classroom (the base) to a new classroom (the
target).

We first create the base and target representations by run-
ning Dora in the two different classrooms. In each case,
Dora is manually driven around the room to allow it to cre-
ate a metric map. Once the map is created, Dora is then
positioned such that the objects are observable and the vi-
sual recognition system is run. The map and object data that
result from this are then passed on to the QSR generator.
The base and target maps are pictured in the top and bottom
of Figure 4 respectively. In the base case, Dora perceives 8

Figure 4: Maps of 2 real classrooms generated by our sys-
tem. The lines around the perimeter are walls, the unfilled
polygons are the outlines of objects and the filled polygons
are CDSRs. The maps show an expert-annotated CDSR
(red, top image), a subject-annotated CDSR (blue, bottom
image) and a CDSR transferred by analogy (green bottom
image). The classroom used to generate the bottom class-
room is pictured in Figure 5.

Figure 5: One of the classrooms used in our evaluation. This
image was presented to subjects who were asked to annotate
a copy of the image in the bottom half of Figure 4. The inset
shows a screenshot from the data collection webpage.



individual desks, a group entity containing these desks and
the room area. To this we add the CDSR representing the
front of the room. The case includes a total of 50 expression
relating the 20 entities. Six of these expressions are used to
define the boundary segments and CDSR representing the
front of the room. The target case includes 26 expressions
and 11 entities.

SME generates an analogy between the base and target
cases enabling the transfer of the symbolic description of the
front of the room to the new situation requiring Room3 and
Group1 participate in the mapping as they are referenced
by the anchor points in the base. The resulting analogy in-
cludes 26 correspondences between the entities and expres-
sions and 32 candidate inferences. Four of these candidate
inferences define the CDSR in the target with anchor points
defined on the room and the group of desks in the target.
The green region in the lower image of Figure 4 illustrates
the transferred CDSR.

5 Evaluation
To evaluate our progress toward building a cognitive system
capable of reasoning about CDSRs, we conducted the an ex-
periment focusing on the following questions:

• Are anchor points able to encode context-dependent spa-
tial regions?

• When provided with a base representation containing a
labelled CDSR, how well does our approach identify the
CDSR in a given target?

5.1 Materials
We evaluated our approach on six classrooms (two simu-
lated and four real) and two simulated studio apartments.
The simulated rooms were based on real-life counterparts.
For each room we manually encoded appropriate CDSRs
that could be represented by our approach. For the class-
rooms these were the front and back, and the front and back
rows of desks. For the studios these were the kitchen, of-
fice and living areas. These manually encoded regions were
used as the base CDSRs for analogical transfers, and can be
considered the training data for our evaluation.

To determine how people define CDSRs, we asked three
naı̈ve users to draw polygons for each region type for each
room. This task was performed using a webpage on which
each user was presented with an image of the real room plus
an image of the map data generated by the robot onto which
the drawing could be done. The webpage1 is shown in the
inset in Figure 5. The user-defined polygons define the tar-
get regions against which we evaluate our transfers.

We consider a problem instance to be a room and a sought
CDSR type. For each room containing a manually encoded
CDSR of the sought type, we generate a transferred region
using analogical transfer. To assess the quality of the trans-
fer, we calculate precision (p, the proportion of the trans-
ferred region that overlaps with the target region) and recall
(r, the proportion of the target region that overlaps with the
transferred region) as follows:

1http://home.csumb.edu/k/katherinelockwood/world/

p =
area(transferred region ∩ target region)

area(transferred region)
(2)

r =
area(transferred region ∩ target region)

area(transferred region)
(3)

Using this approach we generate results showing the
matches between each of the following pairs of regions:
the transferred region and the appropriate target region; the
CDSR we manually encoded for the target room and target
region; and the region for the whole room and the target re-
gion. Results comparing transferred and target regions mea-
sure how well our system is able apply a single example to
new situations. The comparisons between the manual an-
notations to the target regions measure how well the anchor
points we chose capture the users’ regions (who were not
constrained to anchor points). Results from the whole room
regions provide a baseline performance for comparison.

5.2 Results
To assess overall performance, Table 1 summarizes the re-
sults across all problem instances against user-defined tar-
get regions from three different users. The transferred re-
gions achieved a precision of .47 (σ=.37) and a recall of .46
(σ=.38). Comparing the manually encoded regions against
each target region results in a mean precision of .71 (σ=.30)
and recall of .67 (σ=.25). The region defined by the room
corresponds to the target region with a precision of .17
(σ=.11) and recall of .98 (σ=.05).

To identify how our approach fairs under different condi-
tions, Table 2 separates the results by CDSR type. The mean
precision for the transferred regions ranged from .76 for the
front rows of classrooms to 0 for the office in studio apart-
ments. Comparing manually encoded against target regions
resulted in a minimum mean precision of .60. This occurred
for the front of the classroom. The whole room precision,
which is directly proportionally to the size of the target re-
gion, varied from .08 for the office to .35 for the living area.

5.3 Discussion
These results support the hypothesis that anchor points can
provide a symbolic representation on top of sensor data for
context-dependent spatial regions, and, when combined with
qualitative spatial relations, they facilitate learning from a
single example through analogical transfer. Collaboration
with human users requires a high precision and recall, be-
cause cognitive systems must be able to understand as well
as refer to these regions in human environments. Conse-
quently, the high manually encoded precisions and recalls
indicate that the defined anchor points are a reasonable start-
ing point for a symbolic representation. Our future work
seeks to further evaluate the utility of this representation by
embedding the cognitive system within tasks with human
users.

The transferred regions were considerably more precise
(.47) when compared to the room as whole (.17), and their
recalls (.46) indicate that they captured almost half of the
area indicated by the human user. As we create CDSRs



Transferred Manually Encoded Entire Room
p̄=.47 σ=.37, r̄=.46 σ=.38 p̄=.71 σ=.30, r̄=.67 σ=.25 p̄=.17 σ=.11, r̄=.98 σ=.05

Table 1: Overall Performance Compared Against Target Regions Defined by Three Users

Region Transferred Manually Encoded Entire Room
Front p̄=.32 σ=.33, r̄=.49 σ=.41 p̄=.60 σ=.29, r̄=.83 σ=.19 p̄=.16 σ=.10, r̄=1 σ=0
Back p̄=.44 σ=.37, r̄=.56 σ=.41 p̄=.66 σ=.25, r̄=.84 σ=.17 p̄=.11 σ=.06, r̄=.99 σ=.03

Front Rows p̄=.76 σ=.27, r̄=.28 σ=.21 p̄=.83 σ=.31, r̄=.50 σ=.11 p̄=.22 σ=.08, r̄=1 σ=0
Back Rows p̄=.72 σ=.30, r̄=.42 σ=.26 p̄=.80 σ=.29, r̄=.43 σ=.26 p̄=.19 σ=.06, r̄=1 σ=0

Kitchen p̄=.60 σ=.05, r̄=.59 σ=.34 p̄=.78 σ=.20, r̄=.71 σ=.13 p̄=.16 σ=.02, r̄=.92 σ=.13
Office p̄=.00 σ=.00, r̄=.00 σ=.00 p̄=.78 σ=.29, r̄=.55 σ=.20 p̄=.08 σ=.03, r̄=.94 σ=.06

Living Room p̄=.40 σ=.39, r̄=.01 σ=.01 p̄=.63 σ=.34, r̄=.54 σ=.13 p̄=.35 σ=.22, r̄=.96 σ=.06

Table 2: Performance by Region Type

using anchor points defined on perceived entities, our ap-
proach performs best when the boundary of the target CDSR
is closely tied to such entities. This is the case in the front
rows of the classroom, with p of .76 and .82 for the inferred
and the manually encoded regions respectively. The system
performs worst when the extent of the CDSR is defined as an
unbounded area near or around particular objects. The office
of a studio apartment is loosely defined as the region around
the desk. This motivates one direction of future work: ex-
panding the vocabulary of anchor points to better capture
these notions of space.

6 Related Work
Typical approaches to spatial representation for mobile
robots tend to focus on localization, and thus mostly rep-
resent the world uniformly without subdivision into mean-
ingful (semantic) units (Thrun 2003). When a more struc-
tured representation is required, many turn to Kuipers’ Spa-
tial Semantic Hierarchy (Kuipers 2000). This paper follows
in this tradition, adding CDSRs to his qualitative topolog-
ical representations. Whilst mobile robots exist which can
determine the type of a room from the objects in it (Han-
heide et al. 2010; Galindo et al. 2005), they only concern
themselves with types of whole rooms, and cannot represent
regions within rooms. This is also true for those systems
which use some elements of QSR (Aydemir et al. 2011).
The need for an autonomous system to ground references to
human-generated descriptions of space has been recognized
in domains where a robot must be instructed to perform a
particular task, however existing systems are restricted to
purely geometrically-defined regions (Tellex et al. 2011;
Dzifcak et al. 2009; Brenner et al. 2007).

There is mounting evidence that analogy, operating over
structured qualitative representations, can be used to sim-
ulate a number of spatial reasoning tasks. Forbus et al.
showed that analogy between course of action diagrams
could be used to identify potential ambush locations in
new situations by focusing on only the relevant aspects of
sketched battle plans (Forbus, Usher, and Chapman 2003).
A core contribution of their work was the definition of a
shared similarity constraint between a spatial reasoning sys-
tem and its user; where users and spatial reasoning systems

agree on the similarities between situations. This has close
parallels to what we are trying to accomplish, where a cogni-
tive system is able to reason about context-dependent spatial
regions by identifying the same salient features as its hu-
man user. The anchor points in our work were originally
used in teaching a system how to solve problems from the
Bennett Mechanical Comprehension Test that require spatial
and conceptual reasoning. For example, identifying which
wheelbarrow will be more difficult to lift based on the rela-
tive locations of its loads as depicted in a sketch (Klenk et al.
2005). In that work, the anchor points defined the endpoints
of lines. We go beyond that result to use anchor points to
specify 2D regions.

7 Conclusion

In this paper we presented an integrated cognitive sys-
tem capable of representing and reasoning about context-
dependent spatial regions. The system identifies CDSRs in
previously unseen environments through analogy with a sin-
gle example. This is a difficult cognitive systems task re-
quiring integration of semantic and geometric knowledge to
identify regions as small as 8% of the room. Our system
demonstrates a successful integration of a range of technolo-
gies including vision, SLAM, qualitative spatial reasoning
and analogy to achieve this task. In order to make this rich
collection of components work together, our work takes a
number of short-cuts that we plan to address with future
work. These include a reliance on the initial orientation of a
room in a global coordinate frame, the lack of a mechanism
to retrieve relevant rooms from memory (e.g. MAC/FAC
(Forbus, Gentner, and Law 1995)), and a lack of transfer
post-processing (e.g. comparing the QSRs present in both
base and transferred regions) to improve results. In addi-
tion, we must complement our system development work
with more comprehensive human studies assessing how peo-
ple define and use these regions as well as how well anchor
points capture them. Despite the preliminary nature of this
work, our evaluation demonstrates that the system is able to
transfer CDSRs that overlap with user-defined regions for 6
out of 7 region types.
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Web Mining Driven Semantic Scene Understanding and Object
Localization

Kai Zhou, Karthik Mahesh Varadarajan, Michael Zillich, Markus Vincze

Abstract— Knowledge acquisition from the Internet for
robotic applications has received widespread attention recently.
It has turned out to be an important supplementary or even
a complete replacement to conventional robotic perception.
In this paper, we investigate state-of-the-art online knowledge
acquisition systems for robotic vision applications and present
a framework for further fusion and tighter integration. Boot-
strapped by an interconnected process wherein modules for
object detection and supporting structure detection co-operate
to extract cross-correlated information, a web text mining
technique using sequential pattern retrieval is introduced for
linking the search of objects with their potential localities.
Experiments using an indoor mobile robot for an Active Visual
Search (AVS) task demonstrate the benefits of our coherent
framework for visual representation and knowledge acquisition
from the Internet.

I. INTRODUCTION

In order to observe, detect, recognize, grasp or manipulate
objects, diverse sensors have been mounted on versatile
robots and various perception techniques have been designed
for searching potential interest areas. As visual information
is the most important sensory source for humans, visual
perception algorithms play the most important role of all
the robotic sensory knowledge acquisition methods and have
received widespread attention in the last decades. Robotic
researchers have applied numerous computer vision algo-
rithms for detecting/recognizing potential objects in envi-
ronments, and most recently they provide clear evidences
of success in situating isolated object detector/recognizer in
holistic scene understanding frameworks. These approaches
[1][2][3][4][5] focus on the relationship between object
information and environment, thereby facilitating more ac-
curate detection/recognition of potential objects. However,
the knowledge about the semantic link between the object
of interest and its potential surrounding environment is still
missing in current holistic scene understanding methods.
This paper addressed this knowledge gap.

