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Cross-modal learning is an important characteristic of a system that is sup-
posed to be capable of self-extension. The system should exploit different
modalities and extend its current knowledge based on the information ob-
tained from different sources and based on the previously learned concept
models. In this deliverable we address the cross-modal learning in different
domains, ranging from self-supervised learning of object affordances through
hierarchical learning of representation of space to combining perception from
different modalities to facilitate high-level cross-modal learning.
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Executive Summary

An important characteristic of a robot that operates in a real-life environ-
ment is the ability to continuously expand its current knowledge, in a life-
long manner. The system has to create concepts by observing the envi-
ronment and also to extend these concepts and create novel concepts on
top of them while interacting with the environment as well as with other
cognitive agents and humans. Interactive continuous cross-modal learning,
which is the main research topic of Workpackage 5, is therefore an essential
characteristic of a self-extending cognitive system.

Different types of cross-modality are addressed in this deliverable. Firstly,
we present cross-modal learning of object affordances and action effects; here
the information arising from the visual subsystem is combined with the in-
formation from the manipulation subsystem. Also, different derived modal-
ities, or cues, from the visual subsystem are taken into account: colour,
depth (which is converted in 3D point cloud), and motion.

Then we present a hierarchical approach to building the representation
of space. Range data captured by the robot is used to learn a hierarchy of so
called parts. The parts represent concepts about spatial shape primitives,
which are very simple on the lowest layer, and are then combined into more
complex parts in the upper layers of the hierarchy.

And finally, we also address the problem of binding of modal concepts
from different modalities that facilitates high-level cross-modal learning.

Some of the work presented in this deliverable is a continuation of the
work performed in the previous years and mostly presented in the deliver-
ables DR.5.1. to DR.5.4. The work about hierarchical learning of space is
also highly related to Workpackage 3 on spatial cognition and the work on
learning action effects is very related to Workpackage 2 and the deliverable
DR.2.5 on models of object behaviour. There is also an overlap between
the work on cross-modal binding and learning presented in this deliverable
and the Workpackage 1 deliverable DR.1.5 on representations of gaps in
knowledge, since it is about beliefs, which play an important role in both
processes, cross-modal information fusion and learning, and knowledge gap
representation and management. This work is also highly related to Work-
package 7, since it presents the main principle for binding and reference
resolution implemented in the George system.

Role of Combining basic cross-modal concepts into
novel concepts in CogX

In the process of continuous interactive cross-modal learning, the system
tries to understand what it does know and what it does not, and act ac-
cordingly with the goal of updating the current concepts and building novel
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concepts on top of them. Therefore, the main research topic fits very well
with the main motto of the project: to self-understand to be able to self-
extend.

Contribution to the CogX scenarios and prototypes

In order to monitor and show progress on active and interactive continu-
ous learning, we have designed the George scenario (Interactive cross-modal
learning scenario) [37] (see also deliverable DR.7.5). This scenario has been
designed as a use case for guiding and testing the system-wide research and
for demonstrating methods developed in WP 5 and in some other workpack-
ages in a complex integrated working system. The management of beliefs
and cross-modal binding presented in this deliverable form the central part
of the George system, crucial for a consistent fusion of information from
different subsystems and for enabling consistent behaviour of the very het-
erogeneous system.
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1 Tasks, objectives, results

1.1 Planned work

This deliverable mainly tackles the problems addressed in Task 5.4 of Work-
package 5:

Task 5.4: Combining concepts into novel concepts. Develop a
system that is able to combine concepts learned in the previous
tasks into novel concepts; to learn complex concepts and hierar-
chies of concepts.

As such, it is addressing the following objectives as specified in the Tech-
nical annex:

1. A unified framework for representing beliefs about representations of
action effects, observation models, incomplete information and cate-
gorical knowledge. [WPs 1,4,5]

5. A theory of how to use these representations to identify learning op-
portunities, plan and execute plans in order to learn so as to perform
future tasks more effectively and efficiently. [WPs 4,5]

8. New representations and algorithms to allow a robot to extend its cat-
egorical knowledge by identifying gaps and learning the relationships
between different modalities (e.g. vision and language). [WP 5]

We will structure this deliverable according to several research lines that
have been addressed. First, let us look at our plans and goals that we had
set:

• Self-supervised learning of object affordances.

We planned to develop an algorithm for inducing causal relationships
of action/object complexes, in terms of the trajectory of objects, rep-
resented as a sequence of object poses, given some motor action (here
a pushing action). For this purpose, a quantization algorithm needed
to be developed which can discretize the sensorimotor space. Addi-
tionally, an algorithm that can extract causal relationships in form
of probabilistic transitions among discrete states had to be devised,
based on an algorithm for extracting substochastic sequential machines
(CrySSMEx) [15] from dynamic systems.

The CrySSMEx algorithm can find qualitative states depending on the
output function given by the output space. Thus, we planned to cluster
states that represent more abstract concepts from the sensorimotor
space of a pushing scenario.
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In addition to this, we also planned on improving our previously pro-
posed algorithm for self-supervised cross-modal learning [31] by us-
ing additional mechanisms to enhance its performance at acquiring
novel affordance concepts over short-term training periods. Specif-
ically, we were interested in developing feature relevance determina-
tion algorithms that could rapidly find the most discriminative feature
dimensions in the input space for predicting the naturally occurring
categories in the output space.

• Learning hierarchical representation of space.

The goal for this year was to develop an algorithm for learning a com-
positional hierarchical representation of space based on data obtained
with a range sensor. We aimed to extend the existing Learning the Hi-
erarchy of Parts algorithm [8], by incorporating rotational invariance
of parts into the model. We planned to learn as many layers of the
hierarchy as possible using only range scans as input data. We sought
to evaluate the performance of the learned concepts through the room
classification problem, and to validate our model in comparison with
other, state-of-the-art, approaches.

• Cross-modal binding and learning.

In Year 3 the cross-modal learning and binding concepts were used
in parallel to the belief structures. A Markov Logic Network engine
component was used for reference resolution. The aim for this year was
to enhance the dialogue between the robot and the tutor, which in turn
requires new enhanced reference resolution MLN. We also wanted to
bring MLN reasoning into the belief structure itself. MLNs should
have an important role in propagation of information between various
types of beliefs.

1.2 Actual work performed

1.2.1 Self-supervised learning of object affordances

We developed an online learning algorithm for quantization of spaces in the
pushing affordances scenario. After the robot performs a pushing action, a
density estimation (quantization) algorithm runs for the current sequence of
effector and object poses obtained, in order to estimate the density of this
sensorimotor space. Additionally, an output space is also discretized, which
corresponds to changes in rotation of the object. The output space is needed
to split the state space, which are representations of object poses at the next
time step. The quantization algorithm is based on the incremental Growing
Neural Gas (GNG) algorithm and the Minimum Description Length prin-
ciple for evaluation of clustering performance [33]. When a GNG network
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or graph reaches a stable state, the algorithm stops and a new action is
performed by the robot to continue learning.

After the quantization is performed, a state representing a set of in-
stances is split when the output or the next state differs (so that the entropy
is high). The transitions among states and its probabilities are obtained to
construct probabilistic machines that represent the behavior of these ac-
tion/object dynamical systems.

By using the extracted substochastic sequential machines (SSMs), we
were able to predict the object behavior accurately.

When the sensorimotor space is huge, it is appropriate to split it in dif-
ferent regions where different learning machines (in this case quantizers) can
be employed. We used these divide-and-conquer approaches to accelerate
the learning process and make it more efficient. The regions are split after
some time step and by employing a measure of variance in the sensorimotor
data sets.

The CrySSMEx algorithm also splits the state space in a similar way
but using other criteria, as explained above. However, it is in principle a
similar process. At the end, the state space is represented by a tree of Vector
quantizers, resembling a hierarchical clustering.

Once we obtained a quantization of the input space, we use these quantiz-
ers with other representations for the output space. We then discretized the
output space in such a way that we can distinguish among abstract object
behaviors like sliding, flipping over and tilting. The state space quantizer
then groups the states in a different way, splitting the space according to
this new output function. Thus, these new state space regions might be
viewed as components of a joint distribution.

Once again by using these new SSMs, we can predict with high accuracy
the classifications of object behavior (see Annex 2.1).

In our other work on self-supervised cross-modal learning described in
last year’s deliverable [31], we have developed methods for feature relevance
determination [32] that serve to augment the original algorithm. These
methods stem from ideas originally touched upon in the previous year’s
work, but have been more thoroughly developed, investigated and evalu-
ated this year. They are based on the idea of applying the Fisher criterion
score to learning vector quantization algorithms for online feature relevance
determination (see Annex 2.2).

In the attached paper [32], two new algorithms for LVQ-based relevance
determination are presented. Both methods exploit the positioning of the
prototype vectors in the input feature space to inform estimates of the Fisher
criterion score along the input dimensions, which are then used to form
online estimates of the relevance of the input dimensions with respect to
the classifier output. Both methods provide online updates that may be
used alongside regular LVQ updates or within the broader context of our
self-supervised cross-modal learning framework and neither method requires
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the specification of a learning rate, as in stochastic gradient descent. Per-
formance advantages are demonstrated in experiments on various popular
classification datasets, as well as on data from our object push affordance
learning experiments.

1.2.2 Learning hierarchical representation of space

In work described in Annex 2.3 we propose a new compositional hierarchical
representation of space, which is learned based on statistically significant
observations. We have focused on a two dimensional space, since many
robots perceive their surroundings in two dimensions using range sensors.
Range data is transformed into images and then a hierarchy of so called
parts is learned from those images. Parts, which are rotationally invariant,
represent concepts about spatial shape primitives. They are very simple on
the lowest layer, while their complexity and size increases with respect to the
height of the corresponding layer of the hierarchy. At the bottom, concepts
are represented as small fragments of lines in several different orientations.
On higher layers compositions of lower layer concepts are learned, forming
more and more complex shapes. Only shapes that have been observed most
frequently in the images used for learning are memorized, and then used to
model the environment. Only a few lower layers of the proposed hierarchy
are currently being learned. In the future, the image formation step will
be omitted and information from other modalities, like odometry, will be
used to combine the information from separate range scans into a unified
map, which will provide a more complete view of the environment. Based on
these maps even more complex shapes will be formed, which will introduce
the abstraction needed to learn higher level concepts. These will provide
good scalability of the model through sharing of same concepts between
different room categories. A cognitive system using our representation of
space would be able to make use of a large quantity of information, that has
been obtained in past observations, to extend it’s knowledge about general
characteristics of space, and then use this knowledge as a compact and
expressive description of it’s surroundings.

In this work we also propose a new low-level image descriptor, by which
we demonstrate the performance of our representation in the context of
the room classification problem based only on data obtained with a laser
range finder. Using only the lower layers of the hierarchy, we obtain state-
of-the-art classification results on demanding datasets. Room classification
methods, which are based on data obtained with range sensors have a poten-
tial to work faster than other, for example, vision based, approaches, since
the input information is of lower dimensionality, while on the other hand,
the stinginess of the data makes this approach much more demanding. Such
approach could therefore provide a cognitive system with a quick first im-
pression about room type, which could then serve as a reliable basis for the
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use of temporally more costly classifiers to verify the proposed hypothesis.

1.2.3 Cross-modal binding and learning

In work described in Annex 2.4 we devised a new belief scheme that now
also supports MLN reasoning. The beliefs form a cognitive layer where
multi-modal and multi-agent information is associated and merged to a-
modal representations. In general a belief can be regarded as a high-level
representation of an element of the physical reality, grounded in one or more
sensory inputs, attributed to a specific agent or a combination of both.
The new belief scheme distinguishes five distinct belief categories. Private
beliefs reflect the robot perceptions of the environment based on its sensory
input. Assumed beliefs are used to establish cross-agent or cross-modal
common ground; they are created from private beliefs by translating the
modal symbols to the a-modal ones. Attributed beliefs contain information
that a robot attributes to another agent. Verified beliefs are created from
attributed beliefs; they essentially contain the acknowledged information
from the attributed beliefs. Merged beliefs combine information from verified
and assumed beliefs and represent the final a-modal situated knowledge,
ready to be used by the higher level cognitive processes (e.g. motivation,
planning). They contain as reliable information as possible and as much
information as available.

MLN components have a triple role in this Belief scheme: (i) They are
used for binding — the binding process associates between beliefs from dif-
ferent modalities or different epistemic origins (in George the binding prin-
ciples are used in reference resolution), (ii) as a translator between modal
and a-modal symbols and (iii) for information fusion. In the information
flow from sensory data to higher cognition, the information fusion can be
regarded as a next step after the binding.

1.3 Relation to the state-of-the-art

In this section we discuss how our work is related to, and goes beyond the
current state-of-the-art.

1.3.1 Self-supervised learning of object affordances

The problem of object prediction has already been tackled by using offline
learning algorithms [20], which lack incremental ways of learning when new
data sequences are added. In this new approach, we can estimate the density
of sensorimotor spaces in an online way.

We also extract probabilistic machines that can be used in planning
tasks a posteriori, since they are essentially graphs on which some reasoning
methods could be applied. They also encode an entropy based representation
of causal relationships that can be used for active learning.
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We obtain qualitative representations of temporal sequences of action/object
complexes, taking into account trajectory information like object and robot
poses. Traditionally, learning algorithms with abilities of temporal process-
ing like Hidden Markov Models (HMMs) [10], Recurrent Neural Networks
(RNNs) [34] and Dynamic Bayesian Networks [26] have been used in robotic
learning tasks. Substochastic sequential machines have been extracted from
RNNs to extract qualitative information learned by the RNNs [15, 11].
Substochastic Sequential Machines are similar to HMMs, in that they are
probabilistic finite state representations. Some characteristics of SSMs like
entropy based representation of uncertainty might be advantageous when
designing information-theoretic active learning methods.

Learning vector quantization (LVQ) [18] provides an intuitive, and of-
ten highly effective, means for discriminative learning where prototype vec-
tors are used to quantize the input feature space and given labels to form
piecewise-linear classifiers using the nearest neighbour rule. Since their in-
troduction, LVQ algorithms have undergone various analyses and seen vari-
ous improvements to their design and much attention has also been paid in
recent years to the role that the distance metric plays in the effectiveness of
LVQ methods, which was the focus of our investigation in [32]. LVQ ordi-
narily relies on the Euclidean metric to measure the distance between data
points, which provides equal weighting to all input dimensions. Many of the
input dimensions, however, may have little relevance when considering the
desired output function and may even have a detrimental effect on the out-
put if considered with equal weighting in the metric to the more important
dimensions. One standard approach to this issue is to pre-process the data
using some form of feature selection or dimensionality reduction, but this
can be infeasible in many learning scenarios where the training data are not
available in advance, e.g. autonomous robotics.

One early adaptation of LVQ3 known as distinction sensitive learning
vector quantization (DSLVQ) [28] achieves this by using a heuristic to adjust
weights along each of the input dimensions to modify the Euclidean met-
ric. An adaptation of LVQ1 known as relevance learning vector quantization
(RLVQ) [3] uses Hebbian learning to do similar, by adjusting weights for each
of the input dimensions at every training step depending on whether they
contributed to the correct or incorrect classification of a training sample.
RLVQ was subsequently adapted for use with GLVQ producing a method
known as generalized relevance learning vector quantization (GRLVQ) [13]
such that the dimensional weight updates also adhere to gradient descent
dynamics in a similar way to the prototype updates. Another modified
version of GLVQ [43] uses Fisher’s discriminant analysis to create an al-
ternative metric to the weighted Euclidean distance that employs a matrix
transformation to reduce the feature space dimensionality. More recently,
an adaptive metric was used in combination with training data selection for
LVQ [27].
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By comparison, in our work described in Annex 2.2, an advantage pro-
vided by the proposed methods over other metric-adaptive LVQ methods
based on gradient descent, is that they do not require a learning rate or
other parameters to be specified. Moreover, they provide incremental up-
date rules that operate alongside regular LVQ update rules and can therefore
be applied to any algorithms based on the general LVQ paradigm. Exper-
imental evaluations were provided under various stress conditions and over
various datasets and the proposed methods were shown to perform compet-
itively against various other LVQ-based methods, and against SVM.

1.3.2 Learning hierarchical representation of space

Numerous spatial models have already been proposed. Metric representa-
tions use sensory information to accurately describe the geometry of space
to some desired extent [6, 1], topological representations use graphs to model
space [40, 5], hybrid approaches combine both of the above paradigms
[41, 42], while combining of one or even both of the approaches, metric
and topological, on multiple levels of abstraction results in hierarchical rep-
resentations [30, 21, 25, 44]. Perhaps the closest to our work is the work
presented by Mozos [25]. He generates a topology of the environment for
room classification based on laser scans. A major difference between his and
our idea is that he uses occupancy grids under the topological level, which
are not suitable for modelling large environments, since they scale poorly.
In our approach, rooms will be represented with parts, which will be shared
between different categories, and thus requiring less memory. Despite sev-
eral existing approaches, to the best of our knowledge, our work is the first
attempt of using a hierarchical compositional model for the representation
of space on the lowest semantic level, at which range sensors are usually
used to observe the environment.

However, compositional hierarchies have been used for some time by the
computer vision community [8, 9, 19, 7]. In this work we adapt the hierar-
chical model from [9] to develop a description suitable for representation of
space. It turns out that rotational invarance of parts is crucial for obtaining
a compact and expressive hierarchy for spatial representation. This prop-
erty is not present in the model of [9], therefore, we extended the model to
satisfy the above condition.

Various systems performing topological localization have been developed
for room classification. In [30] very accurate room classification is achieved
using multimodal information. Approaches using less information available
for classification have also been considered. Laser range data combined
with vision was used for classification in [24], and many approaches that
use vision only for the accomplishment of this task have also been presented
[29, 46, 2, 48]. The most related to our work are the approaches performing
room classification based only on data obtained with range sensors. In [39]
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3D Time-of-Flight infrared sensor was used for acquiring 3D information,
which allowed the distinction between three types of rooms (office, meeting
room and hall). Only laser range data was used in [23]. Their robot was
equipped with a 360 degree field of view range sensor and they were able
to distinguish between four classes (rooms, corridors, doorways and hall-
ways). The classification was performed with AdaBoost and it was based
only on a single scan. Laser range data was also used for classification in
[12], where Voronoi random fields (VRFs) were employed to label different
places in the environment, providing the distinction between four classes
(rooms, hallways, junctions and doorways). Their approach uses a state-
of-the-art SLAM technique to generate a metric occupancy grid map of an
environment, while the Voronoi graph is then extracted of this map. For
each point on the Voronoi graph, VRFs then estimate the type of place it
belongs to. Our approach to room classification is based on the proposed
hierarchical model. We have taken into consideration a set of room types
(living room, corridor, bathroom, and bedroom), which are in our opinion
more demanding than the ones presented in the related work [23, 12].

