
EU FP7 CogX

ICT-215181

May 1 2008 (52months)

DR 7.3:

Analysis of a Robot that Explains Surprise

Jeremy L. Wyatt1, Marc Hanheide2, Andrzej Pronobis3,
Kristo↵er Sjöö3, Alper Aydemir3, Patric Jensfelt3, Moritz
Göbelbecker4, Charles Gretton5, Graham S. Horn1, Richard
Dearden1, Miroslav Janicek6, Hendrik Zender6, and Geert-Jan
Kruij↵6

1BHAM, Birmingham 2Lincoln University (formerly BHAM)
3KTH, Stockholm 4 ALU-FREI, Freiburg
5NICTA, formerly BHAM 6 DFKI GmbH, Saarbrücken

hjlw@cs.bham.ac.uki

Due date of deliverable: May 30 2012
Actual submission date: May 30 2012
Lead partner: BHAM
Revision: final
Dissemination level: PU

In this report we describe our experimental analysis of the the Year 3 Dora
system, a robot that could plan to achieve a variety of tasks in an environ-
ment with undiscovered objects, rooms etc. In addition this robot was able
to explain surprising planning failures. In the second attachment to this
deliverable we give more technical detail on the method used to achieve this.

1

DR 7.3: A Robot that Explains Surprise

1 Tasks, objectives, results 4

1.1 Planned work . 4
1.2 Actual work performed . 4
1.3 Relation to the state-of-the-art . 4

References 6

2 Annexes 7

2.1 Reasoning about Epistemic Actions and Uncertainty for Autonomous Knowl-
edge Gathering . 7

2.2 Explaining Execution Failures in Continual Planning 8

EU FP7 CogX 2

DR 7.3: A Robot that Explains Surprise

Executive Summary

This report presents an analysis of the period 3-4 Dora system. This sys-
tem was able to plan information gathering activities necessary to achieve
a task given by a human. The robot can reason about a variety of entities,
including making assumptions about the world necessary to form a plan,
modelling limited open worlds, modelling the epistemic e↵ects of actions,
replanning on the fly, and switching between decision theoretic and non-
decision theoretic planning as necessary. In addition the system is able to
explain surprises that result in planning failures, such as when an expected
outcome essential to a plan does not occur. It seeks to explain these using
the framework of assumptions (and additional background knowledge), just
as it uses assumptions to produce plans under incomplete knowledge in the
first place. We present a case based experimental analysis of the main sys-
tem in the first attachment, and present the use of assumptions to produce
explanations for surprising planning failures in the second attachment.

Role of explanations and surprises in CogX

In our plans for CogX the ability to explain surprises is one of the final
stages of the scheme for self-extension. By explaining surprising results
in terms of assumptions and additional background knowledge the robot
is able to form hypotheses about the existence of additional objects, or
additional relations between objects, or both. These hypotheses can then
be tested using additional plans, and then added to the robot’s knowledge
thus creating a second route to self-extension (the first being exploration
based on the initial knowledge and tasks as demonstrated in several of the
systems presented in CogX (Dora 1, Dora2, George 1-3, Dexter 2).

Contribution to the CogX scenarios and prototypes

The results presented in this report are an analysis of the Dora system, and
are thus related to the scenario on task driven information gathering and
self-extension.

EU FP7 CogX 3

DR 7.3: A Robot that Explains Surprise

1 Tasks, objectives, results

1.1 Planned work

The task to which this work contributes is Task 7.6 (Experimental study of
explanation with limited extension). The aim was to analyse a robot that
can extend its representations in a limited way (e.g. extending its map).
The objective addressed in the work is Objective 11 (A robotic implemen-
tation of our theory able to complete a task involving mobility, interaction
and manipulation. In the face of novelty, uncertainty, partial task specifi-
cation and incomplete knowledge). In this deliverable we have focussed on
analysing a robot implementation concerned with mobility and interaction
with a human, where the knowledge of the robot is incomplete at the start
of the task.

1.2 Actual work performed

The attachments to the deliverable describe the results of the work per-
formed during year 3 and 4 on the Dora system to enable it to explore and
fill knowledge gaps in a task driven manner, and to explain surprises that
result in planning failures when they occur. The Task 7.6 has been ad-
dressed here by a case based experimental analysis of the robot’s ability to
perform a variety of tasks in an environment under incomplete knowledge,
by the ability of the robot to extend its representations, by the ability of
the robot to plan to do so, and also by the ability of the robot to explain
surprising planning failures. The objective O11 has been addressed by the
development of this same system, and by the integration in the robot of
various elements of our theory.

1.3 Relation to the state-of-the-art

The major di↵erence between Dora and other previous robot systems that
perform similar tasks (object search, autonomous mapping, room categori-
sation) is that i) Dora is re-taskable across a range of tasks whereas previous
systems typically perform just one task, ii) Dora reasons about open world-
ness, and iii) employs a switching planner that enables both satisficing and
optimising style planning.

With regard to retaskability, there are many instances of systems that
perform active SLAM [4, 6] by using path planners in continuous or quan-
tised state spaces that explicitly plan information gain over many steps, but
only for that specific task. Similarly, in object search there are a number of
approaches that plan within an information space, expressing the value of
particular viewing locations by modelling both sensor behaviour and prior
belief about object location [8]. In these planning is often greedy one step

EU FP7 CogX 4

DR 7.3: A Robot that Explains Surprise

lookahead for view selection [1, 5], although [7] reasons about information
over multiple steps.

All these approaches, however, path plan rather than perform task level
planning, and do so within an essentially closed world using probabilistic
representations of state uncertainty. Most other probabilistic planners or
path planners for robots employ unstructured representations of state ([7]
is an exception) that make path planning or task specific planning easy, but
which do not easily lend themselves either to re-taskability or to planning
in open worlds. It is a di�cult problem to extend probabilistic approaches
to reasoning about open worlds (i.e. where new objects, rooms etc may
appear). We have developed instead developed extensions to our continual
planning approach that allow planning in limited open worlds, and thus
enable the robot to reason about the benefit of activities such as searching
for a room of the type that is likely to contain the object searched for [2]. In
addition we employ a switching planner, that swaps between a classical and
a decision theoretic representation of the planning domain. This has allowed
us to produce plans that reason about trade-o↵s quantitatively when this is
computationally feasible, and the remainder of the time produce satisficing
plans. Other approaches (of which we are aware) to task planning for robots
that are retaskable only produce satisficing plans e.g. [3].

EU FP7 CogX 5

DR 7.3: A Robot that Explains Surprise

References

[1] A. Andreopoulos, S. Hasler, H. Wersing, H. Janssen, J.K. Tsotsos,
and E. Korner. Active 3d object localization using a humanoid robot.
Robotics, IEEE Transactions on, (99):1–18, 2011.

[2] A. Aydemir, M. Göbelbecker, A. Pronobis, K. Sjöö, and P. Jensfelt. Plan-
based object search and exploration using semantic spatial knowledge in
the real world. Proc. of the European Conference on Mobile Robotics
(ECMR 2011), Orebro, Sweden, 2011.

[3] C. Galindo, J.A. Fernández-Madrigal, J. González, and A. Sa�otti.
Robot task planning using semantic maps. Robotics and Autonomous
Systems, 56(11):955–966, 2008.

[4] R. Martinez-Cantin, N. de Freitas, E. Brochu, J. Castellanos, and
A. Doucet. A bayesian exploration-exploitation approach for optimal
online sensing and planning with a visually guided mobile robot. Au-
tonomous Robots, 27(2):93–103, 2009.

[5] K. Shubina and J.K. Tsotsos. Visual search for an object in a 3d environ-
ment using a mobile robot. Computer Vision and Image Understanding,
114(5):535–547, 2010.

[6] R. Sim and N. Roy. Global a-optimal robot exploration in slam. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, pages 661–666. IEEE, 2005.

[7] J. Velez, G. Hemann, A. Huang, I. Posner, and N. Roy. Planning to
perceive: Exploiting mobility for robust object detection. In Proceedings
of the International Conference on Automated Planning and Scheduling,
Freiburg, Germany, 2011.

[8] Y. Ye and J.K. Tsotsos. Sensor planning for 3d object search. Computer
Vision and Image Understanding, 73(2):145–168, 1999.

EU FP7 CogX 6

DR 7.3: A Robot that Explains Surprise

2 Annexes

2.1 Reasoning about Epistemic Actions and Uncertainty for

Autonomous Knowledge Gathering

Bibliography M. Hanheide, A. Pronobis, K. Sjöö, A. Aydemir, P. Jens-
felt, M. Göbelbecker, C. Gretton, G.S. Horn, R. Dearden, M.Janicek, H.Zender,
G.J. Kruij↵, J.L. Wyatt“Reasoning about Epistemic Actions and Uncer-
tainty for Autonomous Knowledge Gathering”. To be submitted.