A practical instance of visual perceptual analysis in an
indoor mobile robot scenario will be first described here
to depict our intuition and development of robot visual
perception system. Given a mobile robot with the task of
searching a mug in the apartment, 1) The robot is driven
around based on pre-defined or exploratory waypoints and
isolated mug detector processes the image streams. How-
ever, abundant wrong and redundant detections are caused

The work was supported by EU FP7 Programme [FP7/2007-2013] under
grant agreement No.215181, CogX.

All authors are with Automation and Control Institute, Vienna Uni-
versity of Technology, Gußhausstraße 27-29, A-1040, Vienna, Austria
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Fig. 1: Scenario and object search task at a glance, left:
test scene with the robot at initial point, right: simula-
tion/visualization of visual search task.

due to the presence of clutter (wrong detections), illusory
or noisy contour (redundant detections) and degrade the
robot’s performance greatly. 2) Alternatively, the holistic
scene understanding methods consider the potential spatial
layout of the surroundings of a mug (e.g., a supporting
plane) and coherently perceive the mug and the surrounding
scene. This approach improves the efficiency and accuracy
significantly (e.g., the isolated detector will process a poster
with mug inside as candidate for region analysis, but the
holistic method will not). Although the paradigm of holistic
understanding of entire scenes improves the efficiency of
existing robotic vision systems, considerable effort is still
necessary to build robots that can perceive and interact with
the environment in a fashion similar to that of humans.
People focus visual attention on tables rather than on the
floor given the task of locating a mug, and vice versa for
locating a trash bin. This intelligence is based on an existing
knowledge stored in our mind – in the normal case, the
likelihood that a mug stands on the table is much higher
than the possibility that mug is on the floor. We term
this kind of knowledge as ”Common Sense about Object
Locality (CSOL)”. 3) Web mining driven semantic scene
understanding and object localization with situated CSOL is
proposed in this paper for intelligent robot visual perception
system. In the aforementioned example, using either surface
web mining (e.g., a direct search from Google) or deep
database mining (e.g., querying the online databases such
as Open Mind Indoor Common Sense database (OMICS)),
robots can be programmed to obtain the CSOL predicate that
mugs are usually located on the top of tables or desks.

The paper is organized as follows. In §II we introduce
the background and review state-of-the-art robot visual per-
ception approaches. §III describes a holistic understanding
approach using coherent stereo line detection and plane
estimation for reasoning about the scene. We then detail how



to generate CSOL predicates using web content mining in
§IV. Subsequent sections present experimental results with
synthetic scenes, and real robotic applications. A conclusion
is given at the end of the paper and the future work is shortly
discussed as well.

II. RELATED WORK

The ultimate goal of robot visual perception is the gen-
eration of detailed 3D representations for salient objects to
perform further robot manipulation. Researchers have devel-
oped many algorithms towards this goal; here we summarize
the developments in three phases:

1) Isolated visual operators, such as specific object de-
tector [6], sign recognizer [7] and preattentive feature based
detector [8] are utilized to process the visual image captured
from camera on the robot. However, isolated methods work
on the entire search space thereby consuming excess com-
putational power which is a scarce resource on a robot.

2) The holistic scene understanding techniques
[1][2][3][4][5] consider visual operators and spatial
layouts in a integrated manner for archiving accurate visual
perceptive analysis of scene elements. However, these
methods only use pure computer vision algorithms for robot
perception and still work on a single robot agent without
any prior knowledge or memories.

3) The situated perception methods allow the robot to
make use of knowledge databases, short/long memories of
the robot, learning beliefs and/or knowledge from networked
robots, thereby obtaining more comprehensive information
about the environment for perceiving the world it is situated
in. A detailed overview of situated robotics can be found
in [9] and of embodiment in [10], where it is argued to
be crucial for a close coupling between brain, body and
environment. Knowledge acquisition from the web or sharing
databases have been adopted to supply a large corpus of
training data [11] for visual recognition, to build 3D models
for robot manipulation [12], to complete qualia structures
describing an object [13], to guide robot planning for specific
tasks such as table setting for a meal [14], and even more
ambitiously to fill knowledge gaps when an indoor robot is
executing sophisticated tasks [15]. However, to our knowl-
edge, there is no robot vision system that obtains information
extracted from the web for revealing the relationships of
various objects and their most-likely locations.

Note that our robotic vision system as well as the entire
robot platform are built atop the CoSy Architecture Schema
(CAS) – a distributed asynchronous architecture [16], which
facilitates integration of many relevant components that could
bring additional functionality to the system in a coherent and
systematic way.

III. HOLISTIC SCENE UNDERSTANDING

A unified probabilistic framework, which combines stereo
line detection with planar surface estimation is described
in this section. Data association between planar surfaces
and specific objects is addressed next. We also recommend
readers [2][3] for the details.

The stereo line extraction is a bottom-up approach, First,
edges are detected from image pairs with an adaptive canny
edge detector before we fit lines into the extracted edge
chains using the method of Rosin and West [17]. Then we
match the lines of the stereo image pair using the mean-
standard deviation line descriptor (MSLD) [18] together with
the constraint of epipolar lines is utilized in the calibrated
stereo camera setup. A confidence value Con(f) for stereo
matched line is then calculated based on the angle between
the stereo match and the epipolar line. Note that the resulting
value Con(f), although in the range of [0, 1], is not a prob-
ability. Rather, this value denotes the quality and correctness
of the reconstructed lines.

We adopt CC-RANSAC [19] as the underlying plane esti-
mator and assign confidence values Con(S) to the estimated
planes by calculating the average normal vector of connected
points. This confidence value is used for the joint probability
maximization and will be addressed in detail in §??. It is
reported in [2][3] that plane refinement within a unified
probabilistic framework facilitates more reliable estimation
than using CC-RANSAC only.

Again the confidence Con(S) does not explicitly represent
a probability. However, we can use these confidence values to
approximate a probability distribution by generating samples
around the estimated plane and weighting these samples with
confidences. Given the plane S returned by CC-RANSAC,
and S̃ a generated sample near S, we formulate the proba-
bility distribution in the following way,

p(S̃|Con(S̃)) = p(Con(S̃)|S̃)p(S̃)
p(Con(S̃))

=
[(Con(S̃) > t)]p(S̃)

p(Con(S̃))

(1)

Here t is a threshold and [ ] denotes the Iverson bracket:

[X] =

{
1, if X is TRUE
0, otherwise

(2)

With the Iverson bracket, the probability p(S̃|Con(S̃)) is
proportional to the prior for the sampled plane S̃ whenever
Con(S̃) > t, and 0 elsewhere. In other words, p(Con(S̃)|S̃)
facilitates thresholding of plane samples with low confidence.
We draw samples randomly from the neighboring area of
S to generate S̃, and S̃ ∼ N (µn, σn)N (µh, σh), where n
and h are the normal vector of plane S, and the distance of
plane S to the origin. Hence, p(S̃) is a Gaussian distribution
and assigns higher probabilities to the samples near to the
estimated plane.

The joint probabilistic model consists of three parts, (1) the
probability that the estimated plane is at S̃, (2) the likelihood
of positive stereo line detection with the underlying plane
estimation, (3) the confidence value of detected lines returned
by the stereo line detection algorithm, and can be written as

p(S,W,E) ∝
K∏

i=1

p(S̃i|Con(S̃i))

M∏

j=1

p(tj |fj , S)p(fj , tj |ej)

(3)



The first and last probabilities are given using Eq. 1 and
stereo match confidence respectively. The second probability
is determined by the distance and angle between detected
stereo lines and planes.

To maximize the joint probability, we present the optimiza-
tion problem as argmaxsi,tj (ln p(S,W,E)), the logarithmic
formulation can be rewritten as,

ln p(S,W,E) =
K∑

i=1

ln p(Si|Con(Si))

+

M∑

j=1

[ln p(tj |fj , S) + ln p(fj , tj |ej)]
(4)

where Si, tj are the parameters to be estimated. We select
the plane which has the highest confidence value of all the
plane estimation results, and only consider this plane as the
scene geometry for the joint probabilistic model optimiza-
tion. Then the first part of Eq. 4 is a constant and the second
part can be calculated independently through M 3D matched
lines comparisons of ln p(tj = 0|fj , S) + ln p(fj , tj = 0|ej)
with ln p(tj = 1|fj , S) + ln p(fj , tj = 1|ej). After labeling
all the stereo lines, the pose of the plane with the highest
confidence is refined by searching the nearby planes S̃. This
refined pose should satisfy the criterion of maximizing the
number of stereo lines parallel or orthogonal to it.

Again, we refer the authors to the previous publication
[2][3] for the deduction of aforementioned formulae. A
noteworthy remark of this joint probabilistic approach is that
it considers all the relative elements (planes, stereo lines as
objects) of the current scene in a integrated manner to obtain
the optimized scene understanding, but it doesn’t know
whether the objects and planes in the current scene should
be linked properly or not under the situated consideration.
Obviously, if visual perceptive analysis is implemented only
when the proper link of objects and supporting surface is
detected, the object search task in the large scale environment
can be executed more accurately and efficiently. The solution
to break the improper link or vice versa to reveal the most
appropriate link between the given objects and detected
supporting planes, will be addressed in the next section.

IV. LOCALITY DISCOVERY WITH WEB MINING

Locality of objects plays an important role in robotic top-
down perception processes, such as active visual search. The
spatial concepts reflected by the locality of objects are of
great importance to robots, especially mobile ones [2][3][4].

As mentioned earlier, knowledge acquisition from the web
for robots has received widespread attention in the last years
[11][12][13][14][15], given that the World Wide Web is a
huge, dynamic, diverse and interactive medium to gain open
and free information. While these papers focus on obtaining
various knowledge, they do not cater to obtaining semantic
positional saliency from the Internet, which forms the core of
this paper. We make use of text mining from web to generate
Common Sense about Object Locality (CSOL) for efficient
guiding of robot visual search.

A. Noun Of Locality: ON

The functional interpretations of the spatial language term
”on” not only act as an indicator for cognitively plausible and
practical abstractions of localization knowledge in the field of
mobile robotics, but have also received widespread research
attention from psychology, neurobiology and linguistics. The
use of web content mining technology to extract CSOL
enables the exploration of large resources of information to
improve efficiency of robot visual search.

1) The term ”on” is the functional abstraction of me-
chanical support, which is strongly relevant to the planar
supporting surfaces – a dominative structure in artificial
indoor environments.

2) The spatial concept implied in the noun of locality ”on”,
which allows humans to analyse, generalize and internalize
spatial experiences, plays a prominent role in human cogni-
tion.

3) When verbally representing scenes with mechanical
support, contact or suspension, ”on” is also a keyword which
can demonstrate and derive other related vocabulary. Hence
researchers in the field of Natural Language Processing
(NLP) have developed several algorithms around the study
of the spatial language term ”on”.

4) As the 14th most common English word, ”on” serves
as an exemplar of knowledge discovery or information re-
trieval from diverse resources. This diversification ensures
the stability of the web mining results.

The spatial language term ”on” thus serves as an efficient
text mining pattern for semantic knowledge representation
and hence is used in this paper for discovery of CSOL for
visual perception in indoor mobile robotics.

B. Basic Definition

As a fertile area for data mining, the Wide World Web has
been viewed as the biggest information resource today, while
the huge amount of available information also raises issues of
scalability, transiency, diversification and redundancy. Web
content mining, as one of the most important research
directions in web mining, has reached considerable maturity
in recent years (see [20][21] for good overviews). Among all
web content mining techniques, Pattern Taxonomy Mining
(PTM) remains a popular technique. Though inefficient in the
context of information extraction from web documents [22],
its specific characterizations – indirect phrase representation
and absolute definitions fit perfectly to our requirements.

The definition of sequential pattern used in the paper
is described as follows. Let T = 〈t1, t2, t3 . . . , tn〉 be the
representation of a sequential text pattern. The semantic
representation (both singular and plural) of the object O is
obtained for both user-driven mode (i.e., the user requests
the robot for something) and non-situated inference mode,
e.g., in [14], wherein the robot learns how to set the table
for a meal through retrieval of web information, in the
form of annotations of objects required. The first term of
the sequential pattern, t1 will be set to the collection of
O, i.e., t1 = {O1, O2, . . . , Ok}, where k is the number of
queried objects. The second term t2 is the lemma ”be” which



includes occurrences of ”was”, ”is”, ”were” and ”are”. The
third term t3 is a set of nouns of locality, including ”on”.
The last term in the pattern tn = {S1, S2, . . . , Sh} is a
collection of potential supporting surfaces S in the robot
exploration environment. The information of these surfaces
can be provided by user predefined contexts or furniture
detection algorithms.