1.3.3 Cross-modal binding and learning

Many of the past attempts at binding information within cognitive systems
were restricted to associating linguistic information to lower level perceptual
information. Roy et al. tried to ground the linguistic descriptions of objects
and actions in visual and sound perceptions and to generate descriptions of
previously unseen scenes based on the previously accumulated knowledge
[35, 36]. This is essentially a symbol grounding problem first defined by
Harnad [14]. Chella et al. proposed a three-layered cognitive architecture
around the visual system with the middle, conceptual layer bridging the gap
between linguistic and sub-symbolic (visual) layers [4]. Related problems
were also often addressed by Steels [38].

Jacobsson et al. approached the binding problem in a more general way
[17] [16] developing a cross-modal binding system that could form associ-
ations between multiple modalities and could be part of a wider cognitive
architecture. The cross-modal knowledge was represented as a set of binary
functions comparing binding attributes in pair-wise fashion. A cognitive ar-
chitecture using this system for linguistic reference resolution was presented
in [45]. This system was capable of learning visual concepts in interaction
with a human tutor. A probabilistic binding system was developed within
the same group that encodes cross-modal knowledge into a Bayesian graph-
ical model [47]. In [22] a framework for constructing high-level cognitive
representations of the environment, called beliefs, was presented. Markov
logic was used as the main framework for various types of inference over
beliefs, including perceptual grouping, which comes very close to our defini-
tion of binding. All these systems ([17] – [22]) assumed static cross-modal
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knowledge.
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2 Annexes

2.1 Roa et al. “Online Density Estimation in a Robotic Ma-
nipulation Scenario and its application to Learning of
Temporal Action/Object Models and Concepts”

Bibliography S. Roa and G.-J. Kruijff: “Online Density Estimation in a
Robotic Manipulation Scenario and its application to Learning of Temporal
Action/Object Models and Concepts”. Technical Report, 2012.

Abstract Cognitive Robotics implies the ability of robots to learn from
the environment by interacting with it and learning causal relations and
associations stemming from these interactions. In this paper, we address
the particular problem of interacting by manipulating objects, specifically
robot arm pushes. To solve this problem we come up with models which can
describe the behaviour of objects given some action. For a learning robot it
is essential to learn in an incremental way, after new information is coming,
without losing generalization and avoiding overfitting. We tackle this prob-
lem firstly by estimating the density of a sensorimotor space after a robot
performs a new action by using a modification of the incremental Growing
Neural Gas (RobustGNG) algorithm. RobustGNG performs a quantization
of the space which is robust to noise and overfitting issues. Subsequently,
we infer models useful for prediction of object trajectories in terms of ob-
ject poses. The same machinery is useful for obtaining more coarse-grained
predictions, for instance categorizations of object behaviours. Last, but
not least, these prediction models should provide a qualitative temporal de-
scription of the state space, so that they can eventually be used in planning
tasks. Thus, we infer cause-effect models by using a new version of the
CrySSMEx algorithm for extraction of substochastic finite-state machines
given the quantization obtained by means of RobustGNG.

Relation to WP This work is directly related to continuous learning of
cross-modal concepts, where crossmodality comes from sources like manip-
ulation and vision (in this case simulated). It also explores the problem
of deriving categorical knowledge from previously learned tasks, i.e. from
density estimation of the sensorimotor space.
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2.2 Ridge et al. “Relevance Determination for Learning Vec-
tor Quantization using the Fisher Criterion Score”

Bibliography B. Ridge, A. Leonardis, and D. Skočaj: “Relevance De-
termination for Learning Vector Quantization using the Fisher Criterion
Score”. 17th Computer Vision Winter Workshop, Mala Nedelja, Slove-
nia,February 1-3, 2012.

Abstract Two new feature relevance determination algorithms are pro-
posed for learning vector quantization. The algorithms exploit the position-
ing of the prototype vectors in the input feature space to estimate Fisher
criterion scores for the input dimensions during training. These scores are
used to form online estimates of weighting factors for an adaptive metric
that accounts for dimensional relevance with respect to classifier output.
The methods offer theoretical advantages over previously proposed LVQ
relevance determination techniques based on gradient descent, as well as
performance advantages as demonstrated in experiments on various datasets
including a visual dataset from a cognitive robotics object affordance learn-
ing experiment.

Relation to WP The two new algorithms were proposed in order to aug-
ment the short-term training discriminative capacity of our previously pro-
posed self-supervised cross-modal learning algorithm [31] which is capable
of generating novel object affordance concepts autonomously.
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2.3 Uršič et al. “Room Classification using a Hierarchical
Representation of Space”

Bibliography P. Uršič, M. Kristan, D. Skočaj, A. Leonardis. “Room
Classification using a Hierarchical Representation of Space”. Submitted
to IEEE/RSJ International Conference on Intelligent Robots and Systems
IROS 2012, 2012.

Abstract Mobile robots need an effective spatial model for the successful
operation in real-world environment. The model should be compact and
simultaneously possess large expressive power. Moreover, it should scale
well. In this work we propose a new hierarchical representation of space,
whose compositional structure is learned based on statistically significant
observations. We have focused on a two dimensional space, since many
robots perceive their surroundings in two dimensions with the use of a laser
range finder or a sonar. We also propose a new low-level image descriptor, by
which we demonstrate the performance of our representation in the context
of room classification problem. Using only the lower layers of the hierarchy,
we obtain state-of-the-art classification results on demanding datasets.

Relation to WP This work proposes a new hierarchical model of space.
Spatial shape primitives are being learned by combining simple concepts
into more complex ones, forming the hierarchical representation. Based on
previous observations, the hierarchy containing most frequently detected
shapes is learned and then used to derive new abstract concepts, like room
categories. Therefore, the work is related to Task 5.4.
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2.4 Vrečko et al. “Associating and merging multi-modal and
multi-agent information in a cognitive system”

Bibliography A. Vrečko, A. Leonardis and D. Skočaj: “Associating and
merging multi-modal and multi-agent information in a cognitive system”.
TR-LUVSS-02/2012, University of Ljubljana, Faculty of Computer and in-
formation science, May 2012

Abstract A critical ability for every cognitive system operating in a com-
plex environment is the ability to combine several representations of the
same physical reality into a single shared representation. Such combined,
a-modal representations are then ready to be used by higher level cognitive
processes, like motivation and planning. In this work we describe a cog-
nitive layer where multi-modal and multi-agent information is associated
and merged to a-modal representations. Furthermore we describe the appli-
cation of cross-modal binding principles to a specific problem of reference
resolution.

Relation to WP The technical report addresses the problem of cross-
modal binding and learning, as defined in WP 5. It describes the applica-
tion of these principles to a concrete problem of reference resolution. Fur-
thermore it describes the belief schema where multi-modal information is
associated and merged to a-modal representations.
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[12] S. Friedman, H. Pasula, and D. Fox. Voronoi random fields: extract-
ing the topological structure of indoor environments via place labeling.
IJCAI, pages 2109–2114, 2007.

[13] B. Hammer and T. Villmann. Generalized relevance learning vector
quantization. Neural Networks, 15(8-9):1059–1068, 2002.

[14] S. Harnad. The symbol grounding problem. Physica D: Nonlinear
Phenomena, 42:335–346, 1990.

[15] H. Jacobsson. The crystallizing substochastic sequential machine ex-
tractor - CrySSMEx. Neural Computation, 18(9):2211–2255, 2006.

[16] H. Jacobsson, N. Hawes, G-J. Kruijff, and J. Wyatt. Crossmodal con-
tent binding in information-processing architectures. In Proc. of the
3rd ACM/IEEE International Conference on Human-Robot Interac-
tion, Amsterdam, March 2008.
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[45] A. Vrečko, D. Skočaj, N. Hawes, and A. Leonardis. A computer vision
integration model for a multi-modal cognitive system. In Proc. of the
2009 IEEE/RSJ Int. Conf. on Intelligent RObots and Systems, pages
3140–3147, St. Louis, Oct. 2009.

[46] J. Wu, H.I. Christensen, and J. M. Rehg. Visual place categorization:
Problem, dataset, and algorithm. IROS, pages 4763–4770, 2009.

EU FP7 CogX 21



DR 5.5: Combining basic cross-modal concepts into novel concepts D. Skočaj et. al.
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Alen Vrečko. Self-understanding and self-extension: a systems and
representational approach. IEEE Transactions on Autonomous Mental
Development, 2(4):282–303, 2010.

[48] Z. Zivkovic, O. Booij, and B. Kröse. From images to rooms. Robotic
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Abstract

We need robots to learn from the environment by interacting with it,
and learn models of causal relations and associations from these inter-
actions. In this paper, we address the particular problem of interacting
by manipulating objects, using robot arm pushes. To solve this problem
we define models which can describe the behaviour of objects given some
action. For a learning robot it is essential to learn in an incremental way,
after new information is coming, without losing generalization and avoid-
ing overfitting. We tackle this problem firstly by estimating the density of
a sensorimotor space after a robot performs a new action by using a modi-
fication of the incremental Growing Neural Gas (RobustGNG) algorithm.
RobustGNG performs a quantization of the space which is robust to noise
and overfitting issues. Subsequently, we infer models useful for prediction
of object trajectories in terms of object poses. The same machinery is
useful for obtaining more coarse-grained predictions, for instance catego-
rizations of object behaviours. Last, but not least, these prediction models
should provide a qualitative temporal description of the state space, so
that they can eventually be used in planning tasks. Thus, we infer cause-
effect models by using a new version of the CrySSMEx algorithm for
extraction of substochastic finite-state machines given the quantization
obtained by means of RobustGNG.

1 Introduction

Robots need to extend their knowledge in an incremental and online fashion.
This aspect is important to allow robots to plan actions on the basis of new
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experience gathered. In the case of robotic learning, the problem of incremen-
tal and online learning is challenging, because one needs to address issues like
robustness to noisy environments, overtraining and high dimensionality. Online
Density Estimation methods, e.g. based on kernel methods, have been studied
in the context of discriminative models for object classification [8]. In this pa-
per, we tackle the problem of online density estimation of sensorimotor spaces
in an interactive environment. Here, the robot interacts with simple geomet-
rical objects via a pushing action. After performing an action, a quantization
function for density estimation is applied to a representation of the sensorimo-
tor space in an online manner. Basically, sequences of finger and object poses
(rigid body transformations) are stored as instances of the sensorimotor space.
The functions are gradually refined, after new training sequences are gathered.
Moreover, the quantized space is split into two subspaces or regions after some
iteration. This divide-and-conquer approach accelerates the convergence. We
use a modification of the Growing Neural Gas algorithm [3, 11, 12, 14] for quan-
tization which is robust for finding the right clusters in the presence of noise.

When the quantization process finishes, we employ an offline mechanism for
constructing probabilistic models of action/object complexes that makes use
of the quantization functions. This method is based on the CrySSMEx algo-
rithm [6, 14] for extracting substochastic sequential machines (SSMs) from dy-
namical systems. The robot predicts the object behaviour in terms of trajectory
information contained in sequences of object poses, given an arm pose and a
certain action, represented as the target goal of the robot finger. The probabilis-
tic models that we obtain are substochastic finite-state models. They have the
potential to be used for planning, since we obtain a qualitative representation of
the sensorimotor space which encodes action/object instances. Moreover, their
graph-based nature encodes the probabilistic transitions that lead to subsequent
states which is particularly useful in planning. In the experiments we present
here, the state space encompasses a geometrical representation of object poses.

The substochastic machines are represented as a probabilistic case of Mealy
or Moore machines. These machines allow us not only to encode a quantiza-
tion of the state space but also to encode input functions and output functions,
which are quantization functions. In this problem, input functions are a quan-
tization mechanism applied to the representation of the sensorimotor space as
mentioned above. They encode a combination of object/finger pose information.
On the other hand, output functions may be used in different manners, depend-
ing of the discretization degree that we expect in the probabilistic finite-state
machine. More precisely, if the objective would be to predict accurately the tra-
jectories of objects given some action and some object pose, likewise in terms
of object poses, we could apply an output function that acts as a probabilistic
regression, as long as we represent object poses at subsequent states in this out-
put function. In our work, we did not use this kind of output function, but a
quantization mechanism that acts on vectors of object rotation change (object
transformations), to further reduce the space complexity of output quantizers.
This output representation takes also advantage of the learning properties of
CrySSMEx. On the contrary, if we want to group state clusters on the basis
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of more coarse-grained sets (more abstract patterns), we might want to use
other quantization functions. In our experiments, we obtained classifications
for three different types of object behaviours by means of an alternative output
quantization. A general learning schema is presented in Fig. 1.

Figure 1: Learning schema. Quantization of input, output and state spaces and
division of the spaces into regions.

The problem of predicting object trajectories after a rigid body pushes it
has already been addressed in previous works. In [7], the authors applied offline
probabilistic models for density estimation, specifically Gaussian kernel density
methods, in contrast to the online methods explained later here. Moreover,
the construction of qualitative models which can keep track of the temporal
causality for long data sequences is an additional gain of our work. We also
addressed this problem before by employing a Recurrent Neural Network (RNN)
for prediction [15]. Here, we focus on extracting machines which are potentially
useful for planning, as stated above. However, extraction of planning knowledge
from RNNs is also possible [18]. Actually, CrySSMEx was originally conceived
for rule extraction from RNNs [6, 2], which is closely related to planning.

The problem we consider in this paper is closely related to previous works on
affordances learning [17, 10, 19, 13, 1], among others. The theory of affordances
is a cognitive development theory, which attempts to explain how creatures are
able to acquire sensorimotor skills when they are faced with the different features
found in the environment [4]. In summary, given some object properties which
afford some behaviour, humans or animals are able to employ these objects as
instruments or ways to attain a specific goal. For instance, certain objects can
afford a sliding, a flipping over or a rolling behaviour. In [17, 19], the robots
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(arms) perform some random actions and some features are extracted and used
for learning. Then, this can be used for solving some task, by implementing a
planning framework. In [10], the robot is more autonomous and enters into dif-
ferent developmental stages on the basis of a learning progress measure, which
allows that the robot decides what action to perform next in the presence of
different objects, emulating a curious agent. The authors demonstrated that the
agent “discovers” affordances while it starts to perform certain actions repeat-
edly. In [13], the objective was to extract visual features from random pushing
actions which can be used for obtaining categorizations of affordances via unsu-
pervised learning. In the field of Cognitive Robotics, a related theory has also
been developed in recent years, called Object-Action Complexes (OACs) [9].
OACs aims for a universal representation enabling efficient planning and execu-
tion of actions in different levels of a cognitive architecture [9]. OACs combine
search capabilities based on theorem proving rules and the object and situa-
tion oriented concept of affordance, plus the logical framework of the situation
calculus for planning [9].

Affordances are also strongly related to the emergence of concepts [1]. A
new behaviour observed in an object or a new way to adapt the body and apply
it to an object to achieve some goal might lead to new linguistic descriptions
of these situations. As we mentioned above, we use probabilistic methods to
discriminate among different object behaviours given some actions.

For evaluation purposes, we discuss a learning scenario where a simulated
robotic arm interacts with a polyflap. A polyflap is a polygon (concave or
convex) cut out of a flat sheet of some material (e.g. cardboard) and folded once
(anywhere) to produce a 3-D object [16], cf. Fig. 2. In the implementation we
use the NVidia R© PhysXTM library which allows us to perform realistic physical
simulations and to obtain 3-dimensional feature vectors, so that we can easily re-
adapt our algorithms to real scenarios. Although providing an idealized scenario,
these experiments are necessary to establish a base line from which we can start
facing noisy information.

This paper is organized as follows. First, we describe the online quantization
algorithm and its application to sensorimotor spaces and specifically to the
prediction problem. Then, we explain the induction of substochastic sequential
machines for prediction and classification. Finally, we present experimental
results and draw conclusions.

2 Online Quantization of Sensorimotor Spaces

2.1 Features for Learning about Sensorimotor Spaces in a
Pushing Scenario

The learning scenario is shown in Fig. 3. The simulated arm corresponds to
a Neuronics R© Katana 6MTM arm with a ball as a simple finger. In order to
simulate a pushing action we apply a linear trajectory over a specified time
period until the finger reaches a desired pose. The arm has 6 joints, including
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Figure 2: Polyflaps, http://www.cs.bham.ac.uk/∼axs/polyflaps/. Used here are polyflaps
of the shape (bottom-right corner)

Figure 3: Learning scenario with a polyflap

the last joint for the finger which is static. The representation of object poses
are in Euler angles with respect to a reference frame which is the origin in the
scene (6-D pose).

[7] provides a complete description of the rigid body transformations in-
volved in a pushing scenario, assuming the physical properties and net forces
are constant in time. In summary, if two rigid bodies are present, where a time
frame A corresponds to one object, a frame B to a second one, and a frame O for
some fixed environment, rigid body transformations T between these frames at
subsequent time steps can be used for describing the current system state. For
instance, TAt,At+1 represents the transformation of the first object from time t
to t + 1. The prediction problem is stated as [7]: given we know the starting
states and the motion of the pusher TAt,At+1 , predict the resulting motion of
the object TBt,Bt+1 .

In our work, we assume rigid body transformations only with respect to
a fixed frame O, although alternative representations are also possible. Rigid
body transformations are encoded as rotation matrices which represent poses
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and can be transformed to 6-D poses consisting of position and orientation in
Euler angles with respect to O.

Definition 1. Let us denote TE , TA(t),O and TB(t),O variables representing
rigid body transformations with respect to a fixed frame O, where TE,O denotes
the target pose representing the final expected pose of the finger at the end of a
linear trajectory (desired pose), TA(t),O represents the pose of the finger at time
step t and TB(t),O the pose of the object at t. We represent the poses by using a
6-D representation encoding 3-D position and 3-D orientation in Euler angles,
so that we have the vectors e,a(t),b(t) to denote finger target pose, finger pose
and object pose respectively. We call e also a motor command. The values are
all normalized to obtain vectors with mean 0 and standard deviation 1.0.

We want to model a situated discrete time dynamical system (SDTDS) [6]
representing the interaction among these objects in the scenario. In an SDTDS,
an input space I ⊆ Rni , a state space S ⊆ Rns and an output space O ⊆ Rno

are defined, where ni, ns, and no are the dimensionalities of the spaces. In an
SDTDS, a transition function γ : S ×I → S×O is also defined, which allows to
model the state of the system and its output, given some input. In Section 3, we
explain how probabilistic finite-state machines can be constructed from I,S,O
and γ. From now, we explain the process of collecting data for quantization.

Definition 2. An SDTDS transition event at a time t, ω(t) is a quadruple
〈s(t), i(t),o(t − 1),o(t), s(t + 1)〉 ∈, where s(t + 1) is the state vector reached
after the SDTDS received input i(t) while occupying state s(t), and o(t) is the
output generated in the transition [6]. Here, we also take into account previous
output states (e.g. o(t− 1)) to consider a longer history of past events, with the
intention to avoid the Markov property.