Abstract In any real world task a robot tries to accomplish, it faces two
significant challenges that it needs to deal with: (i) its knowledge about
the world is incomplete, so substantial knowledge required to successfully
achieve a given goal is missing; and (ii) the knowledge it might have about
the world is uncertain, due to noise in sensing and/or unreliability of ac-
cessible knowledge sources. Nevertheless, we expect our robot to behave
intelligently to achieve the given goal robustly and e�ciently. In this paper
we present a robot system and its architectural underpinning that addresses
these challenges. It can accomplish a variety of di↵erent epistemic goals in
order to extend its knowledge about the world and it features a probabilistic
approach to representation, reasoning and planning that allows it to gener-
ate goal-driven behaviour in a world full of uncertainties. The robot features
a novel switching planner that allows the system to schedule actions imple-
mented by a number of competences that gather knowledge from various
knowledge sources, such as: interactively by asking humans; from sensing
the world through the robot’s own sensors; or by exploiting common-sense
background knowledge gathered from web resources. We demonstrate and
analyse the behaviour of our system in real world runs with three di↵erent
goals given to the robot: To autonomously explore an unknown map; to
learn about the category of rooms in this map (e.g. kitchen, corridor, etc.);
and to autonomously determine the location of a specific object. We show
that the robot autonomously invokes competences that yield the intended
information gain in order to accomplish each task.

Relation to WP WP7 is about the demonstration of the ideas in CogX as
a complete systems level theory that works in real robot systems. The work
presented in this deliverable is a description of the Dora system that brings
together numerous contributions from across CogX. WP7 also concerns the
analysis of the robot systems we develop. This deliverable also presents
an case based analysis of the abilities of the Dora system and a detailed
presentation of the methods used to performance explanations of surprising
planning failures.

EU FP7 CogX 7

DR 7.3: A Robot that Explains Surprise

2.2 Explaining Execution Failures in Continual Planning

Bibliography M. Göbelbecker “Explaining Execution Failures in Contin-
ual Planning”. Technical Report.

Abstract Continual planning is an e↵ective approach to decision making
in uncertain dynamic worlds. It involves creating plans based on assump-
tions about the real world and replanning if those plans fail. We discuss
methods for making these assumptions explicit and providing explanations
why a continual planning task may have failed or produced unexpected out-
comes.

Relation to WP In this WP we developed the Dora system, which is
able to explain surprising planning failures. This attachment explains how
that explanation mechanism is implemented in terms of assumptions.

EU FP7 CogX 8

Reasoning about Epistemic Actions and

Uncertainty for Autonomous Knowledge

Gathering

Marc Hanheide, Andrzej Pronobis, Kristoffer Sj¨o¨o, Alper Aydemir,

Patric Jensfelt, Moritz G¨obelbecker, Charles Gretton,

Graham S. Horn, Richard Dearden, Jeremy L. Wyatt,

Miroslav Janicek, Hendrik Zender, and Geert-Jan Kruijff

non-public Technical Report

Abstract

In any real world task a robot tries to accomplish, it faces two significant chal-

lenges that it needs to deal with: (i) its knowledge about the world is incomplete, so

substantial knowledge required to successfully achieve a given goal is missing; and

(ii) the knowledge it might have about the world is uncertain, due to noise in sens-

ing and/or unreliability of accessible knowledge sources. Nevertheless, we expect

our robot to behave intelligently to achieve the given goal robustly and efficiently.

In this paper we present a robot system and its architectural underpinning that ad-

dresses these challenges. It can accomplish a variety of different epistemic goals

in order to extend its knowledge about the world and it features a probabilistic

approach to representation, reasoning and planning that allows it to generate goal-

driven behaviour in a world full of uncertainties. The robot features a novel switch-
ing planner that allows the system to schedule actions implemented by a number

of competences that gather knowledge from various knowledge sources, such as:

interactively by asking humans; from sensing the world through the robot’s own

sensors; or by exploiting common-sense background knowledge gathered from

web resources. We demonstrate and analyse the behaviour of our system in real

world runs with three different goals given to the robot: To autonomously explore

an unknown map; to learn about the category of rooms in this map (e.g. kitchen,

corridor, etc.); and to autonomously determine the location of a specific object.

We show that the robot autonomously invokes competences that yield the intended

information gain in order to accomplish each task.

1 Introduction
Autonomous robotic systems have impressively advanced in recent years and they have

made significant progress on various individual problems and application scenarios.

An overarching challenge for such robots is to gather knowledge about their environ-

ment and situation that is required to accomplish given tasks autonomously. Most

approaches either feature explicit training or tutoring phases, or have been endowed

with pre-defined, specific knowledge. In real world however, robots can and should

learn from various knowledge sources to really be adaptive and robust. These could

1

be (i) humans that can explicitly show or tell the robot what it needs to know (e.g. the
robot can ask what room it is currently in), (ii) observation of the environment through
different sensors (e.g. vision), to relate the robot’s perception to pre-determined, con-
ceptual and categorical information yielding the classification of perceived instances in
the world (e.g. recognise an object in the robot’s field of view using pre-trained object
classifiers), or (iii) to access information online querying about specific instances per-
ceived (e.g. querying the visual appearance of an object from an image search engine to
compare it to the current visual input). What is common across those different classes
of knowledge sources is that the result of these actions is inherently uncertain with re-
spect to the specific situation the robot is confronted with. Humans might or might not
have the information the robot asks for; or they might not even be truthful. Observing
the environment autonomously and striving to, e.g., detect an object with a camera, is
even more prone to errors given the state of the art of general object recognition [1].
Querying the web is indeed an excellent source for generic knowledge, which however
may prove entirely wrong or very insignificant in the robot’s actual environment and
situation. Hence, a robot has to able to reason and deal with the inherent uncertainty of
the knowledge it might get from these various sources.

Our approach presented in this paper is to employ a domain-independent proba-
bilistic planning framework that can reason about epistemic actions and choose be-
tween them to generate the most rewarding behaviour in terms of epistemic benefit for
a variety of tasks. We combine this domain-independent framework with a conceptual
probabilistic map accommodating the acquired and pre-determined knowledge about
the world to realise a robot system that can autonomously accomplish different epis-
temic goals in the real world by choosing from three major classes of epistemic actions:
(i) Consulting a human verbally, (ii) looking for specific classes of physical objects vi-
sually, and (iii) exploring into yet unknown space of the environment. We are able to
show that with our approach, our robots can accomplish different goals, that each are
usually targeted by dedicated “expert robot systems”, and that we achieve compara-
ble performance; and that it can generate efficient and robust goal-driven behaviour by
accounting for the uncertain nature of the knowledge gathered explicitly. Hence, the
two key contributions of this work are (i) the domain-independent, probabilistic plan-
ning framework allowing us to pursue a variety of different goals by literally just the
exchange of a string describing an intended goal state, and (ii) the layered architecture
of our self-extending mobile domestic robot “Dora”, built around a conceptual map
and featuring a number of knowledge-gathering state-of-the-art components, ranging
from object detection, over adaptive dialogue, to navigation and mapping. The system
presented in this paper is the advancement of its predecessor systems [2] which solely
focused on efficient and robust object search. Instead, in this paper we demonstrate
our approach to be feasible for a variety of different goals and a wider range of ac-
tions and behaviours, and we reflect on the architectural aspects of the system. We
will see (in our experimental evaluation), that with one and the same system running
(continuously) our robot Dora can explore into new rooms, interactively become more
confident about the categroy of those rooms, and also find an object. While each of
these abilities (exploration and mapping, interactive room learning, and object search)
have certainly been addressed individually, this to our knowledge is the first system,
that can be tasked to extend its knowledge that broadly in a goal-driven and intelligent
way.

2

Competence
Layer

Mapping &
Navigation

Dialogue
Management

Object
Search

Categori-
sation

Person
Detection

Conceptual
Layer

Chain Graph
Inference

Executor

Belief
Model

Domain
Model

tra
ns

la
te

d
ac

tio
ns

pr
ob

.
st

at
e

pl
an

ac
tio

ns

Co-
occurrence

Analysis

Categori-
sation

Person
Search

Object
Search

Dialogue

Mapping &
Navigation

Deliberative
Layer

Continual
Planner

Decision-
theoretic
Planner

switchesGoal
Management

tasks

in
st

an
ce

s

(a) Dora’s software architecture is an instantiation of the CogX Layered Archi-
tecture Schema (CLAS).

(b) “Dora”

Figure 1: Software architecture and hardware setup.