Definition IV.1. (Sub- and Super-sequence) Given two se-
quences α = 〈a1, a2, . . . , am〉, β = 〈b1, b2, . . . , b`〉, we
define α is a sub-sequence of β if and only if there exist
integers 1 ≤ i1 < i2 < . . . < im < `, such that
a1 = bi1, a2 = bi2, . . . , am = bim.

For instance, sequence I = 〈t1, t3, tn−1〉 is a sub-sequence
of T = 〈t1, t2, t3 . . . , tn〉. Furthermore, if sequence G is a
sub-sequence of T , we call T = 〈t1, t2, t3 . . . , tn〉 a super-
sequence of G.

Definition IV.2. (Absolute and Relative Support) Given
a database D (can either be the World Wide Web or a
specific robotics knowledge database, e.g., OMICS) and a
sequential pattern T , the absolute support of T in D,
denoted as suppa(T ;D) = ||{T |T ∈ D}||, is the number
of occurrences of T in D. The relative support of T is the
fraction of sentences that contain T in the entire database
D, denoted as suppr(T ;D) = suppa(T ;D)/||D||. The
support collection is defined as a set of paragraphs, and
each of the paragraphs contains the same sequential pattern
T , i.e., {supp(T ;D)} = {T |T ∈ D}.
Definition IV.3. (Frequent Sequential Pattern) A sequential
pattern T is considered as a frequent sequential pattern
(fsp) if and only if suppa(T ;D) ≥ ζ, where ζ is the minimum
support (min sup) threshold.

The reason for using min sup in our approach is to
evaluate and qualify the support collections discovered in
specific-scaled databases (e.g., professional robotic knowl-
edge database), thereby enabling the selection of support
collections with higher relative support for further process-
ing, while objects with lower relative support trigger the
robot to change its mining database to a lager one (e.g.,
Internet). Since the size of the professional robotic database
is far smaller than the size of generic on-line database,
this piecewise process is capable of decreasing the system
burden and/or time for cognitive processing or reflection
for the robot. The utilization of generic on-line database
is also inevitable because the professional database delivers
higher performance only in a limited scope (You may not
get reasonable number of retrieval items when searching
uncommon objects in professional database).

Definition IV.4. (Object pattern, Locality pattern and Full
pattern) A object pattern T o is composed of in-sequence
object representations O, lemma ”be” and a noun of locality,
a full pattern T f consists of a object pattern, a potential
supporting surface at the end, and an arbitrary number
of terms between. A locality pattern T l is the full pattern
without the first object term.

Both object pattern T o and locality pattern T l are sub-
patterns of full pattern T f , and full pattern T f is the super-
pattern of object pattern T o and locality pattern T l.

C. Pattern Retrieval

Based on the pattern representation of text documents,
we present a new two-stage pattern retrieval approach for
discovering locality knowledge CSOL. As we demonstrate
in Algorithm 1, using pattern retrieval for robotic visual
search is designed as a closely integrated two stage mining
process. The mining databases are set to the specific robotic
knowledge library (e.g., OMICS) or a more generic large-
scale information source (e.g., Internet). The pattern retrieval
algorithm operating on the specific robotic database that is of
a reasonable size, can satisfy the timeliness of active visual
search task while providing reasonable results for retrieving
items of daily use. However, most of the robotic knowledge
libraries (e.g., OMICS) are incomplete and updated periodi-
cally, and the retrieved results to queries are limited in scope.
The generic large-scale information source (e.g., Internet)
can be considered as an important supplementary source
when the retrieval of the robotic database fails. Utilization
of it increases the system burden and time consumption,
not only because of the database size changing but also
caused by the pruning as a preprocessing step to filter out
the unrelated items. However, the robust retrieval results can
facilitate more effective visual search.

Algorithm 1 Pattern retrieval of visual object search

1: Set operating database D to robotic database Dr

2: if ∃ fsp T o , i.e. suppa(T
o;D) ≥ ζ then

3: Calculate support collection C = {supp(T o;D)}
4: for tn = S1 → Sh do
5: Compose T l

i with tn = Si as the last term
6: Compute relative support suppr(T l

i ; C) w.r.t. C
7: Sort {suppr(T l

i ; C)|i = 1, . . . , h}
8: end for
9: else

10: if D = Dr then
11: Set D to the generic Internet database DI , back to

line 2
12: else
13: Return failure
14: end if
15: end if
16: Return the sorted results

The relative supports with respect to various elements
in the support collection are sorted, thereby providing a
priority table for linking the first term in sequential pattern
(object) with the last term in the pattern (locality). We
compute the relative support of T l in the support collection
C = {supp(T o;D)} for normalization of relative supports of
various objects, since there might be a significant difference
in the number of retrieved items between commonly found
and uncommon objects.



(a) table scene (b) sofa scene (c) floor scene

Fig. 2: The indoor robot test scenario setting, from left to
right, the robot is looking towards the table, sofa and floor
for visual perception.

In our experiments, the minimum support (min sup)
threshold is set to 20 for the OMICS empirically, although
this is a relative small number with regard to the 1184144
statements1 in OMICS. Furthermore, min sup is set to 1000
for the Internet data and we will show that this setting
produces robust retrieval results in the next section.

V. EXPERIMENTS

The evaluation of pattern retrieval is performed by demon-
strating the validity of linkage between several common
objects with their most likely locations. An indoor robot
that applies this knowledge discovery methods is tested in a
structured environment (Fig. 1 and Fig. 2) to depict how the
online knowledge discovery facilitates effective and accurate
active visual search.

A. Evaluation of Pattern Retrieval

To assess the quality of our pattern retrieval approach,
several objects are used as the target term in the pattern and
the two different databases (the specific database through
OMICS and the large-scale generic one through Google
advanced search) are applied as data mining sources. Fig. 3
displays the text mining results for three common objects in
OMICS. Note that the noun of locality used for mining may
be tailed by contextually unrelated nouns - not just places
which do not exist in the current room/apartment context,
but also some phrases or idioms. For instance, we notice
that the object term ”book” has a relative high likelihood
57% for other ”location” misnomers in comparison with the
locations the robot could possibly find in a room, such as
table, shelf and floor. However, since most misnomers are
widely used phrases, such as ”on sale”, these can be easily
pruned away.

When there are not enough (> ζ) retrieval results from
OMICS, we use Google advanced search to retrieve results
from the Internet. Fig 4 shows three pattern retrieval results.
In this figure, we find that the object ”cushion” and ”trash
can” are tightly bound with the locations ”sofa” and ”floor”
respectively. The retrieval result of pattern {′′football′′ +′′

1According to the database statistic of OMICS project at
http://openmind.hri-us.com.

Fig. 3: The pattern retrieval results of three common objects –
”cup”, ”book” and ”can”, the source being the indoor-robot
knowledge database OMICS, - only localities that exist in
an office room are shown in the figure. Patterns containing
”cup”, ”book” and ”can” have absolute support values 31,
21 and 21 respectively.

Fig. 4: The pattern retrieval results of three objects – ”cush-
ion”, ”trash can” and ”football”, the source is the general
Internet data accessed with Google advanced search, and
only the localities that exist in an office room are searched
for - these are displayed in the figure. Note that here we use
the bar figure instead of pie figure, because comparing with
the localities that are not depicted here (“others” part in Fig.
3), the number of displayed items are significantly smaller.

be′′+′′on′′ . . .+′′ location′′} returns two dominant locations
which have similar probabilities of occurence. Although the
location ”table” is dominantly picked up, the actual meaning
of this word refers to ”diagram with columns of information”
in the context of ”football” rather than what we need for
robotic task – ”furniture upon which to work, eat”.

B. Robot Active Visual Search

We test our web content mining approach within a real
indoor robotic scenario. The robot explores a room with a
table in the center and a sofa next to the wall. Several objects
(listed in Fig. 5) are placed on the table, floor or couch. The
autonomous navigation of the robot is implemented as [23].
The visual search strategy is straightforward – at every spot,
the robot will pan (±90◦) and tilt (−60◦) the camera to
perform visual perceptive analysis. In contrast, the pattern
retrieval based web content mining will prune the search
when the dominant plane in the current scene does not match
the object’s most likely location. Fig. 6 depicts the way points
of the robot and also shows the relative positions of furnitures
in the room. The greater efficiency of applying this approach
for the task of object visual search is apparent in Fig. 5.



Fig. 5: Comparison of average visual search time for brute
force search and the web content mining method proposed
in this paper. The visual search of each object is repeated 10
times and the average processing time is recorded.

Fig. 6: Simulation/Visualization world from the top view.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a robotic vision system which
is based on the fusion of holistic visual perception and web
content mining. We generate spatial information in the scene
by considering plane estimation and stereo line detection
coherently within a unified probabilistic framework, and
show how the resulting scene information can be efficiently
searched using pattern based data mining from web. Ex-
periments demonstrate that our system can sort possible
spatial locations according to their relationships with various
objects, thereby providing an effective and plausible robotic
visual search strategy.

Two main dimensions of using web content mining for
discovering CSOL knowledge form the focus of our future
work. Firstly, the assumption that the sentence containing
the object and its most likely existing location has the
dominant role in the online database, although intuitively
correct, requires further investigation. Secondly, the selection
of the objective term influences significantly the quality of
retrieval results. The application of objects’ synonyms or
surface variants can help solve this problem.
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Web Mining Driven Object Locality Knowledge Acquisition for
Efficient Robot Behavior

Kai Zhou, Michael Zillich, Hendrik Zender and Markus Vincze

Abstract— As an important information resource, visual per-
ception has been widely employed for various indoor mobile
robots. The common-sense knowledge about object locality
(CSOL), e.g. a cup is usually located on the table top rather than
on the floor and vice versa for a trash bin, is a very helpful
context information for a robotic visual search task. In this
paper, we propose an online knowledge acquisition mechanism
for discovering CSOL, thereby facilitating a more efficient and
robust robotic visual search. The proposed mechanism is able
to create conceptual knowledge with the information acquired
from the largest and the most diverse medium – the Internet.
Experiments using an indoor mobile robot demonstrate the
efficiency of our approach as well as reliability of goal-directed
robot behaviour.

I. INTRODUCTION

To perform object search tasks efficiently and reliably,
common-sense conceptual knowledge about the structure of
the world has been introduced to guide planning for the
robot [1][2][3][4][5][6][7][8]. This common-sense concep-
tual knowledge, which describes the relational structures
between objects and their surrounding environment, prob-
abilistically represents the confidence value of the statement
“object O is on/in location L”. This probabilistic represen-
tation is capable of modelling the uncertainty in robotic
perception, thus enhancing the plausibility and reliability of
the robot’s behaviour [1]. Although using common-sense
conceptual knowledge about the relations between object
and environment to benefit robotic visual search dates back
to 1970’s [9], recently it becomes popular to obtain this
knowledge by automatically analyzing large-scale knowl-
edge repositories rather than inputting manually [1][8]. The
limitation with respect to the scale of professional informa-
tion resources and the lack of robust knowledge extraction
approaches are the main obstacles for applying the online
knowledge acquisition in robotics. Certainly the trade-offs
between the size/professionalisation of the information re-
sources as well as the efficiency/reliability of the knowledge
extraction approaches also affect the progresses made in
this field. Thus, though automatic information acquisition
by downloading the repository of knowledge has been a
dream of the AI community for several decades and has

The research leading to these results was supported by the European
Community’s Seventh Framework Programme [FP7/2007-2013] under grant
agreement No.215181, CogX.

Kai Zhou, Michael Zillich and Markus Vincze are with
Automation and Control Institute (ACIN), Vienna University
of Technology, Gußhausstraße 27-29, A-1040, Vienna, Austria.
{zhou,zillich,vincze}@acin.tuwien.ac.at

Hendrik Zender is with Language Technology Lab, German Research
Center for Artificial Intelligence (DFKI), Campus D3.2, Stuhlsatzenhausweg
3, D-66123 Saarbruecken, Germany. zender@dfki.de

Fig. 1: Example scenario and object search task at a glance,
note that the web search of text/image displayed here is only
used to show the process, the embedded online knowledge
acquisition method will be described in section IV.

appeared in many fictional movies, the robotic community
is still working towards obtaining common-sense conceptual
knowledge automatically.

The broad availability and open accessibility of the cor-
pora on the World Wide Web (WWW) provide robots with
opportunities for novel knowledge acquisition techniques and
strategies. Using the WWW as the information resource for
robotic applications has received widespread attentions in
recent years. Knowledge acquisition from the web or sharing
databases have been adopted to supply a large corpus of
training data [10] for visual recognition, to build 3D models
for robot manipulation [11], to complete qualia structures
describing an object [12], to guide robot planning for specific
tasks such as table setting for a meal [13], and even more
ambitiously to fill knowledge gaps when an indoor robot is
executing sophisticated tasks [14]. However, for mobile robot
research, discovering common-sense conceptual knowledge
about the relations of object and environment from the web
is still in an early stage [3][4][1][2][8], and many progresses
and improvements could be made in terms of efficiency and
robustness. This paper will address this cutting-edge field in
mobile robotic research.