In the following paragraph we propose a definition of the input space suitable
for the pushing scenario.

Definition 3. We define the input space I as a sensorimotor space where a
set of tuples of vectors concatenated 〈e,a,b〉 represent motor commands, finger
poses and object poses respectively. For a time step t, i(t) = 〈e,a(t),b(t − 1)〉.
b(t− 1) denotes the pose of the object at the previous time step.

Likewise, we can define the state space as follows.

Definition 4. A state space S is defined as a set of vectors representing object
poses. For a time step t, s(t) = b(t).

As mentioned in Section 1, we can define different output functions to quan-
tize an output space. Considering the problem of object trajectory prediction,
we can encode an output space as a set of object transformations representing
the rotation and translation of the object. In Section 3 we will clarify why this
representation is useful for the purpose of object motion prediction.

Definition 5. Let us define an output space O as a set of rotation vectors
representing object motions. For time step t, o(t) is calculated as follows. Let
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us define a transformation TB(t),B(t+1) to denote the rotation and translation of
an object, with corresponding rotation matrix RB(t),B(t+1) = R>B(t),ORB(t+1),O

and translation vector pB(t),B(t+1) = pB(t+1),O − pB(t),O. Then, o(t) is the
corresponding rotation vector.

In Fig. 4, we show a diagram of the features involved in the learning process.

Figure 4: Features for prediction

Alternatively, we can define an output space O as a set of symbols represent-
ing a class or type of rough object behaviour. We carried out these experiments
with simulated polyflaps. We consider here a discretization of possible object
motions. For instance, O = {−1, 1, 0,−0.5, 0.5} is a set of possible values for an
output symbol o(t), denoting respectively:

• o(t) = −1 when θ object angle (with respect to Z axis) decreases (this
happens when the object tilts but does not completely flips over, so that
it returns to the original angle).

• o(t) = 1 when θ angle increases (object falling down)

• o(t) = 0 when the object does not move

• o(t) = −0.5 when the object moves backwards (negative direction along
X axis).

• o(t) = 0.5 when the object moves forwards.

Additionally, we designed the output space to consider the final resulting motion,
in abstract terms. In this case, we distinguished three possible behaviours,
namely a slidding, a flipping over and a tilting behaviour. Combined with the
discretization presented above, we have 15 possible output symbols.

2.2 Vector Quantization

The ability to estimate online a probability density function is important for
robots to learn in an incremental way, after new data are available for learning.
Before we start explaining our method, it is important to clarify that we use the
term “online” here in contrast to batch, meaning that during a learning iteration
where a new data source is present, the learning algorithm can be immediately
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updated. However, we will not use here the term online in the strict sense when
a previous used data set is not anymore available for learning but only the new
data items.

Our approach for density estimation is based on Vector Quantization [5] to
partition probability distributions. Quantization divides the probability distri-
bution in sets or clusters, by mapping a set of high-dimensional vectors to a
prototype vector which is statistically similar. We have developed an efficient
algorithm for Robust Quantization based on previous implementations of the
Growing Neural Gas algorithm [3, 11, 12].

Definition 6. A Growing Neural Gas (GNG) network [3] is a graph G = 〈A, C〉
where A is a set of M nodes, in which each node c ∈ A has an associated
weight wc ∈ Rd. There exists a set of neighborhood connections C which are
unweighted and symmetric. For each node c, there exists a possibly empty set
of neighborhood connections Nc = {i ∈ A | (c, i) ∈ C}. A GNG network can be
used as a quantizer, by using the weights and indices associated to nodes in A
as the prototype vectors and indices respectively.

In the original algorithm [3], the network starts with 2 nodes and gradually
adds more nodes in regions where a global error measure is high, after it reaches
a given maximum number of nodes. The algorithm has issues related to proper
quantization and overfitting. In [11, 12], some techniques were implemented to
improve the convergence of the algorithm for efficient quantization and noise
robustness. The algorithm presented here builds upon this work. We improve
the efficiency in terms of computational complexity, and propose new strategies
which are more suitable for online learning.

In [11, 12], the authors propose strategies to overcome the problems already
mentioned. We applied some of these strategies and adapted it to a new algo-
rithm. One of these methods is an outlier resistant strategy that reduces the
influence of outliers in the node weight adaptation process. Additionally, they
propose an information-theoretic method for evaluating the model complexity,
namely the Minimum Description Length (MDL) criterion. In this way, models
with a minimal MDL can be selected which optimize the quantization.

In the algorithms presented in [11, 12] parameters like the maximum number
of nodes and the maximum number of iterations for a training epoch are still
used. In this article, we propose a new algorithm that is less dependent on a
priori parameters. It incorporates also an online calculation of error suitable
for setting learning rates and to decide locations for new nodes to insert. The
procedure can also decide when to stop according to the MDL principle and a
notion of network stability. For the purposes of online estimation of a probability
density function, we are interested in updating the quantizer after a new training
instance is available. These training instances are actually sequences of vectors
containing sensorimotor information. The stopping decision based on MDL and
graph stability is here specially useful.

In this work, we incorporated modifications in learning rates calculation,
insertion criteria for nodes, and efficient implementation of nodes deletion, and
MDL-based and network stability stopping criteria.
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In the following sections, we describe and explain the calculation of the dif-
ferent parameters involved in the learning process: the learning rates, the weight
updates, the node insertion and deletion criteria and the Minimum Description
Length calculation.

2.3 Learning Parameters

2.3.1 Learning rates and weights update

In this work, we propose a new method for obtaining learning rates which is
dependent on an instantaneous calculation of mean error difference.

We obtain a harmonic mean error rate. This way we obtain error measures
that are not strongly influenced by outliers. Assuming a data point x(t) is pre-
sented to the network and the corresponding winner weight ws1(t) is activated,
the inverse error es1(t) associated to the node s1 is:

es1(t) = ‖x(t)−ws1(t)‖−1 (1)

In this case, we assume ‖ ·‖ to be the Euclidean norm. Given a time window
parameter τ during which a node s1 was selected as winner node, a harmonic
smoothed mean error rate for the node s1 at the current time step t and at a
previous time step t− τ is calculated as follows:

〈es1(t)〉 =
(

1
θ+1

∑θ
i=0 es1(t− i)

)−1

〈es1(t− τ)〉 =
(

1
θ+1

∑θ
i=0 es1(t− i− τ)

)−1

,
(2)

where θ is a smoothing parameter.
For every node k ∈ Ns1 ∪ {s1}, the learning rate ηk(t) is obtained in the

following way:

ηk(t) =





ηk if − (log〈ek(t)〉 − log〈ek(t− τ)〉) > 1

−(log〈ek(t)〉 − log〈ek(t− τ)〉)ηk if − (log〈ek(t)〉 − log〈ek(t− τ)〉) > 0.1

0.1ηk otherwise,

(3)
whereby the default learning rate ηk is modulated by the the error difference
−(log〈ek(t)〉 − log〈ek(t − τ)〉). We call this value a learning quality measure.
This function is depicted in Figure 5 for ηk = 0.5 and serves to moderate the
impact of the default learning rate for weights update.

In the weight adaptation rule we also incorporated some strategies for outlier
resistance based on the work described in [11]. The new proposed rule has the
form:

∆wk(t) = ηk(t)σk(t)
x(t)−wk(t)

‖x(t)−wk(t)‖ , (4)

where ηk(t) is the learning rate in Eq. 3 and σk(t) is the parameter for outlier
resistance. From now on, we assume the time variable t = 0 at the beginning
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Figure 5: Learning quality function.

of a growth stage, that is, when a new node is added. The factor σk(t) is used
instead of the absolute distance information ‖x(t) − wk(t)‖, to mitigate the
influence of outliers in the weight adaptation process. σk(t) is calculated by
using a historical restricting distance information dk(t) [11]:

σk(t) =

{
dk(t) if ‖x(t)−wk(t)‖ ≥ dk(t− 1)

‖x(t)−wk(t)‖ if ‖x(t)−wk(t)‖ < dk(t− 1)
(5)

where dk(t) serves as a restricting distance for wk(t). dk(t) is updated when k
becomes the winner node, i.e., when k(t) = s1(t):

dk(t) =

{(
1
2

(
dk(t− 1)−1 + ‖x(t)−wk(t)‖−1

))−1
if ‖x(t)−wk(t)‖ ≥ dk(t− 1)

1
2 (dk(t− 1) + ‖x(t)−wk(t)‖) if ‖x(t)−wk(t)‖ < dk(t− 1),

(6)
and

dk(0) =

(
1

N

N∑

i=1

‖xi −w0
k‖−1

)−1

, (7)

where w0
k is the initial weight at the beginning of the growth stage and N = |D|.

Thus, dk(t) is initialized at the beginning and reinitialized when a new node is
added to the network or when one or more nodes are deleted. We added a value
ε = 10−2 to Euclidean distances in order to avoid very big restricting distance
values. The final updating rule is then:

∆wk(t) = ηk(t)σk(t) x(t)−wk(t)
‖x(t)−wk(t)‖ (8)
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2.3.2 Criterion for node insertion

Definition 7. The node insertion requirement is fulfilled if for all nodes c ∈ A
the mean error rate ec is not reduced after Te learning epochs.

A new node is added when the node insertion requirement is satisfied. The
node is inserted in the proximity of a node q with maximal insertion criterion
and its neighbor f with highest insertion criterion. An insertion criterion Kc is
defined in our work simply as the highest mean error rate:

Kq(t) = arg maxc∈A(〈ec(t)〉)
Kf (t) = arg maxc∈Nq

(〈ec(t)〉) (9)

in our method the location of the new prototype r is calculated from the
location of q and the direction of the mean average error vector 〈eq〉 associated
to this node. This quantity is calculated in a similar way as in Eq. 2. When the
data point x(t) is presented to the network, the mean error rate vector of the
winner node s1 is calculated:

〈es1(t)〉 =

(
1

θ + 1

θ∑

i=0

es1(t− i)
)−1

, (10)

with error vector es1(t) = (x(t) − ws1(t))−1, where each component of a−1 is
the inverse of the corresponding component of some vector a. Thus, we set the
weight for an inserted node r whose parent node is q as:

wr(t) = wq(t) + 2〈eq(t)〉. (11)

In some cases, a dislocated node will be deleted according to a criterion explained
in Section 2.3.4. Moreover, nodes are occassionally deleted at the end of the
learning stage.

2.3.3 Minimum Description Length Principle

We use a Minimum Description Length criterion as proposed in [12] to determine
the optimal number of clusters. It is an information-theoretic measure that
balances the complexity of the graph and its error.

Definition 8. Given a data set D and the set of prototype node weights W, the
MDL is defined as [12]:

MDL(D) = modelL(D,W) + errorL(D,W), (12)

where errorL(D,W) is the total encoding length or model efficiency and modelL(D,W)
is the model complexity.

The total encoding length and the model complexity for a network G with
M nodes are calculated as follows:

errorL(D,W) = κ

M∑

i=1

∑

x∈Si

d∑

k=1

max

(
log2

(‖xk −wik‖
ε

)
, 1

)

modelL(D,W) = KM +N log2M,

(13)
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where N = |D|, d is the dimension of input vectors, ε is a data accuracy con-
stant usually set to 10−4. K is the number of bits needed to encode a single
data vector, which is obtained according to the average value range ν and data
accuracy ε: K = dlog2

(
ν
ε

)
e. Finally, κ is a parameter to balance the contribu-

tion of the model complexity and model efficiency, which is here usually set to
1.3. By setting κ > 1, we give more weight to the network accuracy in terms of
error. The value range is calculated by obtaining the average value in the data
set and substracting its lower limit.

2.3.4 Criteria for node deletion

In our work, a node is called inactive and can be deleted if at the end of a growth
stage it is not a representative for any vector in the dataset. Usually, new pro-
totypes adapt quickly so that they approach regions containing data. However,
in some cases clusters might be already represented by other prototypes and the
node might stay isolated from clusters in some cases.

We use the MDL criterion to assess whether node are dislocated at the end
of the learning process. Assuming that one prototype f is removed, if the MDL
value calculated based on the set of nodes C \ {f} is smaller than that of C, i.e.,
if:

∆MDL(D, f) = −K +N(log2(M − 1)− log2(M)

+κ

(
M∑

i=1,i6=f

∑

x∈Si

d∑

k=1

max

(
log2

(‖xk −wik‖
ε

)
, 1

)

−
M∑

i=1

∑

x∈Si

d∑

k=1

max

(
log2

(‖xk −wik‖
ε

)
, 1

))
< 0,

(14)
we regard the removed prototype f as dislocated. This process is performed
recursively until after there are no more nodes dislocated.

2.3.5 Robust GNG Algorithm

We implemented the learning algorithm in such a way that it can decide when
to stop. This stopping criterion is based on evaluating the MDL after a number
of Tm learning epochs after which no minimal graph has been found, in terms
of MDL. The learning process is described in Algorithm 1.

Definition 9. A graph is stable if the MDL criterion is not reduced after Tm
learning epochs.
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Algorithm 1: RobustGNG(D,G)

Data: A data set D and a set of 2 not connected nodes {c1, c2} ∈ A, whose weights are
initialized randomly considering the data set bounds. Set the constants defined in
Sections 2.3.1 and 2.3.3. Initialize restricting distances as explained in Eq. 7.
Initialize smoothed mean error rates with the highest distance among the data set.

Result: A graph G which is stable
begin

while Graph G is not stable do
for t = 1 to N do

Randomly draw a vector x(t) ∈ D;
Determine winner s1 and second winner s2, where
s1 = arg mini⊂A ‖x(t)−wi(t)‖ and s2 = arg mini⊂A\{s1} ‖x(t)−wi(t)‖;
Update the weights of nodes k ∈ Ns1

∪ {s1} by using Eq. 8;

if t mod λ = 0 where λ is a time window constant then
Calculate MDL using Eqs. 12,13;
if current MDL is minimal then

Store current graph G as the graph with minimal MDL Gmin;

if current graph is stable then
Store Gmin as the resulting stable graph;
Finish the algorithm here;

if insertion requirement is fulfilled (Sec. 2.3.2) then
Delete any nodes if necessary according to Section 2.3.4. If a node is
deleted, initialize restricting distances dk and recalculate MDL.
Check if MDL is minimal and store it accordingly. Check if the graph
is stable, in which case the algorithm finishes;
Determine nodes q and f with maximal insertion criterions Kq and
Kf according to Eq. 9;
Insert a new prototype r and set its reference vector as in Eq. 11. Set
initial smoothed mean error for r, q, and f : er = eq = ef = 0;
Insert edges connecting the new prototype r with prototypes q and f ,
removing the original one: C = C ∪ {(r, q), (r, f)}, C = C \ {(q, f)};
Initialize restricting distances as explained in Eq. 7;

Update the smoothed harmonic mean error rates according to Eq. 2;
Update the restricting distances dk as in Eq. 6;
if a connection between s1 and s2 does not exist already and s1 or s2 has
not been deleted then

Create connection: C = C ∪ {s1, s2};
Set the age of the connection {s1, s2} to 0: age{s1,s2} = 0;

Increment the age of all edges emanating from s1:
age{s1,i} = age{s1,i} + 1, ∀i ∈ Ns1

;

Remove edges with age values greater than a constant α;
Remove all nodes without any edge and in such case initialize restricting
distances;

Check dislocated nodes according to 2.3.4;
return G

end

2.4 Online Learning

After a new traning instance is available, RobustGNG is employed for quanti-
zation of input and output spaces. However, to make this process efficient, the
algorithm divides the spaces into subregions. This process is based on previous
works [10, 15].

Starting with one region, successive regions are obtained by splitting the
sensorimotor space depending on a measure of variance in the dataset Dr (ex-
emplars used for Region Rr). This division is performed after |Dr| achieves
a certain threshold κ. A dataset Dr for a Region Rr is split in two datasets

13



Dr+1,Dr+2 (for regions Rr+1,Rr+2). Let us denote

Dr = {Si}

the set of instances in region Rr. Then the split of Dr defined by the index c
with value vc is performed when the following criterion (Γ) is met:

• all the instances Si of Dr+1 have the cth component of their motor com-
mand vector ei smaller than vc.

• all the instances Si of Dr+2 have the cth component of their motor com-
mand vector ei greater than vc.

• the quantity |Dr+1| · σ({[aij bij ]
ni
j=1 ∈ Dr+1}) + |Dr+2| · σ({[aij bij ]

ni
j=1 ∈

Dr+2}) is minimal, where

σ(S) =

∑
v∈S ‖v −

∑
v∈S v
|S| ‖2

|S|

where S is a set of vectors.

Each region stores all cutting dimension and values that were used in its gen-
eration as well as in the generation of its parent regions. For the region Rr a
quantizer Λr is stored, and this machine is inherited by the child regions. The
learning process is described in the Algorithm 2.

Algorithm 2: Online learning process

Data: An initial region R0 which encompasses the whole sensorimotor
space.

Result: A set of regions {Rr} with corresponding input and output
quantizers {Λi,o}.

for i=1 to I do
Choose a motor command action er,i among all current regions {Rr}.
if κ then

Split region Rr into Rr+1 and Rr+2 according to Γ.
end
Update quantizers with current training sequence Sr,i.

end

3 Induction of Substochastic Sequential Machines
for Prediction and Classification

3.1 Substochastic Sequential Machines

Definition 10. A substochastic sequential machine (SSM) is a quadruple 〈Q,X, Y,P =
{p(qj , yl|qi, xk)}〉 where Q is a finite set of state elements (SEs), X is a fi-
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nite set of input symbols, Y is a finite set of output symbols, and P is a fi-
nite set of conditional probabilities (cf. explanation in [6] and eqs.15-17) where
qi, qj ∈ Q, xk ∈ X and yl ∈ Y .

We use the vector quantization method described in Section 2 for state dis-
cretization. A SSM models a situated discrete time dynamical system (SDTDS).
A stochastic dynamical model of such a system is a joint probability mass func-
tion pΩ induced from a transition event set Ω, and quantizer functions Λo, Λi
and Λs for output, input and state spaces respectively. Ω consists of selected
transition events recorded from a given set of input sequences. Thus, the joint
probabilities of observed and quantized transitions (pΩ) are translated into joint
probabilities of SSM transitions according to P. As already mentioned, we de-
fine Λi(i(t)) and Λo(o(t)) according to the discretization described in Section 2,
and Λs(s(t)) using a modified version of the original state space quantization
method (Crystalline Vector Quantizer - CVQ) explained in [6]. Thus, we have:

p(qi, xk, yl, qj) =

pΩ(Λs(s(t)) = i,Λi(i(t)) = k,Λo(o(t)) = l,Λs(s(t+ 1)) = j)
(15)

The conditional probability is calculated with:

p(qi, xk) =

|Q|∑

j=1

|Y |∑

l=1

p(qi, xk, yl, qj) (16)

p(qj , yl|qi, xk) =

{
p(qi,xk,yl,qj)
p(qi,xk) if p(qi, xk) > 0

0 if p(qi, xk) = 0
(17)

Definition 11. The translation procedure from Ω to an SDTDS and then into
an SSM will be called create machine(Ω,Λs,Λi,Λo).