2 System Overview
The Dora software architecture (Fig. 1(a)) is an instantiation of the CogX Layered
Architecture Schema (CLAS). CLAS is a progression of our previous work on archi-
tectures [3, 4, 5]. It builds on the CoSy Architecture Schema [6] and implemented
system instances (like the one presented in this paper) are built using the CAS Toolkit
(CAST) [7], a component-based, event-driven integration framework that has been em-
ployed in various predecessor systems [8, 9, 2]. In the following, we will explicitly
outline where CLAS employs concepts similar to the ones put forward by CAS and
where it deviates.

CAS promotes a decomposition for system design into subarchitectures that ac-
commodate a number of components which exchange predominantly modal infor-
mation through the modification of contents of working memories. Hence, our sys-
tems [8, 9, 3, 4, 5] always featured individual subarchitectures for visual processing,
dialogue, spatial mapping, etc, that are built around representations of certain modal-
ities; here vision, speech, and maps, respectively. These subarchitectures all gener-
ally endowed with equal rights, permissions, and policies. However, already in these
previous architectures we identified the special role of some subarchitectures that did
not really fall into the category of purely modal subarchitectures. In [6] and [3] we

3

described the binding subarchitecture to support amodal, unified representations that
facilitate reasoning and planning across different modalities, and also proposed a plan-
ning subarchitecture that exploits the amodal representation to devise plans to generate
intelligent behaviour. CLAS, as illustrated in Fig 1(a), expands on these ideas and
makes explicit the functional decomposition into the three layers that was implicitly
proposed in these earlier architectures. CLAS features probabilistic amodal abstrac-
tion of both domain knowledge and instance relations in a conceptual layer, and a
deliberative layer that contains advanced planning components which can exploit and
handle the probabilistic nature of the belief state represented in the conceptual layer.
In particular, the planners can generate plans for epistemic goals. These two layers
are complemented by the competence layer, which contains the different modal subar-
chitectures in a CAS system. The conceptual layer can be seen as a mediation layer,
facilitating decoupling between the deliberative and competence layers.

Functionally, and with regard to many of the competences involved, [2] provides
the foundation for the work we present here. But while in [2] we solely focused on the
benefit of exploiting uncertain knowledge and sensing for the task of “object search”, in
this paper we instead demonstrate our approach to be feasible for a variety of different
goals and a wider range of action and behaviours. We shall now describe the three
layers in greater detail.

2.1 Competences
At the lowest layer CLAS features competences. Competences consist of a set of com-
ponents designed to jointly provide a certain well encapsulated and independent be-
haviour or functionality for our system. Generally speaking, a competence is thought
of as a subsystem that can provide knowledge to the conceptual layer and can possi-
bly be tasked to carry out actions. In most cases, a competence is implemented as a
subarchitecture in the CAST notion.

Examples relevant to this paper are competences (shown as stacks of components
in Fig. 1(a)) to autonomously move the robot about safely (“Mapping & Navigation”),
to perceive the environment (“Object Search”, “Person Detection”, “Categorisation”),
to interaction with humans (“Dialogue Management”) and to gather knowledge from
the web (“Co-occurrence Analysis”). They can be tasked by higher layers to execute
their respective behaviours. For instance, the “Mapping and Navigation” competence
can be tasked to move to a dedicated place, as will be discussed in Sec. 3.1 in detail. In
CLAS, the competence layer is very domain-specific. Competences determine what the
robot can do and how it will do it. They implement the different epistemic actions the
robot can execute. But how the competences are arbitrated, combined, and sequenced
is not decided on this layer. Dora’s competences are subject to detailed discussion in
Sec. 3, where we will outline how they are realised and what kind of knowledge they
will enable the system to gather.

2.2 Deliberative Layer
At the top of CLAS the deliberative layer plays a central role to actually generate goal-
driven behaviour. From a planning perspective we are confronted with a number of im-
portant but contrary challenges. On the one hand, planning and execution monitoring
must be lightweight, robust, and timely. Those processes must seamlessly accommo-
date exogenous events, changing objectives, and the underlying unpredictability of the
environment. On the other hand, in order to act intelligently the robot must perform

4

computationally expensive reasoning about contingencies, and possible revisions of its
subjective belief according to quantitatively modelled uncertainty in acting and sens-
ing. Hence, the specific challenge for us here lies in the uncertainty of action outcomes
and the uncertainty of knowledge available to the system. Despite this uncertainty, the
robot must take sensible decisions and devise appropriate plans. The deliberative layer
has to invoke the different competences of the system sequentially in order to generate
the most robust and efficient behaviour to gather information. Our approach to these
challenges is to switch between decision-theoretic and classical modes of planning at
different levels of abstraction. A classical system (part of the “Continual Planner” in
Fig. 1(a)) quickly solves a determinisation of the probabilistic problem at hand. Then a
decision-theoretic system quickly solves abstract decision problems derived using the
classical plan and the probabilistic belief state. Overall, this approach allows the system
to generate intelligent behaviour under uncertainty in a timely manner. Most notably,
we designed this layer to be domain-independent. The switching planner (to be de-
scribed in detail in Sec. 5) is a domain-independent state-of-the-art continual planning
framework generating behaviour that should take a system from a (probabilistic) initial
state to an intended goal state. The states and domains are represented in DTPDDL, an
extension to the well-establish planning language PDDL [10], which is described along
with other details about the employed planning framework in Sec. 5 and is one of the
key contributions to this paper. Making the deliberative layer domain-independent al-
lowed us to reuse the very same framework and also the architecture schema in other
systems that are confronted with a rather different task, such as learning new objects
interactively from a human tutor [11].

Also part of the deliberation layer is the goal management framework [12, 11]. As
we are aiming for a self-extending system the robot shall be motivated to extend its
knowledge autonomously. Hence, a motivational framework continuously analyses the
state of the world watching out for knowledge gaps, that can give rise to epistemic
goals. Without going into detail, this can be thought of as general drives of the robot
which task the planning system with new goals that yield some knowledge gain. For
instance, being uncertain about the category of a room gives rise to a goal to be certain
about it and similarly for other types of goals to be discussed later.

2.3 Conceptual Layer
While competences implement specific behaviours to gather knowledge, ignorant to the
actual task or context this knowledge might be used for, the deliberative layer needs to
consult this gathered knowledge in the context of a domain to employ the domain-
independent planning algorithms. Hence, we need a way to put the competences into
context and expose both domain knowledge and gathered knowledge to the deliberative
layer. Here the conceptual layer comes into play. As stated above, we particularly aim
to model and deal with the uncertainty that occurs in the real world. Hence our concep-
tual layer is inherently probabilistic – both in the represention of the beliefs as well as
any background knowledge that is part of the domain model. Consequently, the con-
ceptual layer (i) selects and translates information entities gathered through different
competences, (ii) maintains relations between information entities and to the domain
model, and (iii) unifies the gathered and background knowledge of the system into a
probabilistic representation facilitating reasoning and planning. Said in simple terms,
it mediates between the (strictly decoupled) deliberative layer and the competences, by
relating the acquired information to the domain model and supporting reasoning about
the resulting probabilistic relations through a chain graph formalism. This reasoning

5

and further details of the conceptual layer will be given in Sec. 4.
Due to the strict decoupling of deliberation and the competences, the conceptual

layer also has to mediate any planned action devised by the deliberative layer. An “Ex-
ecutor” component translates the domain-independent PDDL representation of planned
actions into domain-targeted competence-level actions that are then executed and mon-
itored by the Executor. There are further feedback channels and communication path-
ways in the architecture that have been omitted in Fig. 1(a) for clarity.

2.4 Platform
For clarity of the following sections, we briefly present the robot platform used to
assess our approaches with. We implemented the system on our robot Dora, which
is a based on a PIONEER 3DX platform with a custom-made superstructure accom-
modating a pan-tilt unit on which a MICROSOFT R� KINECTTM and a POINT GREY
CHAMELEONTM CCD USB camera are mounted. A HOKUYO laser scanner enables
the robot to measure distances to objects in a range of 270� for a distance of up to four
meters. Fig. 1(b) illustrates the construction of the robot. The pan-tilt unit is mounted
so the robot can look on top of tables and similar surfaces to search for objects. The
software system is running on a 2.6 GHz, 4Gb RAM Core2 Duo laptop mounted on
the superstructure.

3 Competences
In the following sections we describe the different competences implemented in our
architecture. Rather than explaining each of these in full technical detail we focus
on the functional role these competences play in the context of our system. Hence, the
emphasis lies on the structure and nature of the information they gather and expose, and
the actions they provide. Further details can be found in the publications referenced in
the respective sections. In this section we introduce the names of the actions (typeset
in typewriter font) that the respective competences provided to the planner to ease
understanding of Sec. 5 and 6.

3.1 Navigation & Map Building
The spatial representation is key to a mobile robot. It provides the basic symbols that
the rest of the system, such as a planner, have to use to reason about and interact with
the real world – and also mediates that interaction through actions (such as to move the
robot’s base to a position).