The main contributions of this paper are: 1) Accurate prob-
abilistic conceptual knowledge that represents the relations
of objects and their situated environments, is extracted by
fusing search engine query data and a professional database.
2) For the first time provide a large body of experimental
results of probabilistic knowledge (hundreds of objects),
to demonstrate the validity of the idea that object locality
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Fig. 2: The overall data flow of using the CSOL knowledge that derives from web mining results to perform robotic visual
search task.

knowledge can be discovered through the analysis of Internet
queries and shared database.

The remainder of this paper starts with the introduction
of the related work of robotic visual search and reviews
the state-of-the-art robotic applications using information
acquisition from the web (Section II). Then we detail the
preliminary definitions of mathematical theories in Section
III. Section IV describes the online knowledge extraction
approach which combines web text mining, image retrieval
and database query, as well as how this approach is utilized
to extract CSOL from the Internet. Subsequent sections
explain the test scenarios with various experimental setups,
evaluations and analyses of results. A conclusion is presented
at the end and the future work is also shortly discussed.

II. RELATED WORK

In this section, we first give an overview of the robotic
visual search task, then we will briefly describe the common-
sense object locality (CSOL) knowledge, and introduce re-
cent studies about how this knowledge is applied for visual
search tasks performed by various indoor mobile robots.

For indoor mobile robots the intelligence for performing
complex tasks in real environments is an interconnected
process wherein low-level raw data obtained from various
sensors and high-level knowledge need to co-operate in order

to extract cross-correlated information. Active visual search,
which is a typical task required to be performed by various
robots, is a popular study case which incorporates low-
level data from bottom-up visual attention and high-level
semantic information from users’ expectations/knowledge
repository. The pioneer work of robotic active search in [15]
has shown that the task of optimizing the sequential locations
for observing objects, given a probability distribution, is an
NP-hard problem. However, much research on improving
the robustness and efficiency of the approximations and
simplifications of this problem has been launched in the
recent years [16][17][3][4][1][8].

Recent research demonstrates that the common-sense ob-
ject locality (CSOL) knowledge has played an important role
in mobile robots’ visual search tasks [1][2][8][3][4][18]. In
[3], the CSOL knowledge is termed as spatial relations which
are represented probabilistically to cast the object search
problem as a fully-observable Markov decision process
(MDP). [18] integrates an attentive process into the visual
object search planning of a mobile robot, i.e., optimizing
the probability of finding the object target using information
generated from the analysis of visual attention over time.
Galindo et al. solve the task planning problem of mobile
robot using a semantic map [19] or the AH-graph model
based abstraction of the world [20]. Both their semantic



maps and world abstraction contain numerous object locality
knowledge. However, although the aforementioned literature
have applied CSOL knowledge to facilitate more efficient
robot behavior, all of them use the conventional way to
generate the CSOL knowledge, which is manual-input, pre-
defined and restricted to searching a single object.

Rapid development of World Wide Web techniques pro-
vides researchers with opportunities for obtaining huge,
dynamic, diverse and interactive information. The robotic
community also noticed this trend, and various robotic tasks
have benefited by using knowledge acquisition from the web
or sharing databases [10][11][12][13][14][21]. [3] presented
an efficient MDP-based active visual search (AVS) procedure
exploiting object relational knowledge such as “book ON
table1 IN room1”. They could show that AVS informed
by such knowledge provided in probabilistic form could
significantly improve search times and success rates, and
that indeed the accuracy of the provided knowledge plays an
important role. Probabilities in their system however were
still hand-coded. Extending this work [1] and [2] generate
robot common-sense knowledge by querying cooccurrence
of objects and locations from an image search engine and
a robotic database, then integrate the obtained probabilistic
relation into a switching planner (continual fast downward
plus decision theoretic planner) for efficient robot behaviour.
They demonstrate the effectiveness of the approach in search-
ing for a given object among 19 known objects, and the
applicability of probabilistic knowledge obtained form web
resources. Obtaining that knowledge however still required
user intervention to collect the numbers of search hits for
calculating cooccurrence probabilities. Follow-up work in
[4] showed extended results, searching for different types of
objects. Following the above work, [8] proposed a web text
mining driven CSOL knowledge extraction and combined
with their robotic holistic scene understanding visual system
for performing object search tasks. Their selection method of
the objective term, which influences significantly the quality
of retrieval results, also requires to be elaborated in advance
thus limiting the degree of flexibility and expandability.

Note that our mobile robot system shares the same
underlying architecture (the CoSy Architecture Schema
(CAS) – a distributed asynchronous architecture [22]) with
[1][2][3][4][8], thereby maintaining the functionality of the
previous system and meanwhile providing increased per-
formance of the object search task (particular multi-object
search) through applying the online CSOL knowledge ac-
quisition mechanism.

III. PRELIMINARY DEFINITIONS

The representation and generation of knowledge for
robotics is highly related to several mathematical theories,
which will be firstly discussed in this section.

A. Mathematical Logic

Mathematical logic is the general approach to representing
and reasoning knowledge for robotics due to its signifi-
cantly important role in artificial intelligence (AI) research

[23]. The conventional and state-of-the-art mechanisms use
Description Logics (DL) to describe and reason about the
robotic knowledge ontologically [24]. Description Logics,
which consist of a family of formal knowledge representation
languages, are of significant importance in providing the
ontological representation of knowledge. It integrates the
expressive way of Propositional Logic (PL) and efficient
decision of First-order Logic (FoL). We use a practical
robotic knowledge example to introduce the development of
applying these mathematical logics in robotics.

PL interprets the true or false statements formally with
formulas. For instance, the typical spatial knowledge in
robotics – “Red cup is on the table”, which is a true
proposition, can be interpreted as OnTable(Redcup), where
OnTable() denotes the propositional function and Redcup
is a variable parameter. While propositional logic covers
simple declarative propositions, first-order logic additionally
extends with predicates and quantification, i.e. “All the cups
are on the table” is interpreted by FoL as OnTable(X), X =
{Allcups}, where curly brackets {} delimit the set of vari-
able collections. However, once the information resources
involve uncertainty quantification or the reasoning process
yields uncertain results, DL with the integration of PL and
FoL cannot provide solutions within reasonable calculational
effort to enable uncertainty-savvy logical reasoning. This is
also the reason that the prior attempts of applying CSOL
knowledge cannot create a holistic approach to the robotic
search task. For instance, the CSOL knowledge “The pos-
sibility of locating a cup on the table is 65%” and “The
possibility of locating a cup on the floor is 35%” cannot
satisfy the quantification condition of DL. Thus previous
literature [1][2][3][4][8] handle these information externally
by taking the higher potential of object location as the dom-
inant/unary one for the further object search task. However,
this external operation works only because in both their
test scenarios single-object searches in a known environment
(CSOL knowledge about single object at particular locations
is calculated off-line) are performed.

B. Pattern Retrieval for Text Mining

Following the definition of CSOL knowledge in [8], the
structure of pattern used for web text mining is also rep-
resented using the Pattern Taxonomy Model (PTM) in this
paper. An object pattern T o is composed of in-sequence
object representations O, lemma ”be” and a noun of locality
(NoL). A locality pattern T l is composed of in-sequence
lemma ”be”, a noun of locality and locality representation L.
A full pattern T f consists of an object pattern, a potential
supporting surface at the end, and an arbitrary number of
terms between. Table I illustrates the representations and
examples of various patterns for web text mining. The tilde
operator “∼” takes the word immediately following it and
searches both for that specific word and for the word’s
synonyms. The plus operator “+” highlights the keywords
that had to be included in the search results exactly as we
typed them.



TABLE I: The illustration of various PTM example for text retrieval

PTM Representation Examples Searched in Google Searched in Bing/Yahoo
object pattern object+“be”+“NoL” “sofa was in” “sofa +was +in” +“sofa was in”
locality pattern “be”+“NoL”+locality “is on the table” “+is +on the ∼table” +“is on the table”
full pattern object+“be”+“NoL”+“*”+locality “cereal is in the kitchen” “cereal +is +in * ∼kitchen” +“cereal is in * kitchen”

C. Cooccurrence Prior Query

For web image retrieval and professional database
query, we adopt the same object-location cooccurrence in
[1][2][3][4] as the terms for search online. The object query
Qo is the number of hits returned by the query of noun
term o. The locality query Ql is for the number when we
query the noun term l. The full query Qf is calculated by
counting the number of hits that the search engine returns
when resolving “o in the l” query. The pattern taxonomy
model T f and the cooccurrence prior query Qf will be
referred to as object-location coupling representation in the
rest of the paper.

IV. COMMON-SENSE OBJECT LOCALITY KNOWLEDGE

The CSOL knowledge acquired from the web can be
categorized into three varieties according to the different
information sources, image retrieval results, web text mining
results and professional database query results. The obtained
knowledge from these various sources have been successfully
adopted for generating spatial concepts to perform object
search tasks in indoor mobile scenarios [1][3][4][8]. The
combination of these three types of CSOL knowledge will be
discussed in this paper and the experimental results shown
in section V will demonstrate the superior performance of
this integration.

A. Assumption about CSOL Knowledge

A basic assumption about CSOL knowledge as presented
in in [1][2][3][4][8] is that the probability of the robot
locating an object at the specific place is in direct propor-
tion to the probability of finding object-location coupling
representations in all the documents that contain locality
representations. The semantics involved in this assumption
is, roughly, that the ratio of the hits returned by searching
“object in/on the location” compared to the hits returned
by searching “location” only, reflects the popularity of this
object at this location, and can thus be used as the likelihood
of finding this object at this location when the robot is
performing the search task. Following the framework laid
out in [1][2][3][4][8] the mathematical representation of this
assumption is formalized as follows,

ρ(find object O at location Li) ∝ ρ(O|Li)

ρ(O|Li) =
ρ(O ∩ Li)

ρ(Li)
=

#{O ∩ Li}
#{Li}

(1)

where ρ(O ∩ Li) and ρ(Li) denote the probabilities of
discovering documents/images that contain searched items
of “object O + location Li” or just locations Li in the
documents/images repository. Symbol #{·} represents the

number of hits returned by the search engine when resolving
task of various queries.

B. Object-Location Belief Model

The aforementioned way to calculate the probability of
finding a specific object at various locations satisfies the
fundamental requirement of the robotic search task by eval-
uating the popularities of various object-location couplings.
However, once there are multiple objects (either object o1
AND o2 or object o1 OR o2) requiring to be searched, com-
parison among probabilities of multiple objects at various
locations becomes necessary for planning the most efficient
motion/path. Thus the popularity of an object itself should
be taken into account since in general the more commonly
used object would have more description/illustration in the
Internet. Therefore, we propose an Object-Location Belief
Model (OLBM) to describe the popularities of the object
itself as well as object-location coupling simultaneously. It
is a belief model since it implicates how strong the robot
believes that the object can be located at the location. This
model can be formulated as follows,

OLB = ρ(find Ok at Li) :=
f(Ok,Li)

n∑
i=1

m∑
k=1

f(Ok,Li)

f(Ok,Li) =
#{Ok ∩ Li}#{Ok}

#{Li}

(2)

The implications of f(Ok,Li) can be summarized as,
1) the objects’ popularities (i.e. how commonly it will be
found in a general indoor environment) will be considered
as the most important factor for estimating the probabilities
of locating various objects at diverse indoor locations. Since
typically the statement “#{Ok ∩ Li} � #{Li}” is true,
when the object is popular in the indoor environment (i.e.
#{Ok} ∼ #{Li} or even #{Ok} > #{Li} in our test
configuration), f(Ok,Li) can be significantly large, even
much more than 1. Therefore f(Ok,Li) is not a probabilistic
function but rather the belief which depicts the expectation
made by the robot about objects’ locations. 2) For uncommon
object, the popularities of object itself and object-location
coupling are of same importance to calculate the f(Ok,Li).

To apply OLB for a multiple objects search task, we
discuss two different cases which require the robot to search
objects with logical conjunction and disjunction relations.