The substochasticity of the extracted machines is due to the possibility
that the sample of input sequences in Ω will not necessarily provide exam-
ples of all possible input symbols in all possible enumerations of the quantized
space of the dynamical system. As a consequence, the probability distribu-
tions can become substochastic [6]. The details of the procedure for extract-
ing substochastic sequential machines is described in [6]. In summary, there
is a recursive state splitting, starting from only one SE. Then, a decision to
split data into different SEs is based primarily on the maximal output entropy
arg maxH(Y |Q = qi, X = xk) = H(Py(qi, xk)) and then on the maximal next
state entropy arg maxH(Q|Q = qi, X = xk) = H(Pq(qi, xk)). This yields that
state vectors that convey the most information (i.e., highly indeterministic) are
used for splitting [6]. Here, H(P) = −∑n

i=1 pi log pi and p(q(t+1)) = Pq(qi, xk)
and p(y(t)) = Py(qi, xk) are marginal distributions of P. Each split node has
associated model vectors that point to other split states, merged ones, or leaf
nodes. The model vectors are calculated from the average of the vectors which
they represent. Additionally, states are possibly merged if there exists an equiv-
alence relation between two states based on determining when two SEs are not
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equivalent if they, in their outgoing transitions, share some input symbols and
transitions that lead to discrepancies in the future output. The procedure fin-
ishes when the machine is deterministic, i.e., when the entropies for all states
equal to 0.

3.2 An improved CVQ

As mentioned above, the quantization procedure for the state space is based
on the CVQ quantizer. This method has similarities with hierarchical decision
trees [6]. In this work, we redefined the quantization procedure of a CVQ with
respect to [6], in order to solve issues regarding symmetrical properties present
in the evolution of some dynamical systems (see Fig. 6 discussed below). [14]
provides a detailed description of these issues. A CVQ is defined as follows [6]:

Definition 12. A CVQ Graph is a quadruple CVQ = 〈Nleaf , NV Q, NMerged, nroot〉
where nroot is the root node of the CVQ Graph and the constituents are defined
below.

Definition 13. A leaf node n ∈ Nleaf has only one constituent, n = 〈i〉, where
i ∈ N is an enumeration of the node within the CVQ and 1 ≤ i ≤ |Nleaf |.

Definition 14. A Vector Quantizer (VQ) node n ∈ NV Q is a tuple n = 〈M,H〉
where M is a list of L model vectors [m1,m2, . . . ,mL], where mi ∈ Rd and H
is a nonrepetitive list of child nodes [h1, h2, . . . , hL] where hi ∈ NLeaf ∪NV Q ∪
NMerged and d ∈ N is the dimensionality of the vector space.

Definition 15. A merged node in a CVQ graph, n ∈ NMerged, contains only a
“link”, n = 〈ngroup〉, where ngroup ∈ NLeaf ∪NV Q ∪NMerged.

The model vectors in a VQ-Node have associated a list [`1, `2, . . . , `L] of
classifications (labels). An element `i is a tuple 〈y(ti), y(ti + 1)〉 which are the
output symbols observed at some time step ti and the subsequent ti + 1. In
this work, we redefine a CVQ quantizer function Λcvq in terms of a function
winner : NLeaf ∪NV Q ∪NMerged × Rd × 〈N,N〉 → {1, 2, . . . ,M}:

Λcvq(s(t)) = winner(nroot, s(t), 〈y(t), y(t+ 1)〉), (18)

which in turn is recursively defined as:

winner(n, s(t), 〈y(t), y(t+ 1)〉) =





ID if n ∈ NLeaf
winner(ngroup, s(t), 〈y(t), y(t+ 1)〉)

if n ∈ NMerged

winner(hw, s(t), 〈y(t), y(t+ 1)〉)
if n ∈ NV Q,

(19)

where we determine w, the index of the winning child of a VQ-node according
to:

w = arg min ‖s(t)−mi‖, s.t. `i = 〈y(t), y(t+ 1)〉. (20)
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The symmetry problem can be visualized in Fig. 6, where two model vectors
with identical geometrical locations have different associated outputs. Thus,
depending on the context, one of these model vectors have to be selected to
eliminate the ambiguity.

m
1

,m
2

o
1

o
2

Figure 6: The symmetry issue in model vectors

We refer to [6] for more detailed explanations of CVQ training. When a
CVQ leaf node is completely split [6], a recursive method is devised that splits
data points in regions that separate them on the basis of labels for vectors as
seen above. Model vectors are determined by averaging the data points in a
region. Given a slightly different labeling present in this work, we reformulate
the complete split in Def. 16. In Section 3.3 we describe the procedure for
labeling vectors when splitting a data set.

Definition 16. The complete split of several VQ nodes using several data sets
at once is denoted cvq = split cvq(cvq,D) where cvq is the CVQ to be split
and D = [D1, D2, . . . , D|Λcvq|] is a list of data sets where Di is the data set
for splitting the leaf node with ID = i (if the node should not be split, then
Di = ∅). The elements of a data set are pairs 〈s, `〉 where s is the data vector
and ` ∈ 〈N,N〉 is a label or class of the data vector. The leaf nodes are re-
enumerated after the completion of all splits.

3.3 CrySSMEx learning loop

The principal components of the CrySSMEx algorithm are listed below [6]:

• the SDTDS which represents the class of systems for CrySSMEx to anal-
yse.

• the data set, i.e., the SDTDS transition event set Ω.

• SSMs, a subtype of SDTDSs.

• SDTDS transformation into SSM by quantizing input, output and state
(cf. Sections 2 and 3.2).

• generation of UNDI-equivalence (universally not decisively inequivalent)
sets in SSMs, which is the process that helps to determine when to merge
states (function generate UNDI equivalence sets).
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• Use of CVQ as a state space quantizer (cf. Section 3.2).

• merging (function merge cvq) and splitting of CVQ leaf nodes (cf. Defi-
nition 16).

• Selection and labeling of state vectors of Ω based on SSM information-
theoretic properties (Algorithm 3).

Algorithm 3: collect split data(Ω,Λi,Λs,Λo)

Data: A transition event set, Ω, an SSM, ssm, an input quantizer, Λi, a state
quantizer, Λs and an output quantizer, Λo.

Result: A list of data sets D, one data set per q ∈ Q. An element of each data set is
described in Def. 16.

begin
D = [∅, ∅, . . . , ∅];
for ∀〈s(t), i(t),o(t), s(t + 1) ∈ Ω do

qi = Λs(s(t));
xk = Λi(i(t));
yl = Λo(o(t));
ym = Λo(o(t + 1);
qj = Λs(s(t + 1);
if ∃xr : Hssm(Y |Q = qi, X = xr) > 0 then

xmax = arg maxxr∈X Hssm(Y |Q = qi, X = xr);
if xk = xmax then

Di = Di ∪ 〈s(t), 〈yl, ym〉〉;

else if ∃xr : Hssm(Q|Q = qi, X = xr) > 0 then
xmax = arg maxxr∈X Hssm(Q|Q = qi, X = xr);
if xk = xmax then

Di = Di ∪ 〈s(t), 〈yl, ym〉〉;

return D
end

In Algorithm 3, data sets are first split if output is indeterministic. If not,
but the next state is not deterministic, data sets are then split and labeled
accordingly. Finally, an improved version of the CrySSMEx main loop can be
observed in Algorithm 4.
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Algorithm 4: CrySSMEx(Ω,Λi,Λo)

Data: An SDTDS transition event set, Ω, an input space quantizer Λi, an output
space quantizer Λo.

Result: A deterministic SSM mimicking the SDTDS within the domain Ω as
described by Λo.

begin
i = 0;
ssm0 = create machine(Ω,Λi,Λcvq0 ,Λo) (ssm0 has Q = {q1} with all transitions
to itself);
repeat

i = i + 1;
D = collect split data(Ω, ssmi−1,Λi,Λcvqi−1 ,Λo);

cvqi = split cvq(cvqi−1, D);
ssmi = create machine(Ω,Λi,Λcvqi ,Λo);

if ssmi has UNDI-equivalent states then
E = generate UNDI equivalence sets(ssmi);
cvqi = merge cvq(cvqi, E);
ssmi = create machine(Ω,Λi,Λcvqi ,Λo);

until ssmi is deterministic ;

return ssmi

end

For every Region Rr, we executed the CrySSMEx algorithm, obtaining one
SSM associated to some region.

4 Experimental Results

In the learning scenario, the arm starts a pushing action from 18 different poses.
The robot applies a pushing angle ranging from 60 to 120 degrees, parallel to
the ground plane in the direction to the object center, as shown in Fig. 7, where
the spheres show the starting poses of the finger.

Figure 7: Pushing actions.

To test the prediction results, we applied the prediction process explained
in [6], which is in principle a parsing process. In order to obtain the model
vectors from the CVQ and calculate the normalized average error in prediction,

19



Table 1: Normalized average error in prediction.

Data size Avg Norm. Error

100 0.0487653
200 0.0340824
500 0.0237009

we obtained a map of model vectors and corresponding quantization indices. In
our experiments, the prediction is carried out for only one step ahead.

We performed training experiments with 100, 200 and 500 sequences. Table 1
shows the normalized average error in prediction for the three cases, by using
a different set of 500 testing sequences. In Fig. 8 we illustrate the prediction
results.

(a) Predicting the flipping over affordance

(b) Predicting the sliding affordance

(c) Predicting the tilting affordance

Figure 8: Prediction of affordances. Red countour depicts last prediction.

We tested also the results for classification. For 100 sequences, the algorithm
is already able to predict the correct object behaviour (sliding, flipping over,
tilting) in all cases.
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5 Conclusions

We investigated the problem of predicting the object behaviour after a robot
pushes it in terms of trajectory estimation and behaviour categorization. We
applied an online learning algorithm (RobustGNG) to quantize the sensorimotor
space after a new training sequence is available. This algorithm is incremental
and allows to add or delete prototypes representing clusters in the probability
distributions of these spaces in an online manner. Stopping criteria are crucial
to decide the right number of latent variables. Information-theoretic criteria
like Minimum Description Length were used for these purposes. We used also
a divide-and-conquer strategy to split the sensorimotor spaces in different re-
gions, in order to accelerate convergence. Then, the quantized spaces were used
for obtaining qualitative models of object behaviour and classification in form
of substochastic finite-state machines, by applying the CrySSMEx algorithm.
The prediction and classification ability of the learning algorithms were demon-
strated experimentally.
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Abstract. Two new feature relevance determination
algorithms are proposed for learning vector quanti-
zation. The algorithms exploit the positioning of the
prototype vectors in the input feature space to esti-
mate Fisher criterion scores for the input dimensions
during training. These scores are used to form online
estimates of weighting factors for an adaptive metric
that accounts for dimensional relevance with respect
to classifier output. The methods offer theoretical
advantages over previously proposed LVQ relevance
determination techniques based on gradient descent,
as well as performance advantages as demonstrated
in experiments on various datasets including a visual
dataset from a cognitive robotics object affordance
learning experiment.

1. Introduction

Learning vector quantization (LVQ) [9] provides
an intuitive, and often highly effective, means for
discriminative learning where prototype vectors are
used to quantize the input feature space and given
labels to form piecewise-linear classifiers using the
nearest neighbour rule. Since their introduction,
LVQ algorithms have undergone various analyses
and seen various improvements to their design. The
original formulations (LVQ1, LVQ2, LVQ3) [9] have
been shown to be divergent, inspiring the generalized
learning vector quantization (GLVQ) algorithm [14]
where prototypes are updated such that a stochastic
gradient descent is performed over an error function.
LVQ algorithms have also been shown to be a fam-
ily of maximum margin classifiers [3], thus provid-
ing excellent generalization for novel data with high-
∗This research has been supported by: EU FP7 project CogX

(ICT-215181), and Research program P2-0214 Computer Vision
(Republic of Slovenia).

dimensional inputs. More recently, the nearest neigh-
bour rule of LVQ has been modified to a k-nearest
neighbours rule using a local subspace classifier [7].

Perhaps just as significantly, much attention has
also been paid in recent years to the role that the dis-
tance metric plays in the effectiveness of LVQ meth-
ods. LVQ ordinarily relies on the Euclidean metric to
measure the distance between data points, which pro-
vides equal weighting to all input dimensions. Many
of the input dimensions, however, may have little rel-
evance when considering the desired output function
and may even have a detrimental effect on the out-
put if considered with equal weighting in the metric
to the more important dimensions. One standard ap-
proach to this issue is to pre-process the data using
some form of feature selection or dimensionality re-
duction, but this can be infeasible in many learning
scenarios where the training data are not available in
advance, e.g. autonomous robotics. Various refor-
mulations of LVQ have been proposed that can ad-
just the metric during training such that the impact
of the individual input dimensions are dynamically
re-weighted during training in accordance with the
data under consideration. This can make a crucial
difference, both during training for more efficient ad-
justment of the prototypes, and when classifying test
samples where the undue consideration of irrelevant
dimensions can mean the difference between a cor-
rect and incorrect classification.

One early adaptation of LVQ3 known as distinc-
tion sensitive learning vector quantization (DSLVQ)
[11] achieves this by using a heuristic to adjust
weights along each of the input dimensions to modify
the Euclidean metric. An adaptation of LVQ1 known
as relevance learning vector quantization (RLVQ) [1]
uses Hebbian learning to do similar, by adjusting
weights for each of the input dimensions at every



training step depending on whether they contributed
to the correct or incorrect classification of a train-
ing sample. RLVQ was subsequently adapted for
use with GLVQ producing a method known as gen-
eralized relevance learning vector quantization (GR-
LVQ) [6] such that the dimensional weight updates
also adhere to gradient descent dynamics in a similar
way to the prototype updates. Another modified ver-
sion of GLVQ [15] uses Fisher’s discriminant anal-
ysis to create an alternative metric to the weighted
Euclidean distance that employs a matrix transforma-
tion to reduce the feature space dimensionality. More
recently, an adaptive metric was used in combination
with training data selection for LVQ [10].

In this paper, two new algorithms for LVQ-based
relevance determination are presented. Both methods
exploit the positioning of the prototype vectors in the
input feature space to inform estimates of the Fisher
criterion score along the input dimensions, which are
then used to form online estimates of the relevance
of the input dimensions with respect to the classi-
fier output. Both methods provide online updates that
may be used alongside regular LVQ updates and nei-
ther method requires the specification of a learning
rate, as in stochastic gradient descent. The remain-
der of the paper is organized as follows. In Section
2 the background theory and related algorithms are
outlined. The new algorithms are described in Sec-
tion 3. Experimental results are provided in Section
4 and concluding remarks are provided in Section 5.

2. Related Algorithms

Let X = {(xi, yi) ⊂ Rn × {1, . . . , C} | i =
1, . . . , N} be a training set of n-dimensional vec-
tors and corresponding class labels. Let Xc ={

(xi, yi) ∈ X
∣∣yi = c

}
and N c = |Xc|. Simi-

larly, let W = {(wi, ci) ⊂ Rn × {1, . . . , C} | i =
1, . . . ,M} be a set of prototype vectors with
corresponding class labels, and let Wc ={

(wi, ci) ∈ W
∣∣ci = c

}
and M c = |Wc|. Given

a vector x ∈ Rn, denote its components as
(x1, . . . , xn). Letting x be an n-dimensional data
vector and w be an n-dimensional prototype vector,
then a weighted squared Euclidean distance between
both vectors may be defined as

d2(x,w) =

n∑

i=1

λi(xi − wi)
2, (1)

where the λi are weighting factors for each dimen-
sion. Adding such weights to the Euclidean metric

allows for the possibility of re-scaling each of the in-
put dimensions depending on their respective influ-
ences on the classification output. Moreover, it en-
ables the metric to be made adaptive such that the
weights are adjusted dynamically during training de-
pending on the data.

Prototype vectors have associated receptive fields
based on the metric and classification of samples
is performed by determining which receptive fields
those samples lie in, or alternatively, which proto-
type vectors are closest to the samples. The recep-
tive field of prototype wi is defined as: Ri = {x ∈
X | ∀(wj , cj) ∈ W, d2(x,wi) ≤ d2(x,wj)}. Given
a sample (x, y) ∈ X , we denote by g(x) a function
that is negative if x is classified correctly, i.e. x ∈ Ri

with ci = y, and is positive if x is classified incor-
rectly, i.e. x ∈ Ri with ci 6= y. We also let f be
some monotonically increasing function.

The goal of GLVQ [14] is to minimize

E =

m∑

i=1

f(g(xi)) (2)

via stochastic gradient descent. The update rules for
GLVQ and many other LVQ algorithms can be de-
rived using the above notation. In the following, the
LVQ1 [9], RLVQ [1], GLVQ [14] and GRLVQ [6]
algorithms will be reviewed, before introducing the
proposed relevance determination methods.

2.1. LVQ1

Given a training sample (x, y) ∈ X , by letting
f(x) = x and g(x) = ηdj where dj = d2(x,wj)
with wj being the closest prototype to x and {λi =
1}mi=1 (i.e. equal weights for regular Euclidean dis-
tance), with η = 1 if x is classified correctly (i.e.
cj = y) and η = −1 if x is classified incorrectly (i.e.
cj 6= y), the following stochastic gradient descent
update rule may be derived for LVQ1 [9]:

wj
t+1 =

{
wj

t + α(x−wj
t ), if cj = y

wj
t − α(x−wj

t ), otherwise,
(3)

where α is the learning rate and the t subscripts de-
note prototype states at different training steps. How-
ever, it should be noted that the error function as de-
fined here is highly discontinuous, and thus can lead
to instabilities in the algorithm. GLVQ, discussed
next, was designed to resolve this issue.



2.2. GLVQ

Here, dj = d2(x,wj) is defined where wj is
the closest prototype to x with label cj = y and
dk = d2(x,wk) where wk is the closest prototype
to x with some other label. By letting

g(x) =
dj − dk
dj + dk

(4)

and
ft(g(x)) =

1

1 + exp−g(x)t
, (5)

which is a sigmoidal function that redefines the er-
ror function (Eq. 2) such that it is continuous over
borders between the receptive fields for wj and wk.
When minimized, the error function yields the fol-
lowing update rules for wj and wk [14]:

wj
t+1 := wj

t + αν
dk

(dj + dk)2
(x−wj

t ) (6)

wk
t+1 := wk

t + αν
dj

(dj + dk)2
(x−wk

t ) (7)

where

ν = f ′t(g(x)) = ft(g(x))(1− ft(g(x)). (8)

GLVQ, unlike LVQ1 or the rest of Kohonen’s origi-
nal LVQ formulations, has been shown to be conver-
gent [14, 6], although it is sensitive to the initializa-
tion of the prototype vectors. This is demonstrated in
the experimental results of Section 4.