The task of the “Mapping & Navigation” competence (provided by the spatial sub-
architecture) is to take in sensory data and distil this into functionally distinct, discrete,
abstract units – as well as to receive commands on an abstract level and translate them
into continuous-space control processes. The abstraction and discretisation process
is important as it makes the representation tractable and more robust to changes in
the world. Discretisation also reduces the number of states considered e.g. during the
planning process.

The low-level sensory inputs to the subarchitecture are: 2D laser scans, 3D point
clouds (from the KinectTM depth sensor), odometry data from wheel encoders, and
camera images. Outputs consist of wheel velocities and pan/tilt-commands to the cam-
era assembly. Internally, the inputs are assembled into a consistent metric map used

6

for navigation, obstacle avoidance and visual search (see Sec. 3.4). The abstraction
provided to the rest of the system, however, is in terms of discrete Places.

The aim of this “Place”-based representation is to represent the world at the level
of accuracy sufficient for performing required actions and robust localisation despite
uncertainty and dynamic variations[13]. Here, each Place is based on a node in a
navigation graph, as described previously in [14].

Places are also associated with doorways, i.e. narrow openings that separate dif-
ferent rooms in a map. A Place is annotated as a doorway using features of the 2D
laser scan, and this property is used to group Places into rooms using non-monotonic
reasoning (see [15]). Hence, the spatial representation provided by this layer features
Places that are assigned to rooms. Places that are annotated as doorways do not belong
to any room.

The system also represents paths between Places. The semantic significance of
a path between two Places is the possibility of moving directly between one and the
other. Space that has not yet been explored by the robot has no Places in it. Therefore,
hypothesised Places are generated in unexplored locations near to extant Places. These
hypothetical Places allow for reasoning about unknown space, and for planning and
executing exploratory activities. They are annotated as Placeholders to distinguish
them from actual Places, but are otherwise identically represented and interconnected.
For an illustrative example see Figure 2.

Figure 2: A Place map with several Places and three detected doors shown as red dots. Colours on circular discs indicate the
probability of room categories as in a pie chart: i.e. the bigger the colour the higher the probability. Here green is corridor,
red is kitchen and blue is office. Gray circles denote Placeholders, which represent unexplored space.

Besides providing the abstracted Places and Placeholders, and their connectivity
information, to the higher reasoning modules in the system, the spatial subarchitecture
also exposes concrete physical actions that the planner can perform on these abstrac-
tions. These actions are covered by a single planner primitive: move, which moves
the robot from the Place where it is, to another neighbouring Place to which there ex-
ists a path. The same action is used for exploratory movement as well, by using a
Placeholder as the goal Place. On the lower level, this single action encapsulates rota-
tional and translational movement, local path finding and obstacle avoidance, as well
as visual exploration (essentially, having a “look around” with cameras and KinectTM)
upon reaching the goal Place in order to populate the metric maps. This action is used
to explore unknown space as well as to move between rooms and to take up posi-
tion for visual search. The simple move is complemented by a move direct action

7

which enables the robot to move to another Place that is connected to the current Place
through another Place. This allows the robot to cover larger distances more quickly, as
it doesn’t necessarily have to travel exactly through a Place.

3.2 Place Categorisation
We want our robot to be able to learn and exploit the category of rooms (e.g. whether
a room is a kitchen or an office). Based on the segmentation of the known space into
rooms as outlined before, this competence aims to augment places with information
that yields evidence about room categories. Therefore, it exploits the robot’s various
sensors to get such evidence about the category of the room a place belongs to. Here,
we particularly aim not only to re-recognise rooms that the system has been trained for,
but instead realise a competence that can provide evidence from general models that
are not necessarily as accurate as specific ones, but still yield some useful evidence in
unknown environments.

The different modalities to be analysed yielding the required envidence are the
shape, size and appearance properties of places. The competence is realized as a purely
passive (so it runs continuously in the background) process that analyses the laser data
and images captured from the robot’s CCD camera. Following [16], a small, discrete
set of views is acquired at each place and two types of low level features are extracted:
(a) geometric features extracted from laser range data for the purpose of shape and size
classification for the room, and (b) global appearance features based on Composed Re-
ceptive Field Histograms obtained from second order normalised Gaussian derivative
filters applied to the illumination channel at two scales. Based on those features, inde-
pendent categorical models are built for the shape (e.g. elongated or rectangular), size
(e.g. small or large) and appearance (e.g corridor-like or office-like) properties.

To provide sufficient robustness and tractability in the presence of noisy, high-
dimensional information, we use non-linear kernel-based discriminative classifier mod-
els, namely Support Vector Machines, as proposed in [17]. The models are trained from
sequences of images and laser range data recorded in multiple instances of rooms be-
longing to different categories and under various illumination settings (during the day
and at night). By including several different room instances in the training set, the
acquired model can generalise sufficiently well to provide categorisation rather than
instance recognition. In order to measure the uncertainty associated with the generated
hypotheses, confidence measures are derived from the distances between the classi-
fied samples and discriminative model hyperplanes [17]. The accumulated confidences
gained from the SVM models across views are normalised to gain probabilities.

3.3 Object-Room Co-occurrence
As outlined in Sec. 1, competences not only gather knowledge from the current situ-
ation or environment, but they can also extend to query information available online.
An example implemented in our robot Dora is the competence to gather commonsense
conceptual knowledge that encapsulates how likely it is that particular objects can be
found in specific locations, e.g. that sinks and faucets are more common in kitchens
and bathrooms than in living rooms, and that computers occur more frequently in of-
fices than in corridors. Our approach is to leverage commonsense knowledge available
through the world wide web to yield object-location co-occurrence priors (normalised
values between 0.0 and 1.0), as described in [2]. Here, we only provide a brief sum-
mary of the approach.

8

The Open Mind Indoor Commonsense1 locations database (henceforth referred to
as OMICS-L) provides more than 5,800 user-given associations between common ev-
eryday objects (ca. 2,900 unique types) and their typical locations (ca. 500 unique
types). This provides us with a rich set of objects and locations that are relevant for
intelligent mobile indoor robots. In total, we can generate a matrix of approx. 1.5 mil-
lion unique object-location pairs. In order to quantify the prior likelihoods of each of
these pairs, we queried an image search engine2 for the number of hits that are returned
when searching for these object-location pairs and compare it to the number of hits for
the locations alone. The normalization of the acquired raw frequencies is explained in
more detail in [2].

In the present system, the co-occurrence priors are one kind of probabilistic knowl-
edge that is exposed to the system. Since the amount of data is much too large to be
used as a whole, our approach is to make specific probabilistic facts available to the sys-
tem on demand. The facts are queried in such a way that probabilistic co-occurrence
a priori knowledge is available for those objects for which visual models have been
trained in advance (see Sec. 3.4), and for those kinds of rooms that can be categorised
by the system (see Sec. 3.2). Currently, these co-occurrence priors are currently ac-
quired in an off-line process and not actively acquired by the deliberative layer. How-
ever, the extension to online processing is straightforward and doesn’t yield any major
scientific insights.

The resulting co-occurrence priors constitute quantitative commonsense knowledge
that endow the system with expectations about what can be found where in order to
plan and act efficiently in partially unknown environments and with uncertain knowl-
edge about it. It might, however, not necessarily reflect the distribution of objects in
the current environment – and most likely won’t. It is therefore used as background
knowledge when judging where an action might most likely have its intended effect
(such as finding the cornflakes when searching for cornflakes in a particular location),
and not as a knowledge base of the current situation. Details about the discrimination
between background and instance knowledge will be presented in Sec. 4.

3.4 Viewpoint-based Object Search
As stated above, the “Object-Room Co-Occurrence” competence yields background
knowledge about the location of certain types of objects in certain categories of rooms.
However, this knowledge is generic and does not necessarily apply to the current sit-
uation. In order to actually localise an object or verify its existence the robot must be
able to conduct a visual search for the object in question. Active Visual Search is a
research challenge in its own right and is addressed by a number of works [18, 19, 20].
In this paper, we employ some state-of-the-art algorithms to endow our robot with a
competence to search for objects. This competence enables the robot to, obviously,
achieve goals to find certain objects in the world, and gain evidence about room cat-
egories. Consulting the background knowledge obtained through the “Object-Room
Co-Occurrence” competence, the existence of a microwave in a room could be seen as
relevant evidence to the question of whether the room is a kitchen, for instance.