1) Multiple-object under Logical Conjunction: One of the
most common multiple-object search cases is the attempt
to find multiple objects simultaneously, i.e. both object o1
AND o2 are required to be located in one search task. For
instance, a service robot might be asked for locating and
grasping a fork and a knife when the user wants to eat



Algorithm 1 Search multiple-object under logical conjunc-
tion relation

1: Calculate ∀{Ok,Lj}k=1,...,n,j=1,...,m to generate object-
location set {O,L},

2: Set Lc to robot’s current location,
3: if {O,L} is empty then
4: return saved object-location pairs.
5: end if
6: ∀{Ok,Lj} In {O,L}, find a pair of {Omax,Lmax}

whih has max (OLB(Ok,Lj)/d(Lc,Lj)),
7: Move robot to Lmax, attempt to locate Omax

8: if NOT succeed then
9: decrease OLB(Omax,Lmax), go to step 2,

10: else
11: Save {Omax,Lmax} (or break, perform other task),
12: delete ∀{Omax,Lj}j=1,...,m in {O,L}, go to step 2,
13: end if

a pizza. In this case the two required objects can usually
be located at the same place, thus robot is still able to
perform an efficient search by considering the predominant
location of each object sequentially. However, the robot could
also be asked to search for two non-related objects in one
task, e.g. a magazine which is predominantly located in
the living room and a cup which is predominantly located
in the kitchen. With a task that searches for several non-
related objects, the probabilities of multiple objects at various
locations should obviously be considered in planning the
most efficient trajectory and movement for the mobile robot.
Algorithm 1 lists the scheme of searching multiple-object
under logical conjunction relations. d(Lc,Lj) in algorithm
1 is a cost function which measures the cost of moving the
robot from the current location Lc to an arbitrary location Lj .
Decreasing the object-location belief after an unsuccessful
search can provide the possibility of handling detection
failures caused by vision algorithms, since the robot will
re-visit this place when it failed to find the object at all the
locations.

2) Multiple-object under Logical Disjunction: Another
common multiple-object search case is the attempt to find
a unique object in a set of objects, i.e. alternatively object
o1 OR o2 is required to be located in one searching task.
For instance, a service robot might be asked for locating
and grasping a cup or a mug when the user wants to drink
water. In this case, alternative plans of getting a cup or a mug
might be executed by the robot, thus the robot is required to
compare the likelihoods that various objects can be located
in all the places. Algorithm 2 lists the scheme of searching
multiple objects under the logical conjunction relation.

C. CSOL Knowledge Acquisition

The CSOL knowledge can be the semantic abstraction of
OLB(Ok,Lj) information. However, a single information
source (e.g. web text mining in [8] or web image retrieval in
[1][2]) is not stable enough and thus often returns incorrect
or incomplete results. To improve the stability of extracted

Algorithm 2 Search multiple-object under logical disjunc-
tion relation

1: Calculate ∀{Ok,Lj}k=1,...,n,j=1,...,m to generate object-
location set {O,L},

2: Set Lc to robot’s current location,
3: ∀{Ok,Lj} In {O,L}, find a pair of {Omax,Lmax} has

max (OLB(Ok,Lj)/d(Lc,Lj)),
4: Move robot to Lmax, attempt to locate Omax

5: if NOT succeed then
6: decrease OLB(Omax,Lmax), go to step 2,
7: else
8: return {Omax,Lmax},
9: end if

CSOL knowledge, we fuse the web mining results from
various sources to generate the CSOL knowledge.

Given the probability of locating object O at position L
is represented as OLB(O,L)t, which is computed using
pattern retrieval for text mining in Google search engine. And
using cooccurrence prior query from Bing image retrieval
calculates the probability OLB(O,L)i. We utilize the same
boost factor as in [1][2] to take into account the influence
of the professional data in the Open Mind Indoor Common
Sense (OMICS) database1. Then the fusion probability of
finding object O at position L can be formulated as follows,

OLB(O,L)fusion =

(
OLB(O,L)t +OLB(O,L)i

2

)B

(3)
where B = 1

2 if there are hits returned when resolving the
cooccurrence search of object O and position L within the
OMICS database, and B = 1 if the query result is empty.

V. EXPERIMENTS

In order to utilize the discovered CSOL knowledge to
facilitate more efficient robotic visual search, we first create
the ground truth of CSOL knowledge for accuracy eval-
uation. Then experiments using an indoor mobile robot
scenario demonstrate the superior performance of using the
discovered knowledge.

A. CSOL Knowledge Ground Truth

In order to obtain the ground truth of the CSOL knowl-
edge, five persons (two males with good experience in
robotics, two females and one male without any robotic
background) were asked to label the two most predominant
locations of 134 household objects (both room and support-
ing surface levels) and 22 types of furniture (only room
level). Only 37 household objects and 15 types of furniture
satisfy the condition that the two predominant locations are
the same in all five assignments, if the orders of two locations
are taken into consideration (case a). 48 household objects
and the same number of furniture types can be used if only
considering the correctness of the most predominant location

1http://openmind.hri-us.com, Honda Research Institute USA



37 48 63 37 48 63

12 11 17 34 35 44

text ming with OLB(O,L) (c) image retrieval with ρ(O,L) (a)image retrieval with ρ(O,L) (b)image retrieval with ρ(O,L) (c)image retrieval with OLB(O,L) (a)image retrieval with OLB(O,L) (b)image retrieval with OLB(O,L) (c)

0 

10 

20 

30 

40 

50 

60 

70 
Ground truth correct web mining results 

co
u

n
t 

Fig. 3: Comparison of ground truth and query results of
various web mining methods for discovering the CSOL
knowledge of household objects.

TABLE II: The likelihood of locating a single object on
various supporting surfaces

Object Table surface
f(O,Lt)/ρ

Floor surface
f(O,Lf )/ρ

Sofa surface
f(O,Ls)/ρ

book 32100000/60.46% 6000000/29.71% 505000/9.83%
cushion 44900/16.32% 38800/37.08% 12400/46.60%
blanket 51400/8.68% 81100/35.99% 31700/55.33%
laptop 2790000/55.93% 388000/20.45% 114000/23.62%
shoe 646000/38.78% 388000/61.22% 0/0.00%
puppy 22100/1.56% 419000/77.95% 28000/20.49%
kitty 661000/5.60% 6820000/15.18% 905000/79.22%
dog 4840000/43.99% 1330000/31.77% 258000/24.24%
cat 2430000/30.89% 1270000/42.44% 203000/26.67%

(case b). And 63 household objects and the same number of
furniture types are accepted as ground truth when not consid-
ering the order of the two most predominant objects (case c).
We filter out those objects where different persons disagree
about the predominant locations for omitting the influence
of diverse personalities and habits in the questionnaire.

We use various web mining methods to discover the CSOL
knowledge, i.e. two most predominant objects, then compare
the results to the ground truth and count the number of
correct mining. Fig. 3 displays the counting numbers and
illustrates the superior performance of the proposed CSOL
knowledge discovery mechanism.

B. Object-location Beliefs Test

Table II depicts the likelihoods of locating an object on
various supporting surfaces. Note that the percentages dis-
played in the table are calculated using Eq. 1, which means
these probabilities represent the likelihoods of locating var-
ious objects in the single-object search task. Colored cells
in the table highlight the predominant supporting surfaces of
several examples of our experiments.

Table III and IV show the likelihoods of locating various
types of furniture and household objects in the indoor en-
vironment (room category level). The cyan/orange colored

Fig. 4: Scenario and object search task at a glance, left: test
scene with the robot, right: simulation/visualization of visual
search task.

cells highlight the most/second predominant locations deter-
mined using the proposed mechanism. We even test several
objects/persons where no common sense about their locations
can be determined, e.g. book, box, ipad, baby and kid, and
illustrate these results also in Table IV. These results, to some
extent, still make sense and are interesting, e.g. when a baby
grows to be a kid, his/her predominant positions vary from
the “bedroom+living room” to the “living room+kitchen”.

In case of locating two objects with logic disjunction
relation, i.e. once one of the objects in the list is reached
by the robot, the searching task will terminate, table V
demonstrates the likelihoods of finding “book” or “box”
at various locations using various methods. Updating the
target object according to the current beliefs about locating
various objects at all the locations, provides the flexibility
and efficiency for the robotic task that requires to search
alternative objects.

The full experimental results, including the likelihoods of
locating 137 objects and furniture at various locations using
web text mining or web image retrieval, can be downloaded
from our web page 2. Also a Python-based program for
archiving these results is available there.

C. Pragmatic Test With Robotic Search Task

To evaluate the implementation of the proposed mecha-
nism, we analyze our mobile robot system performing the
multi-object search task. For the conventional single object
search task, such as described in [1], [4] and [8], our
mechanism is just a replacement of their off-line knowledge
discovery methods, therefore similar bahaviors of the robot
can be expected if their manually given probabilites of
locating objects at various places just quantitatively (the
predominant places for locating object are the same) differ
from our online discovered OLBM. The visualization of our
test environment is depicted in Fig. 4. Our experiment com-
pares the system using the knowledge acquisition method
described in this paper, to two baseline systems that discover
CSOL knowledge from OMICS + image retrieval [1][2]/text
mining [8].

In all the tests, a book and a box (the objects to search
for) were placed in the environment, for instance the “table

2http://users.acin.tuwien.ac.at/kzhou/files/WMRK.zip



TABLE III: The likelihood of locating various types of furniture in indoor environment

Furniture Living room Kitchen bedroom bathroom Dining room Office Corridor
armchair 28,18% 1,29% 16,02% 0,00% 0,92% 0,55% 3,04%
bed 24,00% 10,34% 49,61% 5,63% 9,06% 0,70% 0,66%
bench 7,99% 54,63% 11,61% 2,42% 7,75% 1,01% 14,59%
couch 89,67% 7,83% 0,78% 0,29% 0,59% 0,43% 0,42%
ottoman 32,76% 0,17% 15,11% 1,73% 0,00% 0,23% 0,00%
sofa 92,68% 5,29% 0,83% 0,15% 0,50% 0,28% 0,28%
television 34,79% 1,03% 58,84% 4,00% 1,25% 0,09% 0,00%
closet 21,19% 9,78% 39,05% 15,57% 1,22% 0,82% 12,36%
cabinet 13,09% 9,87% 2,79% 23,91% 46,73% 1,02% 2,59%
table 14,48% 5,66% 26,94% 9,33% 41,03% 0,63% 1,93%
desk 20,81% 3,51% 21,37% 0,61% 14,31% 29,65% 9,74%
tub 23,83% 6,79% 25,68% 43,67% 0,02% 0,00% 0,00%
piano 69,18% 4,82% 1,85% 0,47% 23,29% 0,18% 0,21%
chair 35,27% 4,83% 13,86% 15,05% 17,97% 6,71% 6,31%
dresser 26,45% 1,76% 60,03% 2,68% 8,28% 0,80% 0,00%
shelf 8,85% 22,06% 39,12% 8,89% 17,80% 2,99% 0,28%

TABLE IV: The likelihood of locating various household objects (including several non-ordinary “objects” which are animals
or even nouns that refer to persons) in indoor environment

Object Living room Kitchen bedroom bathroom Dining room Office Corridor
suitcase 34,41 % 0,24 % 23,59 % 1,43 % 0,48 % 0,60 % 39,26 %
soap 0,00 % 2,95 % 0,33 % 96,48 % 0,00 % 0,23 % 0,00 %
snack 0,98 % 18,72 % 0,85 % 2,02 % 18,44 % 9,00 % 0,00 %
radio 39,00 % 18,34 % 24,06 % 9,97 % 5,62 % 3,01 % 0,00 %
lamp 24,42 % 2,01 % 50,33 % 5,81 % 8,97 % 2,63 % 5,82 %
cushion 25,05 % 3,50 % 11,49 % 0,00 % 1,75 % 8,21 % 0,00 %
jacket 0,92% 3,56% 10,51% 14,80% 51,36% 18,85% 0,00%
cereal 1,22 % 32,93 % 0,00 % 4,88 % 9,76 % 1,22 % 0,00 %
candle 6,13 % 2,56 % 14,48 % 24,34 % 1,85 % 0,65 % 0,00 %
pillow 16,79 % 0,78 % 19,22 % 1,88 % 9,35 % 1,98 % 0,00 %
handbag 0,00 % 0,20 % 1,36 % 0,00 % 0,00 % 7,13 % 41,30 %
magazine 11,60 % 8,17 % 6,04 % 33,20 % 0,00 % 41,00 % 0,00 %
dish 3,83% 67,53% 2,94% 12,28% 12,83% 0,59% 0,00%
bra 4,54% 0,45% 18,68% 19,71% 0,00% 6,61% 0,00%
keyboard 15,15% 1,86% 1,14% 6,46% 3,26% 22,12% 0,00%
pot 5,93% 54,93% 2,90% 25,83% 1,88% 1,46% 7,07%
printer 21,12% 12,11% 11,21% 1,00% 0,43% 54,13% 0,00%
toy 63,32% 2,64% 21,28% 4,18% 0,00% 8,58% 0,00%
underwear 2,97% 3,40% 15,16% 66,52% 6,44% 5,51% 0,00%
guitar 16,75% 3,90% 10,62% 7,20% 4,48% 3,54% 3,51%
laptop 17,89% 7,53% 50,23% 4,44% 2,95% 16,97% 0,00%
wine 11,25% 62,74% 0,93% 2,50% 20,50% 2,08% 0,00%
briefcase 0,16% 0,16% 0,00% 1,74% 0,00% 3,48% 44,46%
bag 31,59% 20,62% 12,36% 12,43% 1,56% 8,43% 13,01%
alarm clock 1,57% 50,21% 45,20% 2,51% 0,00% 0,52% 0,00%
cherry 15,52% 16,26% 1,24% 13,38% 3,60% 0,00% 0,00%
cockroach 0,91% 2,73% 0,91% 38,18% 1,82% 0,00% 5,45%
card 4,98% 6,62% 6,39% 33,50% 2,07% 42,11% 4,33%
book 22,36% 9,62% 47,58% 5,93% 4,57% 9,95% 0,00%
ipad 8,67% 27,71% 49,94% 3,74% 0,63% 9,31% 0,00%
box 10,34% 4,80% 8,91% 6,22% 48,34% 7,15% 14,24%
kid 29,54% 23,72% 6,99% 15,39% 1,66% 19,23% 3,47%
baby 22,22% 10,07% 41,13% 17,30% 0,21% 5,04% 4,02%