2.3. RLVQ and GRLVQ

The LVQ prototype update equations can be ac-
companied by updates that also alter the λi in Eq.
(1) dynamically during training, hence allowing for
an adaptive Euclidean metric. In RLVQ [1], LVQ1
training is adjusted such that the following weight-
ing factor update rule is applied alongside Eq. (3):

λl :=

{
λl − β(xl − wj

l )
2 if cj = y

λl + β(xl − wj
l )

2 otherwise,
(9)

for each l-th dimension where β ∈ (0, 1) is a learn-
ing rate for the weighting factor adjustments. The
weights are normalized at each update such that∑n

i=1 λi = 1. The motivation for the above comes
from Hebbian learning, the idea being that when
wj classifies the sample x correctly, the weights
for the dimensions that contributed to the classifica-
tion the most are increased, whereas the weights of

those that contributed the least are decreased. When
wj incorrectly classifies x, the weights for dimen-
sions that contributed most are decreased, whereas
the weights for dimensions that contributed the least
are increased. GRLVQ [6] is an application of the
above idea to GLVQ, such that the updates for the
weights for the metric also follow a stochastic gradi-
ent descent on the error function defined by GLVQ.

One disadvantage of both RLVQ and GRLVQ is
that they require the specification of an additional
learning rate, β, which can be difficult to specify ap-
propriately with respect to its α counterpart in the
prototype updates. Another disadvantage is that they
fail to take into consideration the additional statis-
tical information provided by the remaining proto-
types other than the ones currently being updated at a
given training step when making relevance estimates.
These issues are addressed with the following two
proposed LVQ relevance determination algorithms.

3. Proposed Algorithms

The Fisher criterion, while ordinarily associated
with Fisher’s discriminant analysis [4], can also serve
as an effective means for relevance determination
when applied across individual data dimensions. Let-
ting xA = 1

N

∑
xi∈A x

i be the mean of a set of points
A with cardinality N , the Fisher criterion score for a
given individual dimension l is defined as

F (l) =
SB(l)

SW (l)
, (10)

where

SB(l) =

C∑

c=1

N c
(
xX

c

l − xXl
)2

(11)

is the between-class variance and

SW (l) =
C∑

c=1

∑

x∈Xc

(
xl − xX

c

l

)2
(12)

is the within-class variance over the l-th dimension.
With regard to relevance determination for LVQ,

F (l) could be calculated for each dimension over the
entire training set X in advance of LVQ training and
applied to the weighting factors in Eq. (1) by set-
ting λl = F (l) for all l to form a weighted metric.
However, for many applications it is more desirable
to have an online feature relevance training mecha-
nism that is not reliant on having access to the en-
tire training set at once. Two such online algorithms
where estimation of the Fisher criterion score is inte-
grated into the training scheme are presented next.
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Figure 1. A simple 2D, 2-class example of how the Fisher criterion score (see Eq. (10)) can fail as a feature relevance
metric over multi-modal distributions. (a) shows uni-modal class data distributions, linearly separable in the x-dimension,
but with large overlap in the y-dimension. The score reflects the relevance of each dimension to class discrimination. (b)
by comparison, shows the same number of data points, but with a multi-modal distribution (yet still linearly separable in
x). The score is significantly lower for the x-dimension in this case. (c) shows the improvement provided by calculating
the score between pairs of clusters with centers at points A1, B1, A2 and B2. See Section 3 for more details.

3.1. Algorithm 1

With the first algorithm, rather than calculating
F (l) over the data in X , at a given timestep t the
score is estimated over the values of the prototype
vectors in W . This is plausible since the distri-
bution of the prototype vectors should approximate
the distribution of the data over time. During train-
ing, certain prototypes will quantize more significant
modes of the distribution than others, thus to account
for this, weighted means and variances are calcu-
lated for each class based on the classification accu-
racy of each of the prototypes of that class, then the
Fisher criterion score is calculated over the weighted
means and variances for all classes. Firstly, the def-
inition of W is altered to W = {(wi, ci, pi) ⊂
Rn×{1, . . . , C}×R | i = 1, . . . ,M } where, given
random variable (x, y), pi = p(x ∈ Ri|y = ci) is the
conditional probability of x lying in receptive field
Ri of prototype wi given that wi correctly classifies
x. The pi form probability distributions over class
prototypes such that

∑
pi∈Wc pi = 1 for each class

c. A definition of the estimated Fisher criterion score
may now be formed as

F (l) ' F̂ (l) =
ŜB(l)

ŜW (l)
, (13)

where

SB(l) ' ŜB(l) =
C∑

c=1

N c

N

(
ŵW

c

l − ŵWl
)2

(14)

is the estimated between-class variance over the l-th
dimension,

SW (l) ' (15)

ŜW (l) =
C∑

c=1

N c

N

∑

(wi,ci,pi)∈Wc

pi
(
wl − ŵW

c

l

)2

(16)

is the estimated within-class variance over the l-th
dimension, and

ŵW
c

l =
∑

(wi,ci,pi)∈Wc

piwi
l (17)

is a weighted mean over the l-th dimension of proto-
types in a given setWc ⊆ W .

The λm relevance factors may then be updated at
each timestep by taking a running mean of the nor-
malized estimated Fisher criterion score:

λl,t+1 := λl,t +

F̂ (l)∑n
l=1 F̂ (l)

− λl,t
t+ 1

. (18)

While the Fisher criterion score is suitable for fea-
ture relevance determination in many cases, its main
drawback is that it does not cope well with multi-
modal feature distributions. An example of this is
shown in Figure 1. This problem remains in the esti-
mation proposed above, since Eq. (14) and Eq. (16)
are calculated over all class prototypes. The second
proposed algorithm was designed to account for this.

3.2. Algorithm 2

The second proposed algorithm is based on the
idea of calculating the Fisher criterion score between



single prototype vectors of opposing classes, where
the assumption is made that each class prototype vec-
tor may be quantizing different modes of the under-
lying class distribution. During training, Gaussian
kernels are used to maintain estimates of the accu-
racies of each of the prototypes over the parts the
data distribution accounted for by each of their re-
ceptive fields. At a given training step, the nearest
single prototypes of each class to the training sam-
ple are found, and their Gaussian kernels are used to
calculate an estimate of the Fisher criterion score for
that local portion of the distribution, which is subse-
quently averaged over the entire training period.

The definition ofW is this time altered to accom-
modate a Gaussian estimate of the accurate portion
of the receptive field for each prototype, such that

W = {
(
wi, ci,N (x;µi,Σi)

)
⊂ Rn × {1, . . . , C}×

(Rn × Rn×n) | i = 1, . . . ,M } , (19)

where N approximates R̃i =
{
x ∈ Ri|y = c

}

with mean µi and covariance matrix Σi =
diag([si1, . . . , s

i
n]) where the

{
sil
}n
l=1

are variances
along each l-th dimension. During LVQ training,
given a random sample (x, y) ∈ X at training step
t, if the closest prototype wj classifies x correctly,
i.e. cj = y, then µjl and sjl are updated in each l-th
dimension as follows [8]:

µjl,t := µjl,t−1 +
xl − µjl,t−1

t
(20)

ŝjl,t := ŝjl,t−1 + (xl − µjl,t−1)(xl − µ
j
l,t) (21)

where µjl,t is the running mean estimate and sjl,t =

ŝjl,t
t−1 is the running variance estimate for the l-th di-
mension at training step t. If cj 6= y, then the above
updates are not performed. Assuming a sufficient
number of updates have been performed on the rel-
evant prototypes up until step t, a Fisher criterion
score estimate may be calculated between

W ′ = {ωk =
(
wk, ck,N (x;µk,Σk)

)
∈ W

| ∀wi, ci = ck, d(x,wk) ≤ d(x,wi) } ,
(22)

the closest prototypes of different classes (including
wj), as follows:

F (l) ' F̃ (l) =
S̃B(l)

S̃W (l)
, (23)

where

SB(l) ' S̃B(l) =
1

C

C∑

c=1

(µcl − µl)2 (24)

is the between-class variance estimate in the l-th di-
mension with

µl =
1

C

∑

ωk∈W ′
µkl , (25)

and
SW (l) ' S̃W (l) =

∑

ωk∈W ′
skl (26)

is the within-class variance estimate in the l-th di-
mension. The relevance factors may then be updated
in a similar way to Eq. (18), this time using the new
estimates:

λl,t+1 := λl,t +

F̃ (l)∑n
l=1 F̃ (l)

− λl,t
t+ 1

. (27)

Since each prototype carries an accompanying Gaus-
sian kernel that estimates its accuracy, it is now pos-
sible to estimate the Fisher criterion score using only
single prototypes from each class, as opposed to
the previous algorithm where multiple prototypes in
each class have to be considered to achieve variance
estimates. Though the model is made more complex,
it is more capable of successfully handling the multi-
modal distribution issue described in Fig. 1 as shown
by the experimental results in the next section.

4. Experiments

The proposed algorithms were evaluated over sim-
ulated data, datasets from the UCI repository, and a
real-world dataset from a cognitive robotics object
affordance learning experiment. In the following, the
datasets are described in more detail and experimen-
tal results are provided in Section 4.1. Two simu-
lated datasets were proposed in [1, 6], the first of
which was replicated for the experiments here. The
data is composed of three classes, each separated
into two clusters with some small overlap to form
multi-modal class data distributions in the first two
dimensions. Eight further dimensions are generated
from the first two dimensions as follows: assuming
(x1, x2) is one data point, x3 = x1 + η1, . . . , x6 =
x1 + η4 is chosen where ηi comprises normally-
distributed noise with variances 0.05, 0.1, 0.2, and
0.5 respectively. The remaining x7, . . . , x10 com-
ponents contain pure noise uniformly distributed in



[−0.5, 0.5] and [−0.2, 0.2]. This dataset is multi-
modal for each class in the two relevant dimensions
and thus provides a good test for the potential differ-
ence between the two proposed algorithms.

Dataset # Features # Samples # Classes
Simulated 10 90 3
Iris 4 150 3
Ionosphere 34 351 2
Wine 13 178 3
Soybean 35 47 4
WBC 30 569 2
Affordance 11 160 2

Table 1. An attribute list for the datasets in Section 4.

Five different datasets from the UCI repository
[5] were tested: Fisher’s Iris dataset, the ionosphere
dataset, the wine dataset, the soybean dataset (small),
and the Wisconsin breast cancer (WBC) dataset. A
dataset from a cognitive robotics object affordance
learning experiment [13] was also tested. It con-
sists of eight household objects separated into two
classes, four rolling objects and four non-rolling ob-
jects, and labeled as such, accompanied by eleven
different shape features, two of which measure the
curvature of 3D points from stereo images of the ob-
jects and the remainder of which were derived from
2D silhouettes of the objects.

4.1. Results

The primary goal of the investigation was to eval-
uate whether or not the new algorithms when applied
to standard LVQ methods such as LVQ1 and GLVQ
offer performance improvements over those methods
in their original form, as well as over other relevance
determination techniques for LVQ, such as RLVQ
and GRLVQ. The results of these comparisons are
outlined in Table 2 and are discussed in more detail
in the following. In the results, the proposed Fisher
criterion score-based relevance determination algo-
rithms are referred to as FC1LVQ1 and FC2LVQ1
respectively when applied to LVQ1, and FC1GLVQ
and FC2GLVQ when applied to GLVQ.

A secondary consideration was to test the meth-
ods under the duress of various different conditions.
GLVQ, for example is known to perform poorly if the
prototype vectors are not initialized within the data
distribution [12], thus in our evaluations, both ran-
dom prototype initializations as well as initializations
where the prototypes are placed at the mean points
of class clusters were considered. Note that random
prototype initialization in this case refers to selecting

random values for each prototype dimension scaled
within the data range. K-means clustering was used
to determine class clusters in the latter case.

The performance of LVQ algorithms over short
training periods is not often considered in the liter-
ature, which tends to favour evaluations of the al-
gorithms over several hundred training epochs un-
til convergence is reached. Given that LVQ algo-
rithms have online training mechanisms, and that the
relevance determination techniques proposed above
were explicitly developed to also function online,
sample-by-sample without access to the rest of the
training set, such short-term training evaluations are
important if the methods are to be considered useful
in real-world online settings, e.g. cognitive robotics
[13], where the entire training set is often unavailable
at any given point during training.

Thus, the results in Table 2 are divided into four
main evaluations: both 1 epoch and 300 epochs of
training from random initialization, and both 1 epoch
and 300 epochs of training from class cluster mean
initialization. The 300 epoch sessions used the rel-
atively slow learning rates of α = 0.1 for the pro-
totype updates (cf. Eq. (3), Eq. (6) & Eq. (7))
and β = 0.01 for the dimensional relevance updates
where required (cf. Eq. (9)), whereas the 1 epoch
training sessions used the faster rates of α = 0.3 and
β = 0.1. Note that the FC1 and FC2 methods do not
require the additional β learning rate. In each of the
1 epoch evaluations, 20 trials of ten-fold cross val-
idation were performed with random data orderings
in each trial, and results were averaged over test data
performance, whereas in the 300 epoch evaluations,
5 trials were performed. 10 prototypes were used for
every dataset and the data dimensions were scaled
prior to training.

The results in Table 2 show that when trained over
a single epoch from random initialization, of the al-
gorithms tested FC2LVQ1 and FC2GLVQ achieved
higher mean classification scores than their counter-
parts in many cases. Over long-term training of 300
epochs from random initialization, the results for all
algorithms aside from GLVQ, tend to improve with
FC2LVQ1 and FC2GLVQ again tending to be com-
petitive with their counterparts. It is worth noting
here the impact relevance determination has on im-
proving the results of GLVQ when exposed to poor
prototype initialization. When the prototypes are ini-
tialized optimally at the class cluster mean points the
results tend to improve dramatically across all of the



Dataset LVQ1 RLVQ1 FC1LVQ1 FC2LVQ1 GLVQ GRLVQ FC1GLVQ FC2GLVQ
Random Initialization, 1 Epoch of Training, 20 Trials

Sim 53± 18% 64± 22% 54± 19% 69± 18% 37± 17% 63± 22% 51± 20% 70± 19%
Iris 90± 8% 91± 9% 93± 9% 95± 5% 63± 24% 89± 13% 83± 19% 88± 15%
Iono 81± 8% 75± 11% 85± 6% 84± 7% 66± 13% 80± 9% 82± 7% 84± 7%
Wine 93± 6% 79± 13% 92± 9% 94± 6% 52± 19% 92± 8% 85± 14% 94± 7%
Soy 89± 17% 83± 24% 89± 18% 85± 21% 34± 27% 84± 22% 83± 21% 85± 20%
WBC 92± 4% 86± 8% 93± 4% 93± 3% 71± 19% 93± 5% 90± 10% 94± 3%
Afford 97± 7% 93± 10% 98± 4% 99± 3% 78± 22% 96± 9% 84± 20% 98± 6%

Random Initialization, 300 Epochs of Training, 5 Trials
Sim 79± 14% 79± 13% 77± 16% 87± 12% 38± 17% 96± 7% 90± 12% 94± 9%
Iris 92± 7% 92± 8% 95± 5% 96± 5% 47± 24% 96± 5% 91± 16% 96± 4%
Iono 85± 7% 80± 10% 86± 8% 85± 7% 60± 16% 90± 5% 90± 6% 89± 6%
Wine 95± 5% 77± 11% 95± 5% 96± 5% 42± 18% 96± 5% 97± 4% 98± 3%
Soy 99± 6% 97± 10% 100± 4% 98± 7% 33± 26% 97± 8% 97± 7% 96± 9%
WBC 93± 3% 87± 7% 94± 3% 94± 3% 62± 20% 96± 3% 96± 3% 96± 2%
Afford 99± 2% 95± 7% 99± 2% 99± 3% 67± 24% 99± 2% 99± 2% 99± 2%

Class Cluster Mean Initialization, 1 Epoch of Training, 20 Trials
Sim 82± 12% 98± 5% 78± 17% 93± 8% 90± 9% 91± 9% 85± 13% 93± 8%
Iris 96± 5% 96± 5% 96± 5% 96± 5% 95± 5% 95± 5% 95± 5% 96± 5%
Iono 87± 6% 80± 10% 88± 6% 88± 6% 90± 5% 88± 6% 89± 5% 90± 5%
Wine 95± 5% 86± 11% 96± 5% 96± 5% 97± 4% 97± 5% 97± 5% 97± 5%
Soy 100± 2% 95± 10% 100± 3% 99± 5% 100± 2% 99± 4% 100± 2% 99± 5%
WBC 95± 3% 88± 7% 94± 3% 94± 3% 96± 3% 96± 3% 97± 3% 95± 3%
Afford 99± 2% 98± 4% 99± 2% 99± 2% 99± 2% 99± 2% 99± 2% 99± 2%

Class Cluster Mean Initialization, 300 Epochs of Training, 5 Trials
Sim 84± 11% 86± 16% 87± 12% 91± 10% 90± 9% 97± 6% 90± 10% 96± 8%
Iris 96± 5% 95± 6% 96± 4% 96± 5% 96± 6% 95± 5% 97± 4% 96± 4%
Iono 88± 5% 82± 9% 89± 5% 88± 5% 89± 5% 90± 5% 90± 5% 91± 5%
Wine 96± 5% 82± 12% 97± 4% 96± 5% 97± 4% 98± 3% 98± 3% 98± 3%
Soy 100± 0% 94± 11% 99± 6% 98± 7% 100± 0% 98± 8% 99± 5% 99± 6%
WBC 96± 2% 89± 5% 95± 3% 95± 3% 96± 3% 96± 3% 97± 2% 97± 2%
Afford 99± 2% 98± 3% 99± 2% 99± 2% 99± 3% 99± 2% 99± 2% 99± 2%

Table 2. 10-Fold cross validation, 10 prototypes. Highest scores for LVQ1 & GLVQ based algorithms are shown in bold.

classifiers in short-term training, with both FC1 and
FC2 relevance determination doing well over both
short-term and long-term training periods, with FC1
out-performing FC2 in some cases and vice versa.
Over all the evaluations, FC1GLVQ and FC2GLVQ
trained over 300 epochs with class cluster mean ini-
tialization tended to score well when compared with
the other methods. It should also be noted that, when
the class distribution in the data is multi-modal, as is
the case with the simulated dataset, FC2-based meth-
ods tend to be a better choice than FC1-based meth-
ods, as predicted.