The approach to object search in our system is based on the inspection of a set of
promising viewpoints. A viewpoint is defined as a 4-tuple V

i

= (⇧
i

,↵
i

,�
i

, P
i

(O)),
comprising the place ⇧ (in fact, a 2D position in the map), the view direction given

1http://openmind.hri-us.com/
2http://images.bing.com, September-October 2010

9

as two angles for panning ↵ and tilting �, and the probability of seeing the object O
in question in that particular viewpoint. Hence, the viewpoints form cones in the 3D
representation. The driving idea behind the approach is that the robot should not ran-
domly look everywhere, but shall exploit the knowledge it has about the environment
through other competences (e.g. the metric map) to optimise the search, i.e. inspect
a set of promising viewpoints that maximise the probability of seeing the object first.
In order to allow our system to reason about the benefit of inspecting different view-
points, object search is not realised as one monolithic action, but divided into two
major parts: “viewpoint generation” (the planner action create cones in room)
and “viewpoint processing” (process conegroup). This allows the deliberation
layer to sequence the inspection of the viewpoints in the context of other knowledge
gathering actions it could schedule.

In order to generate viewpoints to search a given room, we employ a similar strategy
to [21]. The search environment is tessellated into cells with each cell containing the
occupancy of the cell (i.e. UNKNOWN, OCCUPIED or FREE) and the probability of the
target object’s center being in this cell. This amounts to a 3D probability distribution
over the search space for a target object. In this work, the 3D probability distribution
is initialised by assigning a uniform probability to the region on top of known 3D
obstacles, see Figure 3(a).

The positions for potential viewpoints are picked from the center of places and
different directions are sampled from each place. Each potential viewpoint is then
evaluated on the basis of its probability value. The potential viewpoint with the highest
probability is retained and the process is repeated with its probability value subtracted
from the portion of the map that it covers until more than a predefined of amount of
probability mass is covered (usually about 95%). For a more detailed discussion on the
view planning we refer the reader to our previous work [22, 23].

Viewpoints that can be processed by simply turning the camera (using the pan-tilt
unit, i.e. without the robot having to move) are grouped together. The reason for this
grouping is to minimize movement while processing viewpoints. Each group corre-
sponds to a process conegroup action and the probability of finding the object
after executing the action is the sum of the probability values of its viewpoints; see
Figure 3(b). Upon receiving a command to execute a process conegroup action,
the robot moves to the associated place and orients itself towards the most central view-
point. It then turns its camera in the direction of each viewpoint in turn, whereupon the
object detection algorithm is triggered. The robot captures a monocular image from its
camera and runs SIFT-based recognition [24] for the object being searched for. Upon
successful detection the estimated 3D pose is computed and the object’s model is put
into the grid map as an obstacle, so that it will occlude future views properly. If the
object which is currently being searched for is not detected in a view, a probability
update is performed on the space encompassed by that viewpoint, less any parts that
are occluded. This reduces the posterior probability density within the viewpoint, and
increases it elsewhere in the map, while the total probability that the object is in the
room decreases.

Note that this detection approach requires pre-trained models of any object we want
to search for. The domain model features the information about which objects can be
searched for so that the planner can take this limitation into account when devising
plans.

10

(a) Prior probability distribution for an object in a room
(purple), based on obstacles (green).

(b) Examples of viewcones with probabilities.

Figure 3: Creating viewpoint actions for object search

3.5 Dialogue
We have discussed competences that exploit the web as a knowledge source (cf. Sec. 3.3)
and to inspect the environment with the robot’s own sensors (e.g. searching for an ob-
ject or gaining evidence about the category of rooms). Now, we shall turn towards the
exploitation of humans as knowledge sources. The general principle does not at all
differ from other competences to gather information. We embrace asking a human for
information as an uncertain process like we do for others. We model the probability of
finding a human in a room who could provide us with the information we are looking
for. This probability obviously could be dependent on the category of the room and the
question we are about to ask. Hence, the questions of if, when, and what to ask to gain
some new knowledge have to be decided by the deliberative layer.

Put simply, this competence enables our robots to initiate and conduct situated di-
alogues for interactive learning. The potential for people to know and provide certain
kinds of information about the environment is encoded in the planning domain. Ask-
ing questions is triggered by the planner by making it an explicit knowledge-gathering
action. While its postconditions assert that after interpreting the human’s answer the
robot possesses the knowledge in question, its preconditions ensure that the robot fol-
lows certain social rules when engaging in such a conversation. We make use of the di-
alogue framework presented in [11]. As the framework is largely domain-independent,
only a few modifications to the domain models were required for its deployment in the
described scenarios.

Dialogue design In the context of the present scenario, we focus on robot-initiated
dialogues. Based on the current state of the knowledge base, the planning system (cf.
Sec. 5) can decide that asking a human will provide it with information that helps it
better achieve its goals. Before the robot can talk to a person, however, it first needs
to find somebody to talk to. Once a person is found – the details of this action are
described in Sec. 3.6 – the robot first needs to properly engage in a dialogue with that
person (planner action engage) before asking the human any specific questions. This
engagement is established through an opening turn by greeting the human. After the
human acknowledges the opening of a dialogue by, in turn, greeting the robot, the
planner is permitted to request the dialogue system to ask the appropriate knowledge

11

gathering or clarification questions.

Dialogue generation Asking a polar question, such as “is this room a kitchen?” (an
example of the ask-for-category-polar action), is a possibility for hypothesis
verification. Open questions like “what kind of room is this room?” allow the robot to
fill knowledge gaps for which not enough prior knowledge or an insufficient level of
certainty about a hypothesis exist. Referring expressions are generated using the ap-
proach described in [25]. Our example contains the referential description “this room.”
By the very nature of that situation, the robot does not possess any more specific, cer-
tain knowledge about the room’s category (other than that it is some kind of room), nor
does it know what the human knows about the room. As a consequence the robot asks
“is this room a kitchen?” rather than unnatural-sounding and unplausible questions
like “is the kitchen a kitchen?”. The language production subsystem makes use of the
MARY text-to-speech system [26].

Dialogue interpretation In task-oriented dialogues between a human and a robot,
there is more to dialogue than just understanding words. The robot needs to understand
what is being talked about, but it also needs to understand why it was told something.
In other words, what the human intends the robot to do with the information in the
larger context of their joint activity.

Therefore, understanding language can be phrased as an intention recognition prob-
lem: given an utterance from the human, how do we find the intention behind it? We
extend Thomason and Stone’s abductive account of language understanding, planning
and production [27], in which agents actively monitor and maintain common ground,
and to this end they attempt to abductively recognize the others’ intentions as explana-
tions of their observed (linguistic) behaviour.

Our extension of this approach lies in explicitly modelling the knowledge gaps that
inevitably arise in such an effort due to uncertainty and partial observability. The ap-
proach is based on generating partial hypotheses for the explanation of the observed
behaviour of the human agents, under the assumption that the observed behaviour is
intentional. These partial hypotheses are defeasible and conditioned on the validity
(and eventual verification) of their assumptions. The abductive proof procedure is an
extension of Brenner and Nebel’s work in continual automated planning [28]. Their
notion of assertion allows the system to reason about information not present in the
knowledge base, thereby addressing the need for reasoning under the open-world as-
sumption. The details of our approach are described in [29].

In our system, this abductive intention recognition process is used to interpret the
human’s answers to the question that the robot asks. For instance, answering “yes”
to a polar question expresses the user’s intention that the robot be more certain about
the fact in question, which then typically results in this particular statement (e.g. the
current room’s category is ‘kitchen’) being added as a (strong) evidence to the robot’s
relational model (cf. Sec. 4).

Example dialogue The following is a typical example of a robot-initiated dialogue
for knowledge gathering and verification. Below we focus on the aspects of dialogue
interpretation. The systemic effects underlying such a dialogue are explained in more
detail in Section 6.2.

• robot: “hello human” opening engagement

12

• human: “hello dora” dialogue interpretation yields that the dialogue has been successfully opened

• robot: “ok” backchannel response about successful interpretation of the user’s utterance

• robot: “is this room a kitchen?” verification question triggered by the planner

• human: “yes” dialogue interpretation infers the human’s intention that the proposition underlying the pre-

ceding question be added as factual knowledge

• robot: “ok” backchannel response about successful interpretation of the user’s utterance

The robot’s utterances “hello human” and “is this room a kitchen?” are triggered
by the planner. The response feedback “ok” originates in the dialogue interpretation.
It signals (cf. [30]) that the robot was able to come up with an interpretation of the
human’s utterance that is compatible and consistent with its belief state. While in
this system we have chosen a simple verbal feedback (“ok”), this response could be
replaced with a more natural-sounding vocal backchannel signal (“hmm”, “uh-huh”)
as described by Schröder et al. [31]. Their listener vocalization module is based on the
same text-to-speech system as the one used in our system, cf. [32].