TABLE V: The likelihood of finding two objects in the experimental environment

Object Living Room
with OLBM

Office
with OLBM

Living Room
Image retrieval

Office
Image retrieval

Living Room
Text mining[8]

Office
Text mining[8]

book 61,77% 38,23% 7,50% 4,71% 8,15% 7,85%
box 74,93% 25,07% 2,95% 2,78% 1,72% 0,30%

surface” and “sofa surface” images in Fig. 2. A FERNS
[25] object detector is running to report that the objects
are successfully located by the robot. The information about
the environment representation has been obtained using the

same exploration process as in [1][4] (for room categories)
and [8] (for supporting surfaces) beforehand. Using the
likelihoods in Table V, we can make hypotheses about the
behaviors of the robot using the different discovered/pre-



TABLE VI: Run time (in seconds) for various cases tested:
online CSOL knowledge discovery with object-location be-
liefs model (on. OLBM), off-line knowledge discovery with
Bing image retrieval (off. img.) and off-line knowledge
discovery with Google text mining (off. txt.), both with
all/partial objects in non-canonical positions. Numbers in
the brackets are times of transit from one room to another.
The successful executions of all the cases are recorded 5
times to calculate the average time. Offline modes have two
different configurations: search the book before/after the box
(left/right columns in the cells).

conf. book
loc.

box
loc.

avg. time
“AND”

avg. time
“OR”

on. OLBM
LR O

412.7 (1) 188.2 (0)
off. img 405.5 (1) 528.2 (2) 143.3 (0) 334.2 (1)
off. txt 397.4 (1) 513.6 (2) 122.6 (0) 307.8 (1)

on. OLBM
O LR

387.3 (1) 94.9 (0)
off. img 502.3 (2) 412.4 (1) 287.3 (1) 110.8 (0)
off. txt 487.9 (2) 422.7 (1) 313.6 (1) 99.7 (0)

on. OLBM
O O

503.1 (1) 377.0 (1)
off. img 745.4 (3) 735.6 (3) 322.1 (1) 331.9 (1)
off. txt 728.9 (3) 753.2 (3) 331.5 (1) 301.2 (1)

calculated beliefs/probabilities. 1) With the object-location
beliefs, G(LR) ⇒ S(box) ⇒ S(Book) ⇒ G(O) ⇒
S(book) ⇒ S(box) will be executed. 2) With the pre-
calculated probabilities either from Google text mining or
Bing image retrieval, behaviors G(LR) ⇒ S(book) ⇒
G(O) ⇒ S(book) ⇒ G(LR) ⇒ S(box) ⇒ G(O) ⇒
S(box) can be predicted. G(.) and S(.) refer to the robot
behaviors “Go to the location” and “Search for the object”,
respectively. Table VI demonstrates the runtime of the three
configurations, it shows the superior efficiency of the pro-
posed CSOL knowledge acquisition mechanism and also
evaluates our hypotheses. Although we notice that even the
run time of the object search task using the proposed method
is not the shortest all the time – due to the “occasionally
lucky” configuration of object search order which makes
robot search at non-canonical locations in first, the proposed
method is on average faster and also always provides the
least transit times between various rooms.

VI. CONCLUSION AND FUTURE WORK

A common-sense object locality (COSL) knowledge ac-
quisition mechanism by incorporating information from mul-
tiple resources has been presented in this paper. The proposed
mechanism has been shown to provide plausible and reliable
CSOL knowledge which depends on the proposed object-
location belief model. The belief generation is achieved by
considering the online popularity of the object itself and
object-location coupling simultaneously. Experimental re-
sults using large numbers of household objects and furniture
have demonstrated the validity of our method. The object
search scenario performed by an indoor mobile robot has
shown the improvement of efficiency when the acquired
knowledge has been taken into consideration.

Future work will extend the fields of robotic knowledge
that we could discover from the Internet, such as object

affordances, or ontological representations of objects. Also
utilization and fusion of more specific information gained
from the Internet (e.g. time needed by the query) will be
investigated in the future.
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Exploiting and modeling local 3D structure
for predicting object locations

Alper Aydemir Patric Jensfelt

Abstract— In this paper, we argue that there is a strong
correlation between local 3D structure and object placement
in everyday scenes. We call this the 3D context of the object.
In previous work, this is typically hand-coded and limited
to flat horizontal surfaces. In contrast, we propose to use a
more general model for 3D context and learn the relationship
between 3D context and different object classes. This way, we
can capture more complex 3D contexts without implementing
specialized routines. We present extensive experiments with
both qualitative and quantitative evaluations of our method for
different object classes. We show that our method can be used
in conjunction with an object detection algorithm to reduce the
rate of false positives. Our results support that the 3D structure
surrounding objects in everyday scenes is a strong indicator of
their placement and that it can give significant improvements
in the performance of, for example, an object detection system.
For evaluation, we have collected a large dataset of Microsoft
Kinect frames from five different locations, which we also make
publicly available.

I. INTRODUCTION

Locating everyday objects in indoor environments is the
prerequisite of many robotics tasks such as mobile manipu-
lation and semantic mapping. Objects are not scattered ran-
domly in the environment. Instead man-made environments
are structurally organized.

In this paper, we argue that the placement of everyday
objects is highly correlated to the 3D structure of an envi-
ronment – as opposed to being correlated to the appearance
of the environment. As an example, cups are not typically
found on tables because the former is white and the latter is
brown, but the table offers physical support and easy reach.
First, objects are placed in places where it is easy to interact
with them; trashcans are typically on the floor and not on a
high shelf. Second and more importantly, objects are placed
to be physically stable at rest. As an example a cup almost
never occur on a wall as there is no support for it there. We
refer to the association between structure and location as
3D context. Systems striving to efficiently locate an object
should exploit both the shape of the object and the structure
of the environment. One obvious benefit of this in the context
of localizing objects is that although the object itself may be
small or not even visible, the supporting 3D shape might be
bigger and detectable at a larger distance.

Previous research has shown that exploiting structure is
crucial for efficiently locating objects in complex indoor
environments [1], [2]. In [3], [4] the authors exploit the
notion that the performance of object detection tasks can

The author is with the Centre for Autonomous Systems at the
Royal Institute of Technology (KTH), Stockholm, SE-100 44, Sweden.
[aydemir,patric]@csc.kth.se

be boosted by extracting and tracking planar surfaces since
a large number of everyday objects are located on tables and
shelves. Even though this approach is robust in controlled
environments, not all objects rest on flat planar surfaces of
a certain size and developing tailor-made methods for each
situation depending on the object class is not scalable.

In another line of research, models of visual attention
mechanisms aim to locate salient parts of an image. The
assumption is that the sought object stands out in the image,
thus creating highly salient regions which attract visual
attention where the visual processes are directed to [5], [6].
This mechanism can be used to prune the search space,
where an object detector is only run on salient regions of the
image. This has two main advantages. First, computationally
expensive algorithms can focus a subset of the image, thus
lowering the overall processing time. Second, false positives
that may occur in non-salient parts of the images can be
eliminated. The downside with this approach is that not all
target objects are visually salient, as in the case of textureless
or small objects, unless this is a requirement on the target
objects [7].

Björkman et al. demonstrate an active vision system that
attempts to find and fixate on target objects in scenes [8].
The authors have utilized 3D information about the scene ex-
tracted from stereo images and detect 3D blobs that roughly
correspond with the known object size. These regions are
then considered more likely to contain an object. In this
manner, the system will only focus on parts of the scene
that are likely to contain objects..

Similarly Frintrop et al. present a saliency-based object
recognition method that works with depth images constructed
from a tilting laser scanner [9]. In this work, salient regions
from depth data and laser intensity are combined in order to
provide initial location candidates for the target object.

The work by Torralba [10], demonstrates how low-level
features are extracted from the whole image for context
driven attention and object detection. The appearance fea-
tures are computed to capture characteristics of scenes such
as spatial extent, perspective and opennes among others. This
way, the implicit scene structure provides cues as to where
a given object class is located in scenes.

The goal of this paper is, by leveraging the cheaply-
available good quality 3D data brought by the recent advent
of RGB-D sensors, to show that the 3D context of objects
is a strong indicator of object placement in everyday scenes.
Figure 1 gives an example output, where the system has
picked out a small region in the image around the cup,
corresponding mainly to the table as the most likely region
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(a) (b)

Fig. 1: Best viewed in color. (a) A cup on a table within a larger room. The cup occupies a very small part of the sensory
data. (b) The output from our method where bright areas correspond to high probability of object presence. Most object
recognizers would scan the whole image and fail to find the object in this scene. However we can rule out large portions of
the image by exploiting the 3D context in which objects appear.

for a cup. No object recognition system would be able
to recognize the cup itself at this distance in this image
resolution. Additionally, plane fitting methods as employed
in [3] might fail to detect the table plane as it occupies a very
small part of the image. However, a system that exploits the
local 3D structure in which objects typically occur can use
this to reliably identify promising regions in the image for
object presence.

A. Contributions

The contributions of this work are three-fold:
• We propose the use of local 3D shape around objects in

everyday scenes as a strong indicator of the placement
of these objects. We call this the 3D context of an object.

• We propose a conceptually simple and effective method
to capture this information. We evaluate our approach
on a large RGB-D dataset across different object classes.
We also quantitatively show the effect of using 3D
context in an object detection task. Our results show
that 3D contextual information is a strong indicator of
object placement in everyday scenes.

• In order to pursue a thorough evaluation, we have
collected a RGB-D data set from five different office
environments in five different countries in Europe. We
make the dataset and annotations publicly available to
the community.

B. Outline

The outline of this paper is as follows. In Section II we
outline important aspects of the 3D context idea. We address
these aspects in Sections III and IV where we explain our
method to model and exploit 3D context. In Section V we
present the data collection process (V-A) and then give both
qualitative and quantitative evaluations for five classes of
everyday objects having very distinct 3D contexts.

II. EXPLOITING LOCAL 3D CONTEXT

Most approaches to object detection look for cues/features
from the object itself. In this section we describe in general
terms the idea for how to make use of the 3D context to
find likely object positions. The 3D context is extracted from
the surrounding of objects rather than the object itself. It
therefore provides information of the type ”this is a likely
place for the object” rather than ”this is a likely object”.
An alternative use of the 3D context could therefore also
be to suggest good places to put down an object that the
robot is carrying. The 3D context can nicely compliment the
traditional object centred cues/features. However, as we will
see in the evaluation even on its own it is quite selective as
was already illustrated in Figure 1.

Figure 2 shows a scene where the target object is water
tap. The presence of a kitchen sink strongly indicates that
the water tap is in its image neighborhood. Parts of the scene
that belong to the object’s surrounding might be irrelevant to
the 3D context and should not be included in the contextual
model. We do not know the extent of the neighborhood that is
helpful to find the water tap neither the offset between it and
the object. We also need a way to represent the 3D structure
appropriately. In this paper we have opted for a learning
based approach where such information can be extracted
from data, as opposed to manually connecting certain objects
with for example planar surfaces.