A third consideration was to compare the new
methods to a state-of-the-art batch method such as
the support vector machine (SVM). Batch methods,
as opposed to online methods that are trained sample-
by-sample, have access to the entire training set dur-
ing training, and therefore usually provide superior

results. Table 3 shows the results of a compar-
ison between FC1GLVQ, FC2GLVQ and a multi-
class SVM trained with a radial basis function (RBF)
kernel [2]. For this comparison, the results for
FC1GLVQ and FC2GLVQ from the 300 epoch, class
cluster mean-initialized evaluation described previ-
ously were used, while ten-fold cross validation over
five trials was also used for the SVM, where the test
data results were averaged over the five trials and
SVM parameters were optimized using cross valida-
tion over the training data prior to training. The re-
sults show both FC1GLVQ and FC2GLVQ perform-
ing well when compared with SVM over the vari-
ous datasets, particularly in the case of the simulated
multi-modal dataset.

It is difficult to evaluate the performance of the
algorithms with respect to the estimation of the λl
weighting factors themselves, but examples of the



Dataset FC1GLVQ FC2GLVQ SVM
Simulated 90±10% 96±8% 78±14%
Iris 97±4% 96±4% 96±6%
Ionosphere 90±5% 91±5% 94±4%
Wine 98±3% 98±3% 98±3%
Soybean 99±5% 99±6% 100±0%
WBC 97±2% 97±2% 98±2%
Affordance 99±2% 99±2% 99±3%

Table 3. FC1GLVQ & FC2GLVQ versus SVM. Highest
mean scores are shown in bold.

mean values for certain datasets are provided here.
For the simulated dataset, λFC1GLVQ = {0.10, 0.42,
0.07, 0.06, 0.10, 0.06, 0.04, 0.03, 0.07, 0.04} and
λFC2GLVQ = {0.40, 0.43, 0.06, 0.01, 0.01, 0, 0, 0, 0,
0}, thus demonstrating that FC2GLVQ does indeed
do a better job of handling the multi-modal distri-
bution. For the Iris dataset, λFC1GLVQ = {0.02, 0.02,
0.55, 0.40} and λFC2GLVQ = {0.03, 0.07, 0.37, 0.53}.
For the object affordance dataset, λFC1GLVQ = {0.04,
0.56, 0.05, 0.05, 0.03, 0.05, 0.04, 0.04, 0.01, 0.09,
0.05} and λFC2GLVQ = {0.05, 0.34, 0.07, 0.07, 0.07,
0.08, 0.01, 0.08, 0.06, 0.12, 0.06}, where one of the
3D curvature features is favoured in each case.

5. Conclusion

In conclusion, two new relevance determination
algorithms have been proposed for LVQ that ex-
ploit the positioning of prototypes in the input fea-
ture space to calculate Fisher criterion score esti-
mates in the input dimensions for an adaptive met-
ric. An advantage provided by these methods over
other metric-adaptive LVQ methods based on gra-
dient descent, is that they do not require a learning
rate or other parameters to be specified. Moreover,
they provide incremental update rules that operate
alongside regular LVQ update rules and can therefore
be applied to any algorithms based on the general
LVQ paradigm. Experimental evaluations were pro-
vided under various stress conditions and over vari-
ous datasets and the proposed methods were shown
to perform competitively against various other LVQ-
based methods, and against SVM. With regard to fu-
ture work, it would be interesting to apply the pro-
posed techniques to prototype-based methods other
than LVQ, such as supervised neural gases.
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Room Classification using a Hierarchical Representation of Space

Peter Uršič, Matej Kristan, Danijel Skočaj, Aleš Leonardis

Abstract— Mobile robots need an effective spatial model
for the successful operation in real-world environment. The
model should be compact and simultaneously possess large
expressive power. Moreover, it should scale well. In this pa-
per we propose a new hierarchical representation of space,
whose compositional structure is learned based on statistically
significant observations. We have focused on a two dimensional
space, since many robots perceive their surroundings in two
dimensions with the use of a laser range finder or a sonar.
We also propose a new low-level image descriptor, by which
we demonstrate the performance of our representation in the
context of room classification problem. Using only the lower
layers of the hierarchy, we obtain state-of-the-art classification
results on demanding datasets.

I. INTRODUCTION

The choice of spatial representation plays an important
role in the process of designing a cognitive mobile robot.
The model has an influence on the performance of many
spatially related tasks, like navigation, localization, and
room recognition. Moreover, designing an efficient spatial
model is a challenging problem. The model should be as
compact as possible, while simultaneously it needs to be
able to efficiently represent huge variety of the environment.
Numerous spatial models have already been proposed [1],
[2], [3], [4], but some challenges still remain. Our long-
term goal is to address the scalability issue. We expect that
if the robot has already been observing the environment
for some time, it should have learned about the general
characteristics of space from performed observations, and
then use the gathered knowledge when it arrives into new
environment. For example, if a robot has already seen a large
number of apartments, when it arrives into the next one, it
should already have some clue about what it will see. Current
state-of-the-art robotic systems usually scan the entire never
before seen room, before they achieve good performance [1].
We want to be able to provide some prior knowledge for a
service robot, which would enable it to reason about the new
environment, even without recording the whole place.

In recent years, hierarchical compositional models have
been shown to possess many appealing properties, which
have a potential to meet our goals. They are used in computer
vision community for object class detection. A central point
of these models is that their lowest layer is composed of ele-
mentary parts, which are combined to produce more complex
parts on the next layer. This procedure may be recursively
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repeated over several layers which gradually increases the
complexity of the vocabulary of parts. An appealing aspect
of the compositional hierarchies is that, on the one hand,
they offer sharing of object parts within object category,
while on the other hand, they can also reuse the parts at
multiple levels of granularity among different categories [5].
In fact, in the recent work Fidler et al. [5] have shown that a
hierarchical compositional model allows incremental training
and significant sharing of parts among many categories. The
sharing reduces the storage requirements and at the same
time makes inference efficient, since hypotheses of the shared
parts are verified simultaneously for multiple categories.

In this paper we adapt the hierarchical model from [5]
to develop a description suitable for representation of space.
The representation is two dimensional, and based on data
obtained with a laser range finder. To the best of our
knowledge, this is the first attempt of using a hierarchical
compositional model such as [5] for the representation of
space on the lowest semantic level.

To demonstrate the suitability of our representation, we
perform a series of experiments in the context of room
classification problem, based only on laser scans. Our exper-
iments on demanding datasets show that our method delivers
comparable results to the state-of-the-art.

A. Related Work

The Spatial Semantic Hierarchy [2] is a model of knowl-
edge of large-scale space consisting of multiple interacting
representations. Their hierarchy is composed of a sensory,
control, causal, topological and metrical level. Although
some prior knowledge is provided for a robot by the model,
this work is quite different from ours, since a semantically
higher-level approach is used, and there is no attempt to
address the scalability issue, like in our approach.

Various systems performing topological localization have
been developed for room classification. In [1] very accu-
rate room classification is achieved using multimodal in-
formation. Approaches using less information available for
classification have also been considered. Laser range data
combined with vision was used for classification in [6], and
many approaches that use vision only for the accomplishment
of this task have also been presented [7], [8], [9].

In [10] 3D Time-of-Flight infrared sensor was used for
acquiring 3D information, which allowed the distinction
between three types of rooms (office, meeting room and hall).
Only laser range data was used in [11]. Their robot was
equipped with a 360 degree field of view range sensor and
they were able to distinguish between four classes (rooms,



corridors, doorways and hallways). Their classification sys-
tem could determine the type of the place with a recognition
rate of more than 89 % in the environment that was similar to
one on which it was trained, while transferring the classifiers
to completely new environments resulted in 82 % success
rate. The classification was performed with AdaBoost and
it was based only on a single scan. Laser range data was
also used for classification in [12], where Voronoi random
fields (VRFs) were employed to label different places in the
environment, providing the distinction between four classes
(rooms, hallways, junctions and doorways). Their approach
uses a state-of-the-art SLAM technique to generate a metric
occupancy grid map of an environment, while the Voronoi
graph is then extracted of this map. For each point on the
Voronoi graph, VRFs then estimate the type of place it
belongs to, achieving the average accuracy of leave one out
place labelling above 91 %.

B. Our Approach

The contributions of our paper are two fold. First, we
present a new hierarchical representation of space, along with
an algorithm that is used to learn the hierarchy. The learning
algorithm is an extended version of Learning the Hierarchy
of Parts (lHoP) algorithm [13]. Our extended version is called
the sHoP (Spatial Hierarchy of Parts) algorithm. As our
second contribution, we propose a new low-level descriptor
that can be used for room classification, which was inspired
by the work of [14]. We use the descriptor not only to
perform the classification, but also to simultaneously verify
the reasonableness and effectiveness of our spatial model.

Our approach to room classification differs from others in
several ways. We use a representation of space that is learned
by the sHoP algorithm. In this paper, the elements of the
hierarchy are used to solve a room classification problem
with Support Vector Machine (SVM). Our classification
problem is more challenging than the problems presented
in [11], [12]. Our range sensor’s field of view is only 240
degrees. Although several scans are obtained in every room,
we do not yet use any information about how these scans
are correlated to one another. We have also taken in consid-
eration a more challenging set of room types (living room,
corridor, bathroom and bedroom). Our goal in this paper is
to show that a set of laser scans holds enough information to
distinguish between these difficult room types, even with the
use of relatively local geometrical shape descriptions, and
to show that our representation can extract this information.
We are able to distinguish between these four classes with
reasonably high accuracy in a multiclass formulation of the
problem.

The remainder of the paper is organized as follows:
Section 2 provides an overview of the lHoP algorithm and
our extended version. In Section 3, we make a leap to the
room classification problem. We describe the steps leading
from data acquisition to image descriptor formation and
classification. In Section 4 we report experimental results,
and present conclusions with future work in Section 5.

II. LEARNING A HIERARCHICAL
REPRESENTATION OF SPACE

We start this section by describing the original lHoP
algorithm designed for object categorization. In the following
subsections we extend the algorithm to make it suitable for
the representation of space.

A. The lHoP Algorithm

We are following the ideas of lHoP, which is an ef-
ficient, biologically-inspired, algorithm that was originally
designed for object categorization. The algorithm learns a
compositional hierarchy of so-called parts. On the lowest
level of the hierarchy parts are represented as Gabor filters,
corresponding to small fractions of oriented edges in the
image. Parts in the upper layers are composed from the
lower-layer parts, therefore, they are increasing in size and
complexity with each following layer. Parts in the top-most
layer are representations of the entire objects.

When learning object categories the procedure follows
two important steps. First, the algorithm is given a large
set of everyday images containing various objects. Based
on these images, a few lower layers of the hierarchy are
learned in an unsupervised fashion. All learned parts are
the ones which occur most frequently in the images, thus
giving the hierarchy compactness, while maintaining high
representativity. Lower layers of the hierarchy are category-
independent, therefore, they are common to all classes. This
sharing of lower-layer parts is the basic advantage of the
described representation. Second, for each specific class that
needs to be learned, the algorithm is given a set of images
containing only objects of that particular class. Upper layers
of the hierarchy are then learned based on these images,
again providing only statistically significant parts in terms
of frequencies of appearance. Upper layers of the hierarchy
are category-specific, therefore, characteristic of a specific
class, and are learned with minimal supervision.

B. The sHoP Algorithm

Our goal is to create an effective representation of two
dimensional space. We use a laser-range finder mounted on
a mobile robot to observe the environment, which provides
us with range data that is ground plan-like. Laser scans are
afterwards transformed into images, which are the input for
lHoP learning algorithm (Fig. 1).

The main drawback of lHoP is that it’s library parts
are not rotationally invariant, which is a crucial property
for obtaining a compact and expressive hierarchy. For this
reason, we extended lHoP to satisfy the rotational invariance
condition. To augment the set of all detectable orientations,
the extended algorithm, sHoP, uses 18 Gabor filters on the
lowest layer in contrast to lHoP, which uses 6 of them. We
are able to construct lower, category independent, layers of
the hierarchy with an unsupervised learning algorithm, which
learns the most frequent parts observed in the images by
examination of a large amount of spatial data.



Fig. 1. Laser scans are transformed into images. Figure shows three example images acquired at different positions in one of the living rooms. The
contents of these images are hard to recognize even for a human, which shows the difficulties of our approach. We might get some impression of the shape
of the room from the first image. However, most of the lines that seem to form the walls of the room are actually sofas, while the walls are hidden behind
them. To get some sense out of the other two images is even harder. In the last image the robot was directed to a passage between the couch and the wall.

C. The Library of Parts

As noted, the sHoP learning algorithm takes as input
a set of images, where each image is a representation of
a single range scan (Fig. 1). The output is a library of
parts, representing the learned hierarchy, which is composed
of several layers (Fig. 4). Learned rotationally invariant
parts represent spatial shape primitives with a compositional
structure.

As mentioned earlier, on the lowest layer there are 18
Gabor filters. These model 18 different detectable orienta-
tions, where two consecutive ones differ for 10 degrees.
To clarify, orientations α and 180◦ + α are equivalent in
our edge detection. These filters could be considered as a
single rotationally invariant first-layer part, but for better
computational efficiency all of them are stored in the library.

On the higher layers, each part is a composition of two
previous-layer parts. Each layer contains only those parts,
which were observed most frequently in the input images,
and each part is stored only in a single orientation - the one
in which it was observed most frequently.

D. Part Structure and Rotational Invariance

The library serves as a knowledge base, which is used
by the robot when it observes the environment. Parts are
stored in the library in a single, reference, orientation. Each
laser scan that is potentially observed by the robot during
exploration is represented with a list of parts at certain
locations relative to the robot. The creation of this list falls
under the topic of inference process, which will be further
explained in the next subsection. However, parts in this
list are instantiated in their specific orientation, which is a
necessity if we want to undertake any reconstruction of the
environment. To assign them a correct type, they are linked
to the reference parts in the library.

The structure of parts and their rotational invariance is
defined in the following way. Suppose we already have a
library containing at least k layers. Let us also suppose we
have an image and somewhere on that image we found two
Layer k parts, P1 and P2, positioned close to each other. Parts
P1 and P2 are both in some specific known orientation and

we also know to which part in the library they correspond
to. Let us denote those parts in the library with Lk1

and Lk2
,

where k1 and k2 are indices corresponding to the k-th layer
of the library. Therefore, P1 is some concrete instantiation
of part Lk1 , and the orientation of P1 can be the same or
different from the orientation of Lk1 . An analogous statement
holds for P2 and Lk2

.
Now, suppose we want to construct a Layer k+ 1 part P

from subparts P1 and P2 (see Fig. 2). The new part would
be defined by the expression

P = {k1, k2, p1pos, P1, P2}, (1)

where k1 ≤ k2 and p1pos is the position of P1 subpart relative
to the geometric mean of both subpart positions. If k1 > k2
the order of indices and subparts is reversed, and p1pos refers
to the position of P2.

Following this notation, the structure of subparts looks like

P1 = {(k − 1)11, (k − 1)12, p11pos, P11, P12}, (2)

P2 = {(k − 1)21, (k − 1)22, p21pos, P21, P22}, (3)

where P11, P12, P21 and P22 are some instantiations of Layer
k− 1 parts, which correspond to parts in the library, also on
Layer k−1, with indices (k−1)11, (k−1)12, (k−1)21 and
(k−1)22. If k−1 is the lowest layer, than Pij = (k−1)ij ∈
{1, 2, . . . 18} for i, j ∈ {1, 2}, where 18 corresponds to the
number of Gabor filters. Positions of P11 and P21 subparts
are here denoted with p11pos and p21pos.

We allow for some variance in part structure. This means
that subpart positions can vary slightly, while still represent-
ing the same part. The same holds for rotational invariance.
If we have two parts and we want to verify if they represent
the same part in different orientations, we try to rotate one
part into another. The result of rotation does not need to
match perfectly with other part’s orientation, rather there is
some predefined threshold that defines how much the parts
can differ. This simple process of rotation is used in learning
of the hierarchy, as well as in inference, which will both be
described in the next subsection. However, rotation of parts
is performed in the following way:



Fig. 2. Schematic view of the structure of an example part. A letter G
is used to denote the geometric mean of subpart P1 and P2 positions.
Geometric mean of P11 and P12 is denoted with G1, while G2 corresponds
to geometric mean of P21 and P22. Other quantities are defined in the text
above.

Let us assume we have another Layer k + 1 part Q. This
part has an analogous structure

Q = {k3, k4, p3pos, P3, P4}, (4)

where

P3 = {(k − 1)31, (k − 1)32, p31pos, P31, P32}, (5)

P4 = {(k − 1)41, (k − 1)42, p41pos, P41, P42}. (6)

To verify if parts P and Q are two different representations of
the same part the following sequence of simple computations
is performed:

• Index k1 has to match k3 and k2 has to match k4.
• We calculate the potential angle of rotation ϕ of a part
P from p1pos and p3pos.

• Rotation of p11pos for angle ϕ must result in p31pos,
and rotation of p21pos for angle ϕ must result in p41pos.

If the results of the above computations lie within the
boundaries defined by thresholds we conclude that the parts
are the same.

E. Learning Algorithm and Inference Process

In this subsection learning of the library of parts and
inference process are described in more detail. As noted
before, the input for the learning algorithm is a set of images
obtained from range data, and the output is a hierarchy of
rotationally invariant parts. While inference process is also
used as an intermediate step in the learning procedure, it’s
main purpose is to detect and extract part information from
input images, once we already have a learned library.

Learning starts with a library containing a single layer,
which represents 18 Gabor filters. In the first step edge
detection is used to find small fragments of oriented edges in
the input images. Positions and response intensities of edge
fragments, representing Layer 1 parts, are then used as an
input for learning the second layer of the hierarchy.

In all of the following steps the sequential interchange of
layer learning and inference process is performed. Precisely
told, the hierarchy is being learned layer by layer by repeat-
ing the next two steps:

Fig. 3. Positions of Layer 3 parts inferred from an example image acquired
in one of the living rooms (middle image in Fig. 1). Different colours
correspond to different part types.

• Layer learning: Positions, confidence values, and ori-
entation information of Layer k parts corresponding to
every input image is used to learn Layer k + 1 of the
hierarchy. The notion of confidence values mentioned
here will be addressed shortly in the context of infer-
ence.

• Inference process: Using the inferred image data from
the previous, k-th, layer, and Layer k+1 of the library,
positions, orientations and types of Layer k+1 parts in
the input images are inferred (Fig. 3).

When inferring the positions and orientations of parts in
the images each inferred part is assigned two confidence
values. These values carry the information about how well
a certain instantiation of a part in the image represents the
corresponding part from the library. The first value is based
on the response intensities of edge detection and the second
is a measure of how precisely an instantiation of a part can
be rotated into a corresponding part in the library.