3.6 Person Search
As defined in the previous section about the dialogue competence, finding a person
to talk to is an enabling competence for actually engaging in a dialogue. In order to
allow our system to find persons, we implemented a active person search competence
based on input (image and depth information) from the MICROSOFT R� KINECTTM. It
is modelled as a stochastic action look-for-person that has a probabilistic effect
to see a person at a place if s/he is within communication range to that given place
(currently set to 3m). Whenever that action is triggered, the robot will turn in that
place to acquire a random orientation. Then it commands the pan-tilt unit to scan the
area around the robot stepping in angles of 80% of the aperture angle of the KinectTM to
cover the whole scan area with some overlap between views. For each view acquired,
the OpenCV face detector (using cascades of simple detectors for simple Haar-like
features [33]) is run to yield a number of potential faces. To reduce the number of
false positives, those hypotheses are filtered using a simple heuristic: It requires the
distance to that face, estimated on the assumption of a constant size for human faces,
to be within a 50cm margin around the median depth reported by the KinectTM for
the area of the face. Upon successful detection, the detected person is associated with
the nearest place and the probability of that respective person being at that place is
revised accordingly, yielding the update of the belief state in the conceptual layer. In
our current model we expect there to be one or no person within a room with a certain
default probability being encoded in the domain model of the conceptual layer (cf.
concept “Person” and its relations in Fig 4).

4 Conceptual Layer
The conceptual layer is the representation and reasoning layer unifying the knowledge
in the system. It comprises gathered knowledge, actively acquired through the compe-
tences presented above to realise self-extension, and predefined conceptual knowledge
as part of the overall domain model which is also part of the conceptual layer. For a
mobile robot such as ours, it also realises the highest layer of the qualitative spatial
framework presented in [34, 16], where it has been referred to as the conceptual map

13

RoomObject

Magazine Cornflakes Shape Visual
Appearance

has-a

Square Elongated

Room
Property

Office Seminar
Room

......

has-a

Office-like Classroom-
like

has-a

object1 room1

is-a

shape1

is-a
is-a

has

place1

contains

Place

appear-
ance1

has is-a

has

Human-Asserted
Category

"Office" "Seminar
Room"

has-a

attri-
bution1

has

has-a

connected con.

instance

Class

subtype relation

probabilistic relation
determinstic relation

inferred probabilistic relation
undirected prob. relation

personPerson

has-a

has

is-a

has-a

is-a

Figure 4: A visualised excerpt of the ontology of the conceptual layer. It comprises knowledge about concepts (rectangles)
and the relations between those concepts and instances of spatial entities (ellipses) of which only an example are shown
here. Where relations are probabilistic (see legend) they refer to a set of concepts which represent possible assignments to
the respective probabilistic relation. The model features both directed (shown with arrow heads) and undirected relations
(the “connected” relation between different subtypes of Room is an example of the latter). This representation is compiled
into a chain graph representation (see Fig. 5) to draw inference about unseen relations.

due to its strong emphasis of spatial information. It accommodates a relational repre-
sentation, storing conceptual knowledge as relations between concepts and capturing
instance knowledge as relations between either instances and concepts, or instances and
other instances. In order to account for the uncertainty of both our domain knowledge
as well as the gathered instance knowledge, relations are inherently uncertain and thus
represented using a probabilistic framework. Hence, the conceptual layer also features
probabilistic inference of not directly observed instances and relations. Taken together,
the conceptual layer forms the robot’s beliefs about the world and unifies these beliefs
into a probabilistic belief state accessible to the deliberative layer.

4.1 Relational Model
An excerpt of the representation in the conceptual layer is visualised in Fig. 4. Rela-
tions are either predefined as part of the domain model, acquired through one of the
competences, or inferred through inference in the conceptual layer. Uncertain knowl-
edge is represented as probabilistic relations. However, not all relations are necessarily
probabilistic; the representation also supports deterministic relations. In general, a
non-existent relation can therefore be thought of as having probability 0. An acquired
relation is one that is grounded in observations and generated as a result of a percep-
tual process. Predefined relations are given (and quantified if they are probabilistic)
as part of a fixed ontology of default knowledge. Overall, the representation defines
a taxonomy of concepts and associations between instances and concepts using hy-
ponym relationships (“is-a”). Then, directed relations (“has-a”) are used to describe,
e.g., properties of room categories in terms of spatial properties, such as shape, size or
appearance, and objects. Finally, there is also support for undirected associative rela-
tions to, e.g., represent connectivity between rooms; to encode knowledge such as that
a corridor is likely to be next to a bathroom, but a bathroom is unlikely to neighbouring
a kitchen.

14

Figure 5: Structure of the chain graph model compiled from the relational model. The vertices represent random variables.
The edges represent the directed and undirected probabilistic relationships between the random variables. The textured
vertices indicate observations that correspond to sensed evidence.

Probabilistic relations allow the expression of statistical dependencies and uncer-
tainty. An example is the “has-a” relation linking subtypes of “Room” to subtypes of
“Object”. It constitutes a probabilistic relation that is quantified by the competence
“Object-Room Co-occurrence” as described in Sec. 3.3 and can represent the probabil-
ity that generally, e.g., sinks and faucets are more common in kitchens and bathrooms
than in living rooms. It shall be noted that this is background knowledge that does not
necessarily apply to the current situation. However, the “has-a” relation for a specific
room instance (e.g. for “room1” in Fig. 4 having a certain type of object in it) can
then be inferred from the knowledge in the conceptual layer taking into account other
evidence such as the knowledge about specific “Room Properties”.

4.2 Drawing Inferences
In order to allow (Bayesian) inference in the conceptual layer, the relational represen-
tation is compiled into a chain graph representation [16], whose structure is adapted
on the fly reflecting the state of the underlying belief models. Chain graphs provide a
natural generalisation of directed (Bayesian Networks) and undirected (Markov Ran-
dom Fields) graphical models, allowing us to model both “directed” causal (such as
“is-a” relations) as well as “undirected” symmetric or associative relations (such as
connectivity of rooms discussed above). The use of a chain graph allows us to model
circular dependencies originating from possible loops in the topological graph, as well
as direct use of the probabilistic relations between the concepts. In our implementa-
tion, chain graph inference is event-driven, triggered by updates to the belief model (cf.
Fig. 1(a)). For example, if an appearance property, or object detection alters the prob-
ability of a relation, inference proceeds to propagate the consequences throughout the
graph. In our work, the underlying inference is approximate, and uses the fast Loopy
Belief Propagation [35] procedure.

An exemplary chain graph corresponding to the relational model shown in Fig. 4
is presented in Fig. 5. Each discrete place instance is represented by a set of random
variables, one for each class of relation linked to that place. These are each connected
to a random variable over the categories of rooms, representing the “is-a” relation be-
tween rooms and their categories in Fig. 4. Moreover, the room category variables are

15

connected by undirected links to one another according to the topological map. Here,
the potential functions �

rc

(·, ·) describe the type knowledge about the connectivity of
rooms of certain categories (e.g. that kitchens are more likely to be connected to corri-
dors than to other kitchens).

The remaining variables represent: shape and appearance properties of space as
observed from each place; and the presence of objects. These are connected to obser-
vations of features extracted directly from the sensory input. As explained in Sec. 3.2,
these links are quantified by the categorical models of sensory information. Finally,
the distributions p

s

(·|·), p
a

(·|·), p
oi(·|·) represent the common sense knowledge about

shape, appearance, and object co-occurrence, respectively. They allow for inference
about other properties and room categories, e.g. that the room is likely to be a kitchen,
because you are likely to have observed cornflakes in it.

With all these features and abilities the conceptual layer provides a unified view to
obtain a probabilistic state space suitable for the deliberative layer. It comprises the
predefined domain knowledge and the gathered instance knowledge compiled into a
consistent Bayesian representation that is then translated into a DTPDDL representa-
tion. How exactly the uncertain knowledge and state is represented, and then planned
with, is subject to next section.

5 Switching Planner
The planning subarchitecture is responsible for coordinating the overall system be-
haviour. The use of a domain independent planner provides us a relatively easy way
to extend the capabilities of the system and allow for a wider range of tasks. As the
tasks we are interested in involve knowledge gathering in partially unknown environ-
ments, we employ a decision theoretic (DT) planner that can exploit the probabilities
provided by the conceptual layer. For example, when searching for an object the plan-
ner may decide to first ask a human for the type of the current room (i.e. scheduling
an ask-for-category-polar action as offered by the dialogue competence in-
troduced in Sec. 3.5), if this information is strongly correlated with the probability of
finding the object there. As full decision theoretic planning is not feasible in large
environments and as it is difficult to model open worlds as a POMDP, we use a classi-
cal (sequential) planner in a continual planning framework to decide on the high level
strategy and use the DT planner in instances where sensing is required. The classical
planner can perform limited reasoning about probabilities, so it may decide to move to
a room that has a high likelihood of containing the target object and perform a search
there. Only once the robot has reached that room will the DT planner take over to
decide in detail which sensing actions should be performed.