In other words, certain regions of the image may predict
with high accuracy the presence of an object in another
region. In the previous example, the shape of a kitchen sink
indicates the presence of a water tap above it. Therefore a
model that captures the 3D context of an object needs to
explore the object’s neigborhood in the scene and find the
relevant structures that consistently occur at a certain offset
location (if any) with regards to the object. Also, the same
object class may appear in different contexts depending on
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Fig. 2: The illustration of Si regions, namely, Rf and Rl

and the offset between them.

the scene. As an example, a whiteboard marker might appear
to be on a vertical surface when it is attached to a whiteboard,
however it may also be placed on a table that appear as
a horizontal plane. Therefore, we need a model powerful
enough to capture multiple contexes that an object can appear
in. We argue that an approach to learn 3D context for certain
object classes must capture both the location with respect to
the object and the structure of the 3D context. Finally, we
find that, while the 3D context captures physically plausible
object placements, it can be helped by also including the
height. The rationale behind using the height is that for most
objects the height at which it appears is quite informative.
For example, both trashcans and mugs are often found in
regions of space where the surface normals are vertical (the
3D context is a horizontal surface) but the trashcan is on the
floor whereas the mug is typically on a table or shelf. This
difference is captured by the height.

III. METHOD

In this section, we will present one instantiation of the
general ideas presented in Section II. We formulate the
problem we address as follows. Given a 3D scene V and
an object class O we want find the function

fO(x, y, z, V ) = P (X|V,O) (1)

This function models how likely it is for an object of class
O to be at the location X = (x, y, z) in the scene. In our
approach, we have modeled the function fO as a binary
classifier CO, where coordinates can be labeled as being a
part of the object O or not.

As discussed in Section II, CO needs to respond to the
correct region with respect to the object and needs to be
able to handle multi-modal distributions. To account for this,
we have chosen to compose CO from a set of weighted
weak classifiers S = {S1, ..., Si, ...Sn}. Each weak classifier
models the probability of finding the target object at (x, y, z)
given a feature response, F , at an offset location (x+ox,i, y+
oy,i, z + oz,i). Therefore, each weak classifier explores a
specific part of the object’s neighborhood in the image, in
line with our previous analysis. We have modeled each Si

with two rectangular image regions Rf and Rl as shown
in Figure 2. Here Rf is the region from where a feature
response is computed (i.e. the neighborhood hypothezised to
be correlated with the object) and Rl is the object region. The
weak classifiers are parametrized by the width and height
of both rectangular regions and the offset between them.
We model the 3D context learning as a regression problem,
where the goal is, for each Si to learn the mapping from the
feature response of region Rf , to objectness in some other
region Rl.

During training we provide the system with a set of anno-
tated RGB-D images. For each Si we calculate the feature
response in Rf and the objectness for the corresponding
region Rl. The objectiveness is calculated as the fraction of
Rl that overlaps with the target object’s annotation bounding
box. We do this for each object class and every Si, i.e.
combinations of region sizes and offsets. Given this, we then
move on to learn which set of the weak classifiers should be
utilized1 to get the resulting classifier CO. That is, we learn
for which Si there is a strong correlation between a certain
feature response in Rf and the object being in Rl. This is
formulated as learnin the weights for each classifiers which
effectively results in only a subset of the classifiers being
used. Using a subset of all the weak classifiers reduces the
model complexity and results in a faster processing time.
During testing we slide the Rf regions corresponding to the
appropriate Si over the image and get the object responses in
the corresponding Rl regions. The response from all active
Si are weighted together according to the learned weights.

IV. IMPLEMENTATION

In the first step of the training procedure, we slide each
Si across training images. For each, Si we train a Support
Vector Machine (SVM)2, Hi, with a generalized radial basis
function (RBF) kernel to learn aforementioned mapping from
a surface patch Rf to the object response in Rl at a certain
offset. This results in the set of regressors H = {H1...Hm}.
We have chosen to use a discriminative approach since it
has been shown that when the amount of labeled training
data is large and samples accurately the problem space,
discriminative methods tend to work better than their gen-
erative counterparts in terms of predictive performance [12],
[13], [14]. Furthermore, SVMs being a well understood
discriminative method, generally offer lower computational
complexity, which is desirable in a robotics context. RBF
kernels are shown to provide good results with histogram
features [15], [16], which is the feature type used in this
paper as we will explain later on.

The problem of combining a set of weak regressors to
obtain a strong one is well researched in the field. We have
chosen the widely used greedy gradient boosting algorithm
described in [17] to calculate the vector β which gives the

1In the water tap example from before, one Si might encode the
correlation between a sink and a tap behind it and another the correlation
between a vertical wall and a tap beneath it.

2We have used a modified version of SVM implemented in [11], with
σ = 9.7 and ε = 0.001
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TABLE I: The locations from which the dataset is collected
and room types from each location.

Site Room types
University of Birmingham kitchen, classroom, corridor, office, meeting

room, computer lab
DFKI - Saarbrücken corridor, office, meeting room, computer lab

Technical University of
Vienna

kitchen, office

University of Ljubljana kitchen, corridor, office
Royal Institute of Technology kitchen, corridor, office, meeting room,

computer lab

weights with which the output from H will be scaled. The
elements of the weight vector β represents how much each
Hi should contribute to the end result. The resulting overall
regressor is then given by:

C(F (Rf )) =
n∑

i=1

βi ·Hi(F (Rf )) (2)

where F (Rf ) is the feature response for region Rf

and Hi(F (Rf )) is the ith weak classifier’s output. The
weighthing process results in a large subset of H having
zero or near zero weights. This corresponds to regressors
that has low correlation with object presence. The remaining
regressors assigned with high weights allows the method to
form multi-modal context models as discussed in Section II.

A. Features

We want to pick a simple, fast to compute yet expressive
feature to represent Rf . We refrain from using features
that build detailed models of specific 3D shapes, rather we
prefer a rough descriptor of a surface patch to capture overall
contextual information. For this reason, the feature we have
chosen in this paper is the histogram of surface normals
which has been shown to efficiently describe local geometry
in 3D point clouds [18]. For a point p in Rf , a surface normal
is computed by fitting a plane to the set of points which are
inside a sphere whose center is p and radius is r. We perform
this operation for each pair of points in Rf and obtain a set
of vectors. Then these vectors are binned in a 3-dimensional
histogram with each dimension containing 8 bins, resulting
in 512 bins in total. The height of the center of the object
in the scene according to the annotation is concatenated to
the feature vector.

V. EXPERIMENTS

The evaluation of a context learner for indoor environ-
ments requires a large amount of diverse and real world data.
For this reason, we first explain our data set and later on
present qualitative and quantitative experimental results.

A. RGB-D Database

We have constructed our dataset from five different sites
in Europe; the Technical University of Vienna (TuV), the
University of Birmingham (UB), the Royal Institute of Tech-
nology (KTH), the German Center for Artificial Intelligence
in Saarbrücken (DFKI) and the University of Ljubljana (UL)

(see Figure 3). At each site, a Pioneer 3dx robot equipped
with a Microsoft Kinect camera at 1.4 m height and −20◦ tilt
angle was used. The robot is controlled by a human operator
using a joystick. It is important to note that the human
operators did not know about the purpose of the method
presented in this paper so as not to bias the collected data
. Rather they were instructed to simply drive the robot in
their work environment. The images are continuosly saved
as the robot moves through the environment. The dataset
can be used for other purposes such as testing 3D mapping
and place recognition methods. The data set is available for
download from
http://www.cas.kth.se/rgb-d.
Table I details the room types included from each site.

The dataset contains approximately 250,000 Kinect
frames. We have annotated five object classes in the dataset:

• cup
• trashcan
• whiteboard marker
• wallplug
• water tap

In total, 1627 images were annotated. The objects in the list
were chosen for being frequently found in typical indoor
environments and for having diverse context, location and
size. As an example, trashcans are on the floor typically
near a wall whereas cups are on flat surfaces at a typical
table height. Other objects such as whiteboard markers have
a less clear contextual one-to-one mapping and can both
be on tables and appear to be on a wall. Furthermore,
whiteboard markers typically occupy very little space in
images in contrast to bigger object such as trashcans. The
object water tap has a very distinct 3D context, however the
type of scenes it is usually found in are quite cluttered as
can be seen from Figure 3e.

B. Evaluation

For the evaluation of the method we have selected the
KTH, Birmingham and DFKI datasets as the training set
and Ljubljana and Vienna as test sets. The training set
corresponds to roughly 70% of the images.

1) Qualitative analysis: We will first go throught the set
of example images and responses shown in Figure 6 in order
to present a qualitative evaluation of the proposed method.
From the top down, the rows of Figure 6 correspond to the
objects cup, trashcan, whiteboard marker, wallplug and water
tap

The top row of Figure 6 shows two example images for
the object cup. We can see that the learned context for cups is
flat surfaces at the height of a typical table. The method gives
high response to these areas as can be seen in figure 6a. In
figure 6b we can see that the large portions of the image can
be ruled out. Interestingly, the method gives a high response
for the bottom part of the whiteboard where there’s a small
flat surface to place whiteboard markers. In this case the
method predicts that the small flat surface that is at a similar
height of a table can also afford to support a cup.
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(a) KTH (b) TuV (c) DFKI (d) UB (e) UL

Fig. 3: Example images from the dataset.

In the second row, Figure 6f, we see that the method
learned that a trashcan is typically found on the floor but
even more specifically at the intersection of a floor and a
wall. The high response over the area that corresponds to
the object in Figure 6f and 6h comes from the fact that the
sides of the trashcan also appear as a vertical surface on the
floor thus resembling a wall.

In figures 6j and 6l, the two images show that the
whiteboard marker appears in very distinct contexts, one on
the table and the other on the whiteboard. It’s promising that
our approach has captured the multi-modal context in which
the object appears in the training set. This is captured by our
method without the need of a specialized algorithm for each
case, such as a table detector and a wall detector as it would
be needed in previous work [3].

Results for the object wallplug are displayed in the fourth
row of Figure 6. Similar to whiteboard markers, there are
mainly two types of wallplug placements in the dataset: at
the intersection of a table and a wall and the other is on a flat
wall surface near the floor or at the shoulder height. Figures
6n and 6p show that both contexts are successfully captured
by the proposed method. The Figure 6p is a corridor scene
consisting of flat surfaces. In this case, what prevents the
method from predicting a high response over all of the walls
is the height component in the feature vector.

Looking closely at a cluttered scene, Figure 5 shows a
kitchen scene where the object water tap is present. We have
picked this object since it has a very complex 3D context
which can be disturbed a great deal as a result of clutter
such as cups, plates, washing liquid, sponge, dirty dishes.
However, certain aspects of its context is very persistent,
there is almost always a sink in front of the water tap, which
itself has a distinct 3D shape. Another cue is that typically
there is a flat wall behind water taps. We can see that the
method’s highest response has a big overlap with the object
itself. The area inside the sink, the counter top, the side wall
and the oven has lower repsonses. However we also note
that the method gives considerably high responses overall in
the image. There are several reasons for this. One is that
the high clutter in the training scenes makes it harder to
extract the true 3D context of the object. Another is that,
using the Kinect camera, scenes containing shiny surfaces
result in large amount of noise in depth.

2) Quantitative analysis: We have evaluated our method
quantitatively in three experimental setups to gain statistical
insights. First, we have checked how much of the actual

(a) (b)

Fig. 5: An example kitchen scene with a sink and water
tap and clutter. The bright areas correspond to higher object
presence as predicted by the local 3D context idea. Notice
that even though the part of the image corresponding to sink
is itself remains dark, the regions above it are computed as
promising areas.

object is in the predicted region associated with a specific
probability threshold. This tells us how accurate the method
is in its location predictions. Second, for varying sizes of
the search region represented as the percentage of the image
we have computed the overlap of the object’s bounding box
with this region. This quantifies how much of the search
region we can rule out without losing parts of the image
that actually contains the object. Third, we have computed
the average precision of a state-of-the-art object detection
algorithm with and without utilizing 3D context in an object
detection task.

In the first setup, we have thresholded the response image
(here response image is the visualization of object likelihood
as shown in Figure 1b) to obtain a binary image with white
and black regions. The horizontal axis of Figure 4a corre-
sponds to values of this threshold. We compute the overlap
between the object’s bounding polygon and its predicted
location, i.e. the white regions in the image, which is shown
in the vertical axis. The amount of overlap tells us if objects
in question typically occur where the algorithm predicts
them or not. This overlap is 100% when the threshold is
zero, meaning when all of the image is selected. From these
results, we can say that intuitively the method performs better
for objects that blend with their 3D context. As an example,
in depth, the whiteboard marker is almost indistinguishable
from the table or the wall itself. This can be used as a
complement to object recognition algorithms where an object
of the size of whiteboard marker is usually very hard to
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Fig. 4: Results quantifying the effect of 3D context as a function of (a) probability threshold (b) search region size for
different objects (1 - cup, 2 - whiteboard marker, 3 - wallplug, 4 - trashcan, 5 - watertap).

detect. Furthermore, it is encouraging that even with high
threshold values, the majority of the bounding box of cup,
whiteboard marker and wallplug is included in the predicted
region.