Now let us take a closer look at learning of Layer k + 1
from Layer k. This is performed in the following steps:

1) Finding Neighbourhoods: All of the inferred images,
constructed from Layer k parts, are being inspected for
pairs of nearby parts, while the following actions are being
performed:

• For every part C that is observed in the images, and for
every orientation oC of part C that is observed assume,
{C, oC} is the central part of the pair.

• For every part N , and every orientation oN of part N
that is observed in the proximity of {C, oC}, assume
{N, oN} is the neighbour part in the pair.

• A neighbourhood Nb({C, oC}, {N, oN}) is maintained
for every such pair.

These neighbourhoods are used to store the information
about relative positions and position frequencies of parts.
That is, each neighbourhood tells us in which positions has
{N, oN} been observed relative to {C, oC} in the input
images, and also how many times these positions were
observed.

2) Finding Local Maxima: For every observed combi-
nation of part types and orientations, the most frequent
relative positions of parts are obtained by searching for
maximum values of relative position occurrences in the



Fig. 4. (a) Orientation-specific Layer 1 parts. (b) Layer 2 parts. (c) The most frequent 200 parts on Layer 3. The image is shrunken to save space. (d)
Only a few Layer 4 parts on a shrunken image. Other parts are not shown to save space.

neighbourhoods. Usually, one or two maxima are found for
each neighbourhood.

3) Forming a Sequence of Rotationally Invariant Parts:
Again, all of the inferred images containing Layer k parts are
inspected. The images are being searched for pairs of parts
in specific orientations, while considering only their relative
positions defined by neighbourhood maxima. The number
of occurrences of all of the observed pairs satisfying this
condition is being counted, while the results representing
the same pairs in different orientations are being summed
together. This procedure thus constructs a list of pairs with
their corresponding frequencies, which is at the end sorted
according to the frequency of occurrence in descending order.
In this way a list of rotationally invariant Layer k + 1 part
candidates is obtained.

4) Adding Parts to Library: Sequence of part candidates
constructed in the previous step contains the most frequent
parts at the beginning and the least frequent ones at the end.
So, depending on how large representation we want, a portion
of parts at the beginning of the list is declared as Layer k+1
of the library, while the rest is discarded.

III. THE ROOM CLASSIFICATION PROBLEM

In this section we describe the steps that were taken from
data acquisition to room classification. For the classification
we propose a low-level image descriptor, which we name
Histogram of Compositions (HoC).

A. Data Acquisition and Learning of the Hierarchy

Our recorded data consists of laser scans obtained with a
mobile robot. Each laser scan was converted to an image in
which nearby points were artificially connected. This step
was necessary because pure range data provides images
with a discrete set of points, on which edge detection is
not efficient. Some example images, obtained at different
locations in one of the living rooms, are shown in Fig. 1.

A separate dataset, containing data from several different
room types, was used to learn the library of parts, which
was constructed up to the fourth layer (Fig. 4). Concurrently,

positions and orientations of parts were inferred from the
input images for every layer of the hierarchy. Different layers
of inferred data, with different number of part types, served
then as an input for image descriptor formation step.

B. Image Descriptor Formation and Classification

To form our low-level descriptor, a single layer of the
hierarchy was chosen. Inferred images corresponding to
that layer were then sorted into groups, where each group
represented a set of images acquired in the same room. From
this point on, processing was the same for every group, and
was performed in the following way:

1) Positions of parts in the inferred images were rotated
into a reference position, with the use of principal
component analysis (PCA).

2) Each image was divided into 24 regions as shown in
Fig. 5. The robot was positioned in the center.

Fig. 5. The 24 regions of the image. The dashed arrows correspond to the
principal axes.

3) For every image a sequence of 24 histograms was
created, where each histogram corresponded to one
region of the image. The number of bins in each
histogram was equal to the number of parts in the
considered layer of the hierarchy. Each bin corre-
sponded to one part type from that layer, while the
value corresponding to the height of the bin equalled
to the sum of confidences of parts in that region. All of
the histograms corresponding to one image were then
concatenated into a single feature vector, forming our
HoC descriptor.



4) For every room a single feature vector was created as
a composition of an average and standard deviation of
all the feature vectors in the group.

Input data for the classification algorithm were the fea-
ture vectors (one per room), obtained with the procedure
described above. After normalization to zero mean and unit
variance, LIBSVM library [15] was used for the classification
with SVM.

IV. EXPERIMENTAL RESULTS

We have conducted two sets of experiments. The aim of
the first experiment was to show that the lower layers of
our hierarchy actually do hold useful information, and that
HoC descriptor is an effective tool for room classification.
We demonstrate this using our demanding dataset. The aim
of the second experiment was to show that our approach is
comparable to other, state-of-the-art, approaches. We demon-
strate this using two publicly available datasets.

In addition to the dataset that will be described in the
following subsection, we obtained another, separate, dataset
that consists of a large number of rooms, which can be
divided into 20 different categories. We used this dataset to
learn our category independent layers of the hierarchy, which
were then used in all of the following experiments.

A. Experiments With Our Dataset

We have gathered our data with a Pioneer P3-DX robot,
which was manually driven through different rooms, while
observing the space with a Hokuyo URG laser range-finder
(see Fig. 6). The sensor was positioned approximately 30
cm above the floor. In this way 24 different homes have
been scanned, consisting of houses and apartments from 4
different cities, which contribute to high variability of our
data. Our dataset consists of 25 living rooms, 6 corridors, 35
bathrooms and 28 bedrooms. Typical corridors, which are
long, straight, and narrow spaces, are not very common in
homes, and this is the reason why we were only able to
observe such a small number of them.

Fig. 6. Our robot. We used only the base and the laser range finder, which
is indicated with an arrow, to gather our data.

Different number of laser scans were obtained in each
room. Their number is dependent on room size and varies
all the way from 100 to 600 scans. We have also posed some
restrictions while gathering the data. There were no people in
any of the rooms and all of the doors were closed, meaning
that no other room was visible from any room, but only the
one, which the robot was currently observing.

We performed a set of classification experiments, with dif-
ferent layers of the hierarchy and also without the hierarchy,
to evaluate the suitability of our representation of space.
At the beginning we tested with many different divisions
of the image into regions for the formation of HoC image
descriptor. We chose an optimal one, which enabled us to
obtain very good classification results even without the use
of our representation of space. The chosen regions are shown
in Fig. 5 in the previous section. The radii that correspond to
circles have the values of 0.8, 1.5, and 2.5 meters if scaled
to the real world size, while the angles of the straight lines
have the values of 20, 90, 160, 200, 270, and 340 degrees.

In the classification procedure we performed 1000 trials of
each experiment, in which we tried to distinguish between 4
previously mentioned types of rooms. In each trial, training
(80 %) and testing (20 %) data was randomly chosen from
the set of all available features. Linear kernel was used for
classification in every experiment. We used 4-fold crossval-
idation on the training set to find the best parameter C for
the classification model. The learned model’s performance
was then tested on the testing data.

The results of the classification are shown as confusion
matrices in Table I. With Layer 0 we denoted the experiment
without sHoP processing, but using the raw scans instead. In
this case simply the number of scan points were counted in
each region. We could say that this is analogous to having
only a single part in the library. As mentioned earlier, on
Layer 1 there is a fixed number of orientation specific parts.
Our learning algorithm learned 12 parts on Layer 2. On Layer
3 a total of 13046 different parts were observed, from which
only a few most frequent were used for the representation.
We tested the libraries with 80, 200 and 500 parts on that
layer. The confusion matrix is shown only for the case with
200 parts, because this one yielded the best results. We
have also tested with Layer 4 of the library. Parts on that
layer are relatively large and therefore cover the image quite
poorly. A lot of information is lost in this way, which causes
reduced classification performance. We therefore focus only
on Layers 1, 2 and 3 of the hierarchy.

The accuracies of the classification, computed as a per-
centage of correctly classified examples, averaged over all
trials of the experiment, are shown with their corresponding
standard deviations in Fig. 7 (a). We have also performed a
series of t-tests, with which we compared each two of the
obtained results. We tested the null hypothesis, at α = 0.01
significance level, that the two distributions of calculated
accuracies have equal means. The results are shown as the
above diagonal elements in Fig. 7 (c). The ’+’ signs denote
a failure to reject the null hypothesis, which implies that
the two observed accuracies are statistically equivalent. On



TABLE I
CONFUSION MATRICES OBTAINED WITH SVM CLASSIFICATION USING 4

CLASSES AND DIFFERENT LAYERS OF THE HIERARCHY. THERE WERE

200 PARTS USED ON LAYER 3. LABELS AT THE BORDERS OF THE TABLE

DENOTE: LR - LIVING ROOM, CR - CORRIDOR, BA - BATHROOM, BE -
BEDROOM. THE ENTRIES ARE IN PERCENTS. ROWS CORRESPOND TO

GROUND-TRUTH, AND COLUMNS CORRESPOND TO PREDICTED CLASSES.

Lr Cr Ba Be

L
ay

er
0 Lr 76.96 3.50 0.02 19.52

Cr 6.80 82.70 0.20 10.30
Ba 0.14 3.21 87.50 9.14
Be 10.92 0.04 15.18 73.86

L
ay

er
1 Lr 79.68 0.22 0.04 20.06

Cr 0 100.00 0 0
Ba 0.19 1.30 83.50 15.01
Be 15.44 0 10.32 74.24

L
ay

er
2 Lr 75.16 0 3.46 21.38

Cr 0 82.50 0 17.50
Ba 0.04 0.51 92.19 7.26
Be 15.68 0.06 12.14 72.12

L
ay

er
3 Lr 82.74 0 0.08 17.18

Cr 0 91.60 0 8.40
Ba 0.20 0.29 92.96 6.56
Be 13.32 0.22 16.24 70.22

the contrary, the ’-’ signs denote the rejection of the null
hypothesis at α = 0.01 significance level, which means
that there is a 99% probability that the two accuracies truly
represent a different result. The results suggest that Layers 0,
1 and 2 show equal classification performance, which means
that parts on the lowest layers of the hierarchy are to small to
possess any significant information about the local structure
of space. On the other hand, Layer 3 provides statistically
significantly better results. In particular, the accuracy of
80.52% on Layer 0 is increased to 83.73%. The results of
t-tests also suggest that the number of parts on Layer 3 is of
no significant importance.

To evaluate the results from a different perspective we
analysed another measure of classification performance. We
call this measure the mean success rate, which is computed
as a mean of the diagonal entries of the confusion matrix,
averaged over all trials of the experiment. Mean values with
standard deviations are displayed in Fig. 7 (b), while the
corresponding t-test results are shown as the below diagonal
entries in Fig. 7 (c). This view of the results confirms that
Layer 0 and 2 perform equally well, but Layer 1 stands
out, showing significantly better performance. The reason
for this is the fact that on Layer 1 we actually perform the
classification based on the orientation of an edge. A specific
orientation, as expected, very well characterizes corridors,
but not also the other rooms, which can be confirmed by
examining the confusion matrices. On Layer 2 this orienta-
tion information is not incorporated any more, and therefore
the performance drops back. This measure also clarifies
that Layer 2 and Layer 3 with low number of parts show
similar performance. A greater number of parts on Layer 3
significantly improves the classification performance, from
80.26% on Layer 0 to 84.38%. The results also suggest
that continuously increasing the number of parts does not

increase the mean success rate. Therefore, using only the
most frequent parts, and also not too many of them, seems
a reasonable thing to do.

Overall, bathrooms and corridors are the ones that are clas-
sified the most accurately, followed by living rooms and then
bedrooms. We believe that what makes these classifications
possible at all are general room shapes and properties. At
least in homes from which our data was obtained, the char-
acteristics of each class could be the following: Bathrooms
are small rooms with square or slightly rectangular shape,
bedrooms have a distinctive property of small passages
between the bed and nearby walls, living rooms are usually
larger and stuffed with all sorts of furniture and objects, while
corridors represent long and narrow spaces.

B. Comparison With State-of-the-art

We tested our approach to room classification on two
datasets from [11]. The first one was an office environment
in Building 79 at the University of Freiburg, while the second
one is Building 101 at the same University. Using the former
one, [11] distinguished between three classes, which are
corridor, room, and doorway, and managed to achieve the
accuracy of 93.94 %. With the latter one, they distinguished
between four classes, where hallway was added to previous
ones. Their obtained accuracy in this case was 89.52 %.

In our experiments, first, all laser scans were transformed
into images, and than HoC descriptors were created corre-
sponding to those images. The descriptors were functionally
the same as in the experiments with our database. Our laser
range finder has a maximum range of less than 6 meters,
whereas the laser used in [11] has a range of 80 meters.
An extra circle was used in the formation of the descriptor
in these experiments, corresponding to a circle around the
robot with radius of 6 meters, which resulted in 6 additional
regions of the descriptor. We used Layer 3 of the hierarchy
with 200 parts.

The experiments were analogous to the ones in [11]. Part
of the environment specified for training was used to train
the SVM, while the part specified for testing was used for
testing. We did not perform any averaging of descriptors as
we did in the experiments of previous subsection. Like [11],
we performed the classification based on a single scan and
using the same class definitions.

In the Building 79 experiment we obtained an accuracy
of 98.32 %, while in the Building 101 experiment our result
was 90.39 %. The results are summarized in Table II. We
conclude that our approach delivers comparable results to the
state-of-the-art [11].

TABLE II
ACCURACY OF THE CLASSIFICATION IN THE EXPERIMENTS WITH TWO

PUBLICLY AVAILABLE DATASETS.

[11] Our approach
Building 79 93.94 98.32

Building 101 89.52 90.39



Fig. 7. (a) Classification accuracy, computed as a percentage of correctly classified examples, averaged over all trials of the experiment. (b) Mean success
rate, computed as a mean of the diagonal entries of the confusion matrix, averaged over all trials of the experiment. In both cases, average values are
shown with × symbol, while the vertical lines correspond to one standard deviation. (c) Results of t-tests of the null hypothesis that the two results are
statistically equivalent, at α = 0.01 significance level. Above diagonal elements correspond to accuracy, while the below diagonal elements correspond
to mean success rate. The ’+’ sign denotes failure to reject the null hypothesis, and ’-’ denotes successful rejection. Numbers in the brackets at Layer 3
annotations denote the number of parts used on that layer.

V. CONCLUSION AND FUTURE WORK
We have presented a new hierarchical representation of

space, which is learned using the sHoP algorithm. The
hierarchy is constructed from parts that are rotationally
invariant and statistically significant. To our knowledge this
is the first application of a hierarchical compositional model
to a spatial representation on the lowest level. We have also
presented a low-level image descriptor, which was used for
the validation of our spatial model. The performance of the
lower layers of the hierarchy was evaluated through a room
classification problem with four classes. We have obtained
good classification results on a demanding dataset, which
indicate that the proposed hierarchy of parts is suitable for
representing space. We have also shown that the performance
of our approach to room classification is comparable to the
performance of the state-of-the-art approaches.

There are several research venues we intend to pursue
in our future work. From current research we have deter-
mined that three is the maximum number of layers that
are reasonable to be learned from separate images. In the
future we plan to combine the images, obtained in a certain
room, to a single map of that room. These maps will be
built using a feature based SLAM algorithm, where Layer
3 parts will be used as input features. Therefore, the output
maps will be represented as lists of Layer 3 parts at certain
locations. These will provide us with a more complete view
of the environment, which in contrast cannot be obtained
using a single laser scan. The maps will serve as a basis
for learning higher layers of the hierarchy. We plan to learn
one or even more category-independent layers, and than
switch to category-specific layers, which will be learned with
minimal supervision according to room type. We expect that
room recognition performance will be increased with the
abstraction introduced by higher layers. Moreover, we also
expect that we will be able to perform room classification
without the use of HoC and SVM, but only using our
category specific layers of the hierarchy.

The learned hierarchy could then be used as a prior knowl-
edge for a service robot, providing the basis for recognition

of new, never before seen, environments, and simultaneously
ensure good scalability of the model. Sensors providing
richer information could also be used afterwards to refine
the belief about robot’s surroundings.
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Abstract. A critical ability for every cognitive system operating in a
complex environment is the ability to combine several representations
of the same physical reality into a single shared representation. Such
combined, a-modal representations are then ready to be used by higher
level cognitive processes, like motivation and planning. In this work we
describe a cognitive layer where multi-modal and multi-agent information
is associated and merged into a-modal representations. In addition we
describe the application of cross-modal binding principles to a speci�c
problem of reference resolution.

1 Introduction

Two critical properties of any cognitive system operating in a complex environ-
ment are (i) the ability to sense, perceive and process complex information about
physical reality and (ii) the ability to use this information to plan, manage and
execute complex actions in such an environment. The complexity of the physi-
cal reality implies the ability to collect information from di�erent sources, i. e.
di�erent sensor types and possibly also di�erent agents (other than the cogni-
tive system itself). This means that at least on lower levels the information is
inherently multi-modal and multi-agent. On the other hand the higher cognition
(e. g. motivation, planning,..) predominantly assumes a-modal information, only.
Hence, an intermediate cognitive layer capable to relate and merge multi-modal
and multi-agent information is needed to close the semantic gap that divides the
lower and the higher cognition.

In this work we describe the intermediate cognitive layer of the George pro-
totype cognitive system � the belief layer. The George scenario assumes a robot
capable of making situated dialogue with a human tutor about the objects on
a table. The robot is thus able to observe, track and recognize the objects on
the table and through the dialogue with the tutor improve its knowledge about
the object's properties (cross-modal learning). Such a scenario obviously relies
on the ability of the robot to �rst associate and later merge multi-agent infor-
mation. The resulting representations can be then used by the higher cognitive
processes like motivation and planning.
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Many of the past attempts at associating multi-modal or multi-agent infor-
mation within cognitive systems were restricted to relating linguistic information
to lower level perceptual information. Roy et al. tried to ground the linguistic
descriptions of objects and actions in visual and sound perceptions and to gener-
ate descriptions of previously unseen scenes based on the previously accumulated
knowledge [9, 10]. This is essentially a symbol grounding problem �rst de�ned by
Harnad [4]. Chella et al. proposed a three-layered cognitive architecture around
the visual system with the middle, conceptual layer bridging the gap between
linguistic and sub-symbolic (visual) layers [1]. Related problems were also often
addressed by Steels [11].

Jacobsson et al. approached the binding problem in a more general way [6]
[5] developing a cross-modal binding system that could form associations be-
tween multiple modalities and could be part of a wider cognitive architecture.
The cross-modal knowledge was represented as a set of binary functions com-
paring binding attributes in pair-wise fashion. A cognitive architecture using
this system for linguistic reference resolution was presented in [13]. This system
was capable of learning visual concepts in interaction with a human tutor. A
probabilistic binding system was developed within the same group that encoded
cross-modal knowledge into a Bayesian graphical model [14]. In [7] a framework
for constructing high-level cognitive representations of the environment, called
beliefs, was presented. Markov logic was used as the main framework for vari-
ous types of inference over beliefs, including perceptual grouping, which comes
very close to the de�nition of binding in [12]. The systems described in [6] � [7]
assumed static cross-modal knowledge, while the binding model in [12] also in-
cluded cross-modal learning as a means to gradually improve the binding ability
of the system.