5.1 Representing Uncertain Knowledge
There are three representations for uncertain knowledge used by the planning system:

• assumptive actions are used to model probabilistic relations between facts.

• The factored planning state represents a belief state as a tree of facts similar to
PPDDL[36].

• The flat belief state is a probability distribution over all possible states.

16

As the third representation is only used internally by the DT planner, we will only
describe the first two in more detail. The structure of the planning problems as de-
scribed here is somewhat simplified from the full version, which can be found in ap-
pendix A.

The syntax for describing an initial state distribution is taken verbatim from PPDDL.
That distribution is expressed in a tree-like structure of terms. Each term is either: (1)
atomic, e.g., a state proposition such as (= (related-to milk) room0); (2) prob-
abilistic, e.g., (probabilistic ⇢1(T1)..⇢n(Tn

)) where T
i

are conjunctive; or (3) a
conjunct over probabilistic and atomic terms. The root term is always conjunctive, and
the leaves are atomic. For example, a simplified object search could have:3

(:init
(= (is-in Robot) room0)
(probabilistic

0.4 (and (= (category room0) kitchen)
(probabilistic .7 (= (related-to cup) room0))
(probabilistic .8 (= (related-to milk) room0)))

0.4 (and (= (category room0) office)
(probabilistic .5 (= (related-to cup) room0))
(probabilistic .1 (= (related-to milk) room0)))

0.2 (and (= (category room0) corrdior)
(probabilistic .2 (= (related-to cup) room0)))))

The interpretation is given by a visitation of terms: An atom is visited iff its conjunc-
tive parent is visited, and a conjunctive term is visited iff all its immediate subterms are
visited. A probabilistic term is visited iff its conjunctive parent is visited, and exactly
one of its subterms, T

i

, is visited. Each visitation of the root term according to this
recursive definition defines a starting state, along with the probability that it occurs.
The former corresponds to the union of all visited atoms, and the latter corresponds
to the product of ⇢

i

entries on the visited subterms of probabilistic elements. Making
this concrete, the above example yields the following flat distribution (using ? as un-
defined):

Prob. (is-in Robot) (category room0) (related-to milk) (related-to cup)
.224 room0 kitchen room0 room0
.096 room0 kitchen room0 ?
.056 room0 kitchen ? room0
.024 room0 kitchen ? ?
.02 room0 office room0 room0
.18 room0 office room0 ?
.02 room0 office ? room0
.18 room0 office ? ?
.04 room0 corridor ? room0
.16 room0 corridor ? ?

Assumptive actions are used to allow a more compact representation of probabilis-
tic background knowledge. As an alternative to describing the complete initial state
using grounded probabilistic statements, assumptions allow us to represent re-
lationships between facts in a lifted form.

The following assumption is an description on how room categories relate to the
existence of objects using conceptual knowledge:

3In PDDL, (:init T1..Tn) expresses the conjunctive root of the tree – i.e., the root node (and T1..Tn).
Also, we shall write p, rather than (and p), for conjunctive terms that contain a single atomic subterm.

17

(:assume object-in-room
:parameters (?l - label ?r - room ?c - category ?o - visualobject)
:precondition (and (= (category ?r) ?c)

(= (label ?o) ?l))
:effect (probabilistic (prob-inroom ?l ?c)

(assign (related-to ?o) ?r)))

It should be read as: if the room ?r is of category ?c, and a value (prob-inroom
?l ?c) is provided by the conceptual knowledge store, then an object ?o of type ?l
is in ?r.

Both representations are equivalent: a planning task that contains lifted assump-
tions can be converted to a DTPDDL state distribution, and a tree of probabilistic
statements can be turned into a set of grounded assumptions. As an input to our system
we use a combination of both representations. Some systems provide us with direct
probability distributions over facts (e.g. the category of a room). Those are represented
as a probabilistic expression in the initial state description. These distribution
are the base on which further assumptions can be made, which are usually given in a
lifted format.

5.2 Modelling Observations
For the decision theoretic planner, we require a representation of sensing that can be
used to model POMDPs. We developed DTPDDL, an extension of PPDDL, that can ex-
press probabilistic models of the sensing consequences of acting, to quantitatively cap-
ture unreliability in perception. There are straightforward compilations from problems
expressed in DTPDDL to flat state-based (and propositionally factored) representations
of the underlying decision process. Although similar to the POND input language [37],
DTPDDL distinguishes itself by explicitly treating state and perceptual symbols sepa-
rately, and by providing distinct declarations for operators (i.e., state model) and senses
(i.e., observation model). In this last respect, DTPDDL admits more compact domain
descriptions where sensing effects are common across multiple operators.

To model sensing capabilities, we have operator-like “sense” declarations, with
preconditions expressed using state and action symbols, and uniformly positive effects
over perceptual symbols. For example, where look-for-object is the operator that ap-
plies an object detection algorithm at a specific place, an object search task will have:

(:sense vision
:parameters (?r - robot ?v - visual-object ?l - location)
:execution (look-for-object ?r ?v ?l)
:precondition (and (= (is-in ?r) ?l))
:effect (and (when (= (is-in ?v) ?l)

(probabilistic .8 (= (o-is-in ?v) ?l)))
(when (not (= (is-in ?v) ?l))

(probabilistic .1 (= (o-is-in ?v) ?l)))))

i.e., there is a 10% false positive rate, and 20% probability of a false negative. This rep-
resentation allows us to represent actions that have multiple independent observational
effects.

5.3 Switching Continual Planning
Our switching planner is based on the continual planning paradigm: A continual plan-
ner creates a plan containing assumptions that are compatible with the current observed

18

state and starts executing the plan. If an action fails to execute or new observations in-
dicate that the current plan will no longer reach the goal, the planner replans from the
new state and repeats the process until either the goal is reached or no further plan
can be found. A formal outline of the system is given in Algorithm 1. This system
switches because planning and plan execution proceed in interleaved sessions in which
the base planner is either sequential or decision-theoretic. The initial session is se-
quential (Alg. 1, Line 7), which begins when a DTPDDL goal is given to the planner
and a DTPDDL problem description is given to the system. Given in Algorithm 2, a
sequential session computes a serial plan that corresponds to one execution-trace in the
underlying decision-process (Alg. 2, Line 4). That trace is a reward-giving sequence of
process actions and assumptive actions. Each assumptive action corresponds to an as-
sertion about some facts that are unknown at plan time – e.g. that a box of cornflakes is
located on the corner bench in the kitchen. The trace specifies a plan and characterises
a deterministic approximation (see [38]) of the underlying process in which that plan is
valuable. Traces are computed by a cost-optimising classical planner which trades off
action costs, goal rewards, and determinacy. Execution of a trace proceeds according
to the process actions in the order that they appear in the trace (Alg. 2, Lines 8-18). If,
according to the underlying belief-state, the outcome of the next action scheduled for
execution is not predetermined above a threshold (Alg. 2, Lines 13), then the system
switches to a DT session (Alg. 1, Line 11).

Algorithm 1 Switching Continual Planner
1: Input:

• DTPDDL problem description ⇧.

2: Output:

• success or failure

3: loop
4: if CHECKGOAL(⇧) then
5: return success
6: end if
7: ⇧,⇡ SEQUENTIALSESSION(⇧)
8: if ⇡ = failure then
9: return failure

10: else if ⇡ 6= [] then
11: ⇧ DTSESSION(⇧,⇡)
12: end if
13: end loop

The pseudocode for a DT session is given in Algorithm 3. Because online DT
planning is impractical for the size of problem we are interested in, DT sessions plan
in a small abstract problem defined in terms of the trace from the proceeding sequen-
tial session. The pseudocode for the procedure that yields that abstraction is given in
Algorithm 4. The abstract state-space is characterised by a limited number of propo-
sitions, chosen because they relate evidence about assumptions in the trace. To allow
the DT planner to judge assumptions from the trace, we add disconfirm and confirm
actions to the problem for each of them (Alg. 3, Line 2). These model a relatively
small reward/penalty if the corresponding judgement is true/false. If a judgement ac-

19

tion is scheduled for execution, then the DT session exits (Alg. 3, Line 5), and a new
sequential session begins according to Algorithm 1.