The performance drops faster for bigger objects such as
trashcan as the threshold value increases. One reason for
this is that these objects are typically observed from a wide
variety of viewing angles. The result is that such objects can
appear to be in very different backgrounds which are not
part of the context. Consider the case where a chair is seen
from a top and side view; from the top, it would seem that
it is on the floor perhaps near a table, however the side view
would show the distant scene in the background unrelated to
the local 3D context.

Another reason is that such objects tend to stick out of their
3D context. With this we mean that a computer monitor’s
context consists largely of table surfaces, the average distance
of the 3D points on the monitor to the table surface is much
greater than for a whiteboard marker. This resulted in a
negative bias in the type of evaluation we have selected in
this paper.

In the second setup, we fixed a percentage of the image
that is predicted as most likely to contain the object according
to the method and check if the object falls in this region. As
an example, we pick a number of the pixels that constitutes
10% of the image that are the most likely to contain the
object. This selection criteria checks the method’s perfor-
mance for varying gains in efficiency (in this case 90% of
the image is eliminated). We can see that for all objects,
more than 70% of the target object’s bounding box is still
in the predicted region when we discard 50% of the image.
For all object classes, in average at least one third of the
image can be ommitted without missing the object. This is
a promising result indicating that objects are embedded in
their 3D context and much can be gained from exploiting it.

We have also investigated the effect of exploiting 3D
context as a first step in an object detection application
using the method presented in [19]. We have trained each
object class using the implementation provided in [20].
After this we have provided two sets of test images to the
object detection algorithm: raw images and images that are
combined with the thresholded 3D context response. In order
to construct the latter image, we have made an informed
choice by looking at the results of the second experimental
setup. We have thresholded the image such that the least
promising 40% of the test images are omitted from the
search region. The rationale behind this is that, as Figure 4b
shows, we rule out very large portion of the image while
still retaining nearly 90% of the object for all classes. This
has the effect of eliminating false positives. The average
precision results are shown in Table II where an increase
in detection performance is observed on all classes, with
variable success. We see that the objects that benefited most
are small objects such as whiteboard marker and cup since
the texture of these objects cannot be captured sufficiently
due to their size and thus are most likely to be mistaken for
other parts of the image. These results indicate that exploiting
the 3D context of objects to predict likely locations greatly
improves the performance of a state-of-the-art detector for all
object classes. The object with the least amount of gain from
incorporating 3D context is watertap and trashcan. We think
this can be explained by the fact that mostly these objects
occupy a large portion of the image in the data set and are
harder to confuse with false positives.

In a robotics context, time performance is of crucial
importance. The object detection algorithm used in this
experimental setup [19] takes on average 23 seconds to
compute a detection for object class. This is prohibitively
slow for most robotics applications. The method presented
in this paper takes between 0.6 to 2.1 seconds to run on a
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TABLE II: Object detection results with and without the
method presented in this paper.

Object label AveP AveP with
Cup 0.614 0.813
Whiteboard marker 0.332 0.516
Trashcan 0.541 0.774
Wallplug 0.214 0.519
Watertap 0.221 0.317

single image of 640x480 resolution on a computer with a
2.26 GHz CPU. Each weak classifier approximately takes
60-80 ms to run. We have chosen the parameter intervals
of weak classifiers to cover almost all of the relevant part
of the parameter space. The range of window sizes for Rf

and Rl are between 10x10 to 100x100 pixels with 10 pixel
increments and the offset is chosen in the interval ±50 pixels
with 10 pixel increments. This results in training 250 weak
classifiers trained for each object which covers a very large
part of the parameter space for the objects types present in
this paper. We then also rule out weak classifiers that has a
weight lower than 0.01 as they contribute negligibly to the
final result.

VI. DISCUSSION AND FUTURE WORK

In this paper, we have proposed to use local 3D structure
as a strong cue in object placements in everyday scenes, we
call this the 3D context of an object.

We presented a method to extract the 3D context of
everyday object and provide extensive quantitative evaluation
on a large dataset collected from different natural work
environments in Europe. Furthermore, we have quantified
the benefit of exploiting local structure in an object detec-
tion application. The results that local structure surrounding
objects is certainly a strong indicator of object placement
in scenes and our method is able to accurately predict the
location of the everyday objects included in the study.

It has been in previous work that humans possess strong
priors about natural scenes [21], [22]. We don’t expect
objects to float in the middle of a room and we have strong
expectations on what type of objects to expect in which
scenes and where in the scene. We believe that embodied
systems should also extract and exploit the structure of the
world they perceive to consume information more efficiently.
In most mobile robotics systems, a 3D representation of
the world is built and maintained for safely navigating the
world and manipulating objects. Therefore a robot equipped
with a camera should make use of this information also
when analyzing scenes. Entering a kitchen looking for a cup
and being presented with the scene in Figure 1, we do not
systematically scan the whole image including the floor and
the walls, instead we almost instantly fixate on the table to
get a higher resolution coverage of the table top. In this
paper, we have argued that the local 3D structure of a scene,
and specifically the 3D context of an object is an important
cue in determining object placements in scenes.

A limitation of all context based approaches is that they

are expected to perform poorly in uncommon scenes, where
contextual expectations do not agree with the scene at hand.
In this case, a global search over the whole image is needed,
which is often more expensive than only searching the
regions indicated by contextual cues. This is a penalty that
is also observed in biological systems [21]. One problem
however is that the system needs to detect that a scene is
out-of-context, in order to make the decision to perform a
global search. The authors in [23] exploit the notion that
objects are physically supported by other objects in scenes,
similar to the argument used in this paper and in our previous
work [24]. Using this, the proposed method out-of-context
objects and scenes.

Future work includes investigation other methods to cap-
ture the 3D context objects as with this work we have
presented the idea and implemented one instantiation of it.
Furthermore, we would like to combine an RGB-D camera
with a high resolution photo camera to be able to obtain
detailed views of regions predicted by the approach and
test the effect of this in object detection results. Finally we
are interested in employing the 3D context idea in an place
categorization framework.
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Abstract

We present Kinect@Home, aimed at collecting a vast
RGB-D dataset from real everyday living spaces. This
dataset is planned to be the largest real world image col-
lection of everyday environments to date, making use
of the availability of a widely adopted robotics sensor
which is also in the homes of millions of users, the Mi-
crosoft Kinect camera.

Introduction
Robotics has a long-standing aim to build robots that can
function in complex man-made environments. The long term
vision (which is rapidly becoming a short term goal) of
robotics is to help humans with tedious and hard tasks, e.g.
assisting elderly in everyday tasks, providing care for dis-
abled persons for increased ability or performing hard, haz-
ardous and tedious tasks that are unfit for human health.

In order to determine and accomplish such tasks, the
robotics researcher usually guesses the tasks needed or the
environments used by a typical user of such robots in the real
world and tries to come up with various problems and solu-
tions regarding perception, action and planning in robotics.
The proposed solutions generally lacks the basis for the ro-
bustness as they are not tested in complex real environ-
ments with the intended end user. This leads a mismatch
between what is promised in publications and their actual
performance which is a growing concern as the pressure on
robotics as a field to provide working products increases. For
this reason, we present the Kinect@Home project.

Kinect@Home
The Kinect@Home project is aimed at collecting a vast
dataset of Microsoft Kinect images of real everyday living
spaces such as offices, homes and alike. The project loca-
tion is at http://www.kinectathome.com. We have chosen the
Microsoft Kinect camera because it provides both an RGB
image and a depth value for each pixel of the image. Thanks
to its high quality 3D data for its low price, the Kinect cam-
era has been rapidly adopted as a robotics sensor. Most im-
portantly, it has since entered the homes of some 20 million
users therefore fit for a crowdsourcing task. The significance

Copyright c© 2012, Association for the Advancement of Artificial
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of this is being, never before a highly used robotics sensor
was at the home of millions of people, therefore it presents
ample opportunity for a crowdsourcing application.

Datasets in computer vision and robotics are widely used
for testing and benchmarking various algorithms such as ob-
ject recognition and detection, mapping and image segmen-
tation. Already there exists several Kinect datasets (Kevin et
al. 2011; Min et al. 2010; Garage 2011; Silberman and Fer-
gus 2011; Koppula et al. 2011) mainly on the topic of ob-
ject recognition and detection in scenes. We welcome these
efforts and find them very encouraging. Closest to our ap-
proach is (Janoch 2011) where individual images of indoor
scenes are being collected. However none of these datasets
aims to capture the challenging real world scenes that a robot
shipped to a home today might face. We believe we can
make a big impact by collecting a large dataset of real world
environments for developing better methods.

In robotics, various research groups have opted to recreate
the man-made environments that these robots are intended to
work in by building mock versions of living spaces such as
kitchens and living rooms in their laboratories. These envi-
ronments certainly serve as an initial testbed for algorithms
and methods as a way of validating the plausibility of the
proposed approach. However, there are several shortcom-
ings regarding evaluating robot performances in simulated
of living spaces. First, since only a few instances of the said
home environments can be built, the evaluation of the pro-
posed methods tends to include only a few cases of a gen-
eral problem. Second, the environments tend not to be real-
istic and instead become over simplified, as no human lives
and uses these spaces on a daily basis. We therefore propose
the Kinect@Home project as a way to collect large amounts
of 3D data from ordinary people’s everyday environments.
With this project, we will amass a large dataset of everyday
indoor environments such as offices, kitchens, living room
spaces. This data will be used for various applications such
as object detection, recognition, 3D mapping and various
other robotic applications. The dataset will be available pub-
licly at the interest of all interested researchers.

In order to construct such a dataset, the software imple-
mentation should have certain specifications. We will con-
tinue by briefly describing our software architecture.



Software architecture and usage

The software architecture consists of two parts: clients
which are ordinary people uploading Kinect frames and the
server which collects the uploaded data. There are several
considerations for building the software implementation that
realizes the dataset. First of all, we want to minimize the
number of steps a user has to take in order to accomplish
the task. Therefore we avoid hefty downloads, installation
guides or tedious tutorials. This means we cannot simply
ask the user to download and install a program, record the
Kinect frames to file (which would take a few gigabytes of
data) and send over to us.

We have chosen a browser plug-in as the client since it
provides a much more light-weight installation compared to
a stand alone program both technically and in the minds of
regular internet user. Furthermore by doing this the user in-
terface will be HTML-based and by default cross platform.
The plug-in is programmed using the FireBreath cross plat-
form browser plugin framework (Firebreath 2012).

We want the server to be as simple as possible and gen-
eral enough to accept any type of client that may be realized
in the future. Furthermore, the bandwidth and heavy hard
disk file operations involving receiving large amounts of im-
ages need to be considered. For this reason, we have opted
for an HTTP RESTful API using the Django web frame-
work. We have considered frameworks such as ZeroMQ,
Apache thrift, rpclib (Arslan 2012; Hintjens 2010). We will
skip over the detailed discussion for the lack of space in this
extended abstract, however they all seemed to need a signifi-
cant amount of infrastructure, front-end code and a complete
user-interface. Instead, HTTP REST calls are a fairly basic
and almost ubiquitous standard used throughout the internet.

The raw Kinect data is too big to be uploaded without
compression, we assume the typical user would not wait for
the whole upload period. Therefore we compress the data
stream with near-lossless video encoding. We compress and
upload the data in chunks. We have tried several compres-
sion techniques cite. The RGB data is compressed using
x264 codec and the depth stream is encoded lossless using
FFV1 for 16bit depth images. This way the amount of HTTP
calls and computational overhead is reduced compared to
uploading every frame individually.

Upon reaching the website, the user will be prompted to
connect their Kinect devices and install the plug-in. Once
this is done, the website starts showing the live Kinect im-
ages on the browser as a confirmation that the software is
working accordingly. This also helps to display the user the
currently captured data. A Record button and an optional
email adress text box is also displayed the purpose of which
we will explain in more detail. Once the button is pressed,
the plug-in starts uploading captured frames to server. After
a set period of time or when the user hits the Stop button, the
recording stops and the user is prompted with an optional
text box for metadata about the video. A progress bar indi-
cates how much of the data is sent to the server.

Privacy and control of the data
In order to alleviate any user trust and user related problems
we give full control to the data uploader. If the user pro-
vides an email address, we email the participant with a PIN
code after each recording and the unique identification num-
ber of the specific upload. With these credentials, the user
can view or delete the uploaded files anytime, with no ques-
tions asked. Our code base is entirely open source. As part
of addressing the privacy concerns, we don’t keep any user-
related data whatsoever. The users however need to agree a
terms of service agreement, which basically states that the
data uploaded will be used for scientific purposes.

Conclusion
We have presented a crowdsourcing platform for collecting
Kinect camera images. We will share our findings about the
software architecture and the wider public’s reactions in the
coming months during the symposium. The system is open
source and the data will be completely anonymous and pub-
licly available. We expect a high participation.
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