The process of determining the denotation of a referring expression is called
reference resolution (Section 2). We base our implementation of this process on
the general method of cross-modal binding in Markov logic networks described
in [12]. The process of merging multi-agent (or multi-modal) information into a
single a-modal representation is called information fusion. Both processes oper-
ate on the belief layer, described in Section 3. As we will see in Section 3.2, the
di�erence between robot's own perceptions and information attributed to an-
other agent � both encoded in beliefs � can be directly exploited for implicit
learning.

2 Binding and Reference resolution

One of the most important abilities of any cognitive system operating in a real
world environment is the ability to relate and merge information from di�er-
ent modalities. The process of combining two or more modal representations
(grounded in di�erent sensory inputs) of the same physical entity into a single
multi-modal representation is called binding. In [12] we presented a model of
cross-modal binding and learning system formulated in Markov logic networks
(MLN). MLN [8, 2, 3] combine �rst-order logic and probabilistic graphical models
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in a single representation. An MLN knowledge base consists of a set of �rst-order
logic formulae (rules) with a weight attached:

weight �rst-order_logic_formula.

The weight is a real number, which determines how strong a constraint each rule
is: the higher the weight � the less likely that rule is violated. MLN is used to
encode the cross-modal knowledge, which is the base for the binding inference.

In general the MLN binding is applied to the belief cognitive layer, where the
various beliefs represent perceived and assumed facts that are used to instantiate
the rules from the cross-modal knowledge base to the Markov network graphical
model. If MLN knowledge represents the general rules encoding relations between
concepts (e.g. object properties as color, shape,...), the graphical model encodes
the relations between concrete instances (objects) that are currently perceived by
the system. A successful inference results in a shared multi-modal representation
of a physical entity, also called binding union. Successful binding unions can be
used as learning samples to improve cross-modal knowledge, i. e. cross-modal
learning.

In George scenario the binding principles are used for reference resolution.
Reference resolution is a process akin to binding that tries to associate multi-
agent information. In our case the robot uses reference resolution to relate infor-
mation attributed to a human tutor to its own perceptions, hence it is critical
for its ability to make situated dialogue with the human.

MLN are implemented as special components that process information stored
in beliefs. A MLN engine component maintains a Markov network graphical
model, which makes continuous online inference (MCMC sampling) and can
continuously adapt to the changes in the beliefs. MLN engines can also combine
the information encoded in the current graphical model with the external infor-
mation about the correct inference outcome to perform on-line weight learning.
MLN client components �lter the information stored in beliefs or other data
structures and feed it to MLN engines. They can also read and process inference
results and trigger weight learning in MLN engines.

The implementation of reference resolution features a single MLN engine
and two MLN clients. One MLN client (belief �lter) continuously �lters the in-
formation in beliefs and forwards it to the MLN engine as evidence about the
perceived entities. The other MLN client (restrictor) acts on request; triggered
by the dialogue subsystem (when it recognizes a referring expression in the tu-
tor's utterance) it �rst feeds the MLN engine with the referring (restrictive)
information, then reads and forwards the inference result back to the dialogue
subsystem and �nally withdraws the referring information.

The inference result, which is a probability distribution over perceived enti-
ties represented as beliefs, is used by the dialogue subsystem to determine the
interpretation of the tutor's utterance. This eventually results in additional be-
liefs related to the beliefs grounded in robot perceptions (see Section 3). As a
result of successful reference resolution, the restrictor can also trigger weight
learning in MLN engine. A successful reference resolution usually means that
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the resulting probability distribution favors with a suitable degree of reliability
the reference resolution to one of the existing beliefs. In this case the restrictor
�rst feeds the 'winning' resolution to the MLN engine as evidence and then trig-
gers the learning. Afterwards, it withdraws both pieces of evidence, the referring
information and the 'winning' resolution, from the MLN engine.

2.1 An example of reference resolution

The following is an example of reference resolution performed in an MLN engine
component. For more detail about MLN, MLN Binding and its integration in a
cognitive system please refer to [12].

We assume a small MLN reference resolution knowledge database that en-
codes associations between two visual color models (denoted as 'Color1' and
'Color2') and two linguistic color descriptions ('Red' and 'Blue'):

2.5 percColor(b, Color1) ∧ restrict(Red)⇒ resolveTo(b)

−1.9 percColor(b, Color1) ∧ restrict(Blue)⇒ resolveTo(b)

−1.3 percColor(b, Color2) ∧ restrict(Red)⇒ resolveTo(b)

2.0 percColor(b, Color2) ∧ restrict(Blue)⇒ resolveTo(b)

The predicate percColor(b,Color1) denotes that the object represented by the
belief b was perceived to be of modal color representation Color1 by the visual
subsystem, the predicate restrict(Red) denotes the Red as restriction (referring
information, see Section 3.1) given by the tutor, while the predicate resolveTo(b)
denotes the reference resolution to the belief b. Variables (b) begin with a low-
ercase character, while constants (Color1, Red, etc.) begin with an uppercase
character. We can see that the rules in the knowledge database instantiate con-
cept (in our case the colors), but encode beliefs about objects as variables. The
predicate resolveTo(b) is also the object of the MLN engine query. The inference
can, for example, result in the following probability distribution:

0.2 resolveTo(B1)

0.1 resolveTo(B2)

0.7 resolveTo(B3)

In this case the real numbers denote the probabilities. In addition to the knowl-
edge database the reference resolution system includes the following set of hard
rules that regulate the inference process:

belief(b) ∧ belief(b′) ∧ resolveTo(b) ∧ resolveTo(b)⇒ b = b′. (1)

resolveTo(b)⇒ belief(b). (2)

resolveTo(b)⇒ ∃f : restrict(f). (3)
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The hard rules are rules with an in�nite weight that can never be broken. The
predicate belief(b) denotes the existence of belief b. The rule (1) restricts the
reference resolution to exactly one belief, the rule (2) restricts the reference
resolution to an existing belief and �nally the rule (3) makes reference resolution
possible when referring information exists, only.

Let's suppose the system perceives two objects on the desktop, one red (per-
ceived as Color1) and one blue (perceived as Color2). The belief �lter feeds the
MLN engine with the following evidence:

belief(B1) ∧ belief(B2) ∧ percColor(B1, Color1) ∧ percColor(B2, Color2)

Based on this information the MLN engine builds the Markov network graphical
model. First it instantiates the rules with both beliefs:

2.5 percColor(B1, Color1) ∧ restrict(Red)⇒ resolveTo(B1)

−1.9 percColor(B1, Color1) ∧ restrict(Blue)⇒ resolveTo(B1)

−1.3 percColorB1, Color2) ∧ restrict(Red)⇒ resolveTo(B1)

2.0 percColor(B1, Color2) ∧ restrict(Blue)⇒ resolveTo(B1)

2.5 percColor(B2, Color1) ∧ restrict(Red)⇒ resolveTo(B2)

−1.9 percColor(B2, Color1) ∧ restrict(Blue)⇒ resolveTo(B2)

−1.3 percColor(B2, Color2) ∧ restrict(Red)⇒ resolveTo(B2)

2.0 percColor(B2, Color2) ∧ restrict(Blue)⇒ resolveTo(B2)

∞ ¬resolveTo(B1) ∨ ¬resolveTo(B2)

∞ ¬resolveTo(B1) ∧ ¬resolveTo(B2)

Then it applies the evidence to the instantiated rules:

2.5 restrict(Red)⇒ resolveTo(B1)

−1.9 restrict(Blue)⇒ resolveTo(B1)

−1.3 percColorB1, Color2) ∧ restrict(Red)⇒ resolveTo(B1)

2.0 percColor(B1, Color2) ∧ restrict(Blue)⇒ resolveTo(B1)

2.5 percColor(B2, Color1) ∧ restrict(Red)⇒ resolveTo(B2)

−1.9 percColor(B2, Color1) ∧ restrict(Blue)⇒ resolveTo(B2)

−1.3 restrict(Red)⇒ resolveTo(B2)

2.0 restrict(Blue)⇒ resolveTo(B2)

∞ ¬resolveTo(B1) ∨ ¬resolveTo(B2)

∞ ¬resolveTo(B1) ∧ ¬resolveTo(B2)

(4)

The instantiated rules above represents a Markov graphical model, where each
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fully instantiated predicate represents a sampling variable (atom). MLN engine
performs a continuous inference that in the present case (because of the last
instantiated rule, derived from the hard rule 3) does not yield any positive res-
olution.

Let's suppose that the tutor refers to a red object in his utterance. By the
request of the dialogue subsystem, the restrictor component feeds the MLN
engine with the predicate restrict(Red). This new piece of information modi�es
the graphical model as follows:

2.5 resolveTo(B1)

−1.9 restrict(Blue)⇒ resolveTo(B1)

−1.3 percColorB1, Color2)⇒ resolveTo(B1)

2.0 percColor(B1, Color2) ∧ restrict(Blue)⇒ resolveTo(B1)

2.5 percColor(B2, Color1)⇒ resolveTo(B2)

−1.9 percColor(B2, Color1) ∧ restrict(Blue)⇒ resolveTo(B2)

−1.3 resolveTo(B2)

2.0 restrict(Blue)⇒ resolveTo(B2)

∞ ¬resolveTo(B1) ∨ ¬resolveTo(B2)

As we can see the referent information also removes the hard rule preventing
any positive reference resolution. The inference result is now clear, the result-
ing probability distribution reliably indicates the belief B1 as the referent. The
restrictor forwards this information to the dialogue subsystem and removes the
referent information, which returns the graphical model to the state (4).

Saliency can be a very useful addition to the situated human-robot dialogue.
An object on the desktop can become salient as a result of nonverbal communi-
cation, e. g. the robot or human pointing with his arm or directing his gaze to
an object, or simply by being the only object on the desktop. The information
about the saliency has to be part of the belief representing the object. The be-
lief �lter can feed this information to the MLN engine simply as the predicate
salient(B1). The human can then refer to that object with the word 'this', which
the restrictor can represent with the predicate restrict(This). The easiest way
to implement this mechanism is to add another rule to the regulative set of hard
rules:

salient(b) ∧ restrict(This)⇒ resolveTo(b).

When the human refers to a salient object with the word 'this', the above (instan-
tiated) hard rule simply overrules all the instantiated soft rules in the graphical
model, resolving the reference to the salient object.
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3 The belief layer

Beliefs form a cognitive layer where multi-modal and multi-agent information is
associated and merged to a-modal representations. In general a belief can be re-
garded a high-level representation of an element of the physical reality, grounded
in one or more sensory inputs, attributed to a speci�c agent or a combination of
both. Our belief scheme distinguishes �ve distinct belief categories:

� Private beliefs re�ect the robot perceptions of the environment based on its
sensory input. Private beliefs are expressed in modal symbols and can form
various associations with private beliefs stemming from other modalities or
beliefs with other epistemic statuses (e. g. reference resolution).

� Assumed beliefs are used to establish cross-agent or cross-modal common
ground. They are created from private beliefs by translating the modal sym-
bols to the a-modal ones. Depending on complexity of the modal learners
and their ability for autonomous unsupervised learning, this process can
be as simple as one-to-one symbol mapping or much more complex (e. g.
translating between two sets of symbols with overlapping meaning that con-
sequently also modi�es the original probability distribution). In cross-agent
case the robot uses assumed beliefs to establish a common ground with an-
other agent to facilitate communication. Thus the beliefs re�ect the robot
assumptions about the meaning of its perceived information for a particu-
lar agent (e. g. human). In cross-modal case the assumed beliefs establish
a common ground between modalities. In both cases this process facilitates
cross-belief information fusion in later stages.

� Attributed beliefs contain information that robot attributes to another agent
(e. g. human). This kind of beliefs are the direct consequence of some kind of
communication with another agent. The robot is in principle able to analyze
and understand the information in such beliefs, but does not necessarily
agree with it (especially, if it doesn't match the robot's own perception of
the same reality).

� Veri�ed beliefs are created from attributed beliefs. They basically contain
the acknowledged information from the attributed beliefs. Acknowledgment
(veri�cation) does not necessarily mean that the agent's information in the
belief is consistent with the robot's perception; it just means that that infor-
mation was adequately processed by the robot and is now ready to be used in
higher level cognition (e. g. in communication with the agent that issued it).
After a successful reference resolution the restrictive information is stored in
veri�ed shared beliefs, while the asserted information is in attributed belief.

� Merged beliefs combine information from veri�ed and assumed beliefs and
represent the �nal a-modal situated knowledge, ready to be used by the
higher level cognitive processes (e.g. motivation, planning). They contain
as reliable information as possible and as much information as available.
This process is also called information fusion. Information can be merged
in di�erent ways. E. g. the system can completely trust a certain agent
(typically a tutor) so that the merged belief contains all information from
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the veri�ed belief and only uses the assumed belief to �ll the information
gaps left by the veri�ed belief. A more complex solution for the information
fusion involves merging probability distributions over feature values.

The private beliefs are created by mediator components using the informa-
tion from the modal subsystems. The attributed and veri�ed beliefs are created
as results of successful resolution of another agent's reference. The changes in
perception are propagated in real-time through the belief structure from private
beliefs to the merged ones. In similar manner the progress in dialogue and dia-
logue processing (certain events in other subsystems can be treated as acknowl-
edgments for the attributed information) are re�ected in changes in attributed
and veri�ed beliefs. This means that the process of information fusion (belief
merging) is repeated each time new information is propagated to the assumed
belief or new attributed information is veri�ed.

3.1 An example of information �ow in beliefs

Figures 1, 2 and 3 illustrate how the belief representations of an object change
with the activity of the system. The objects are described in terms of colors,
shapes and a�ordances. The goal of the system is to use the new infomation
provided by the human tutor for visual learning.

Figure 1 represents the belief state after the robot has processed the visual
information about a physical object on the desktop. It re�ect the robot's own
perception of the object. We can see that the internal (modal) visual symbols
(and the object's a�ordance, which is based on its shape) are translated to a-
modal symbols (in our case the dialogue also operates with a-modal symbols).
The translation can be performed by an MLN engine component. As described
in Section 3, the translation can be more than just a simple symbol mapping;
it can also have to re-calculate the probability distributions of the translated
symbols. The merging process in this case just forwards the information to the
merged belief.

Figure 2 represents the belief state after the system has processed a tutor's
statement about the object (�The compact object is blue.�). In this sentence the
'compact' represents the referring or restrictive information, which is used to
determine (restrict) the entity in question. With the assertive information in
the sentence ('blue') the human expressed a new quality about the refered entity
(perhaps not known to the robot). The assertive information doesn't completely
agree with the robot's perceptions. Fortunately, the restrictive part of the state-
ment is consistent with the analogue information in the current merged belief,
which guarantees the success of the reference resolution. We can see that the
information attributed to the tutor is initially split in two parts: the restrictive
part is already considered veri�ed (since the reference resolution was successful)
and goes to the veri�ed belief, while the assertive part goes to the attributed
belief since it is not yet clear, whether it represents a common ground between
the robot's and tutor's perceptions (we can see that in our particular example
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merged

private

-color1
-shape3
-affordance2

assumed

-red
-compact
-roll

-red
-compact
-roll

translate(mln)

merge

1. The robot's perception of an object
     on the desktop 

Fig. 1.

the doubt is justi�ed). We can see that the merging process con�rms the shape
information in the merged belief.

Figure 3 illustrates what happens after a certain event in other parts of
the system (in our case the visual learning) triggers the acknowledgement (of a
portion) of the asserted information. The acknowledged attributed information is
propagated to the veri�ed belief and then merged. In our case the color property
is replaced with its attributed version. The merged belief therefore contains one
piece of information that is purely perceptual (roll); the information about the
shape (compact) is shared by both, robot perception and human description; the
color information (blue) is not shared, but since it is provided by the human it
is treated as more reliable.
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3.2 Implicit learning

The main purpose of the George scenario is to demonstrate several learning
paradigms like tutor driven, tutor assisted, robot driven, autonomous, etc. All
of these paradigms have the goal to obtain and use tutor's information about
visible objects for learning basic visual concepts. In most cases the tutor provides
this information explicitly, as we saw in the example in Section 3.1. In this case
the learning act is executed as a deliberate action issued by the planner, hence
in a goal-driven fashion. We can categorize such learning mechanism as explicit
learning.
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Fig. 3.

In contrast, implicit learning completely bypasses planing and motivation
and occurs in a data-driven fashion (the di�erence between implicit and ex-
plicit learning is also explained in [13]). It exploits the di�erence in information
between assumed and merged beliefs to update modal visual concepts. Depend-
ing on the information that was merged and the type of process that performs
information merging (see Section 3) the di�erence can be (i) in the property
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con�dence and (ii) in the property quality (e. g. as depicted in Figure 3). In the
former case the system has to have a di�erence threshold that triggers learning.
In the latter case the system can perform both, learning of the right concept in
the merged belief and unlearning of the wrong concept in the assumed belief. Of
course before the learning action the property information in the merged belief
has to be translated back to modal symbols.

An important question when implementing implicit learning is when to trig-
ger it. It would not be advisable to simply trigger the implicit learning after
each merging, since this could result in learning the same information several
times. A better strategy is to compare the new merged belief with the old one
and react only when there is a change in the quality of merged information or
if con�dence of the new information raises the con�dence di�erence above the
threshold.

Another problem concerning implicit learning occurs when the implicit learn-
ing is combined with the explicit learning. After the assertive information is used
for learning, it is veri�ed and consequently merged to the merged belief. This
can trigger the implicit learning, which once more means that the same infor-
mation is used for learning twice. We can avoid this problem by simply restrict
implicit learning to the restrictive information only (as is also the case in [13]).
This means that the implicit learning is triggered after the �rst merging of the
veri�ed information, only. When used as a supplementary learning mechanism
in combination with the explicit learning, it is important to adequately tune the
e�ects of both learning mechanisms (the e�ect of implicit learning is usually less
pronounced as in general happens more often and not as a deliberate action).

4 Conclusion

In this work we described the belief cognitive layer, which is where multi-modal
and multi-agent information is associated and merged. As an important associa-
tion mechanism in the belief layer we also described and exempli�ed the process
of reference resolution, which relates robot's own perceptions of a physical entity
to the human description of the same entity. Implicit learning is a learning mech-
anism that exploits the di�erence between merged and assumed information in
beliefs. It can be used together with the explicit learning as a supplementary
learning mechanism.
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