5.3.1 Sequential Sessions

In this paper we restrict our attention to deterministic-action POMDPs in which all state
uncertainty is expressed in the (:init) declaration. This declaration is used by our
approach to define the starting state for sequential sessions, and the set of assumptive
actions available to sequential planning. The resulting deterministic problem model,
⇧D (Alg. 2, Line 3), is the problem solved by a classical planning during the session.4
For a sequential session the starting state corresponds to the set of facts that are true
with probability 1. Continuing our example, that starting state is the singleton:

s0 ⌘ {(= (is-in Robot) kitchen)}.
To represent state assumptions in ⇧D we augment the problem posed during a

sequential session with an assumptive action A�(⇢
i

;T
i

) for each element, ⇢
i

(T
i

),
of each probabilistic term from (:init). Here, A�(⇢

i

;T
i

) can be executed if no
A�(⇢

j

;T
j

), j 6= i, has been executed from the same probabilistic term, and, either
(probabilistic ..⇢

i

(T
i

)..) is in the root conjunct, or it occurs in T
k

for some exe-
cuted A�(⇢

k

;T
k

). We also add constraints that forbid scheduling of assumptions about
facts after actions with preconditions or effects that mention those facts. For example,
the robot cannot assume it is plugged into a power source immediately after it unplugs
itself. Executing A�(⇢

i

;T
i

) in a state s effects a transition to a successor state sTi , the
union of s with atomic terms from T

i

, and of course annotated with auxiliary variables
that track the applicability of assumptive actions. For example, consider the following
sequential plan:

A�(.4; (= (category room0) kitchen));
A�(.8; (= (related-to milk) room0));
A�(.7; (= (related-to cup) room0));
(look milk room0); (look cup room0);
(report milk room0); (report cup room0);

Applying the first action in s0 yields a state in which the following facts are true:

{(= (is-in Robot) room0), (= (category room0) kitchen)}
In the underlying belief-state, this is true with probability 0.4. The assumed state before
the scheduled execution of action (look milk room0) is:

{(= (is-in Robot) kitchen), (= (category room0) kitchen),
(= (related-to milk) room0), (= (related-to cup) room0)}

Which is actually true with probability 0.224 according to the underlying belief.
To give an optimisation criteria for sequential sessions we model each A�(⇢

i

;T
i

)
probabilistically, supposing that its application in state s effects a transition to sTi with
probability ⇢

i

, and to s? with probability 1 � ⇢
i

. State s? is an added sink. Taking
⇢
i

to be the probability that the ith sequenced action, a
i

, from a trace of state-action
pairs hs0, a0, s1, a1, .., sN i does not transition to s?, then the optimal sequential plan
has value:

V ⇤ = max
N

max
s0,a0,..,sN

Y

i=1..N�1

⇢i
X

i=1..N�1

R(si, ai),

4Without a loss of generality we also suppose that actions do not have negative preconditions.

20

In our system, we have a very specific reward function that is geared towards use
in a classical planner: Each action incurs a negative reward that is proportional to the
action’s costs: R(s

i

, a
i

) = �cost(a
i

). Additionally, a fixed positive reward is awarded
for reaching the goal. The height of the goal reward determines whether the planner
should prefer cheap but unlikely plans (low goal reward) or more expensive but more
likely ones.

Algorithm 2 SEQUENTIALSESSION()
1: Input:

• DTPDDL problem description ⇧, including initial belief-state b0 expressed
as an (:init) term

2: Output:

• DPTDDL state resulting from the execution of actions.

• Plan prefix ⇡ that requires decision theoretic planning or failure if the prob-
lem is unsolvable.

3: Initialise:

• Determinisation ⇧D of ⇧ with assumptive actions A�

4: CLASSICALPLANNER produces a sequential plan ⇡ = [a1, a2, ..., an] for ⇧D

5: if ⇡ = ; then
6: return ⇧, failure
7: end if
8: for a

i

2 ⇡ do
9: if ¬CHECKAPPICABILITY(⇡,⇧) then

10: return ⇧, []
11: else if a

i

2 A� then
12: – Ignore action a

i

13: else if 9p 2 pre(a
i

) s.t. Pr(p) < 0.95 then
14: return ⇧, [a1, . . . , ai]
15: else
16: ⇧, o EXECUTEACTION(a

i

)
17: end if
18: end for
19: return ⇧, []

5.3.2 DT Sessions

When, during a sequential session, an action is scheduled whose outcome is uncertain
according to the underlying belief-state (Alg. 2, Line 13), planning switches to a DT
session. This plans for small abstract processes defined according to the action that
triggered the DT session, the assumptive actions in the proceeding trace, and the current
belief-state. Targeted sensing is encouraged by augmenting the reward model to reflect
a heuristic value of knowing the truth about assumptions. In detail, all rewards from
the underlying problem are retained. Additionally, for each relevant assumptive action

21

A�(⇢
i

;T
i

) (see Def. 1) in the current trace ⇡, we have a disconfirm action A•(⇢
i

;T
i

)
so that for all states s:

R(s,A•(⇢
i

;T
i

)) =

⇢
$(T

i

) if T
i

6✓ s

$̂(T
i

) otherwise

where $(T
i

) (resp. $̂(T
i

)) is a small positive (negative) numeric quantity which cap-
tures the utility the agent receives for correctly (incorrectly) rejecting an assumption
(Alg. 3, Line 2).

Definition 1 (Relevant Assumption) Given a problem ⇧ with belief b0 and a sequential-
plan prefix ⇡ = [a1, .., aN , ã] with switching action ã, the set of relevant assumptions
in the prefix corresponds to the set of assumptive actions, denoted A�R, given by:

A�R ⌘ {a|a 2 ⇡ \A�,
; 6⌘ (add(a) [delete(a)) \ pre(ã), or
9s.b0(s) > 0, 9 2 K(ã, s) s.t.
; 6⌘ (add(a) [delete(a)) \ preS()}

⌅

In terms of action physics, a disconfirm action can only be executed once, and
otherwise is modelled as a self-transformation. We only consider relevant assumptions
when constructing the abstract model. For example, taking the switching action ã to
be (look milk kitchen) from our earlier sequential plan example, we have that
A�(.7; (= (related-to cup) room0)) is not relevant, and therefore we exclude
the corresponding disconfirm action from the abstract decision process. Given ã, we
also include another once-only self-transition action A.pre(ã), a confirmation action
with the reward property:

R(s,A.pre(ã)) =

⇢
$(pre(ã)) if pre(ã) ✓ s

$̂(pre(ã)) otherwise

Execution of either a disconfirmation or the confirmation action exits the DT session.
Turning to the detail of (dis-)confirmation rewards, in this paper, for A•(⇢

i

;T
i

)

actions we set $(x) to be a small positive constant, and have $̂(x) = �$(x)(1 �
⇢)/⇢ where ⇢ is the probability that x is true. For A.pre(ã) actions we have $̂(x) =
�$(x)⇢/(1� ⇢).

In order to guarantee fast DT sessions, these plan in an abstract process determined
by the current trace and underlying belief-state (Alg. 3, Line 3). The abstract process
posed to the DT planner is constructed according to Algorithm 4, which first constrains
as statically false all propositions except those which are true with probability 1, or
which are the subject of relevant assumptions (Alg. 4, Line 2). The details of that
constraint is formally given in terms of a belief projection, as follows.

Definition 2 (Belief Projection)
Given a set of propositions X ✓ P and a belief b expressed as a DTPDDL (:init)

term, ✓(X, b) gives a belief-state that corresponds to the interpretation of the b term
where all atoms not in X are omitted. ⌅

Taking our example trace with assumptive action probabilities changed to reflect the
belief-state in Fig. 6B, given switching action “(look box kitchen)” the underlying be-
lief in Fig. 6B would determine a fully constrained belief given by Fig. 6A. Next, static

22

Algorithm 3 DTSESSION()
1: Input:

• DTPDDL problem description ⇧, including current belief-state b0 expressed
as an (:init) term

• Sequential-plan prefix [a1, .., aN , ã], containing both actions from ⇧, and
assumptive actions A�. Here, ã is the action whose scheduled execution
switched planning from a sequential session (see Alg. 2) into this decision-
theoretic session.

2: Initialise:

• A�R, the relevant assumptions, see Def. 1

• ba FPAR(b,A�R,MAX) – see Alg. 4

• Aconfirm {CONFIRMACTION(ã)} – The confirmation actions according
to Def. 1

• Adisconfirm {DISCONFIRMACTION(a
i

) 8a 2 A�R} – The disconfirma-
tion actions according to Def. 1

• ⇧DT ⇧ with added actions Aconfirm and Adisconfirm

3: bã0 FPAR(b0,A�R, 200) – see Alg. 4
4: a DTINIT(⇧DT)
5: while a 62 Aconfirm [Adisconfirm do
6: ⇧, o EXECUTEACTION(a)
7: a DTNEXT(⇧DT , o)
8: end while
9: return ⇧

constraints are removed, one proposition at a time, until the number of states that can
be true with non-zero probability in the initial belief of the abstract process reaches a
given threshold (Alg. 4, Lines 3-8). In detail, for each statically-false proposition we
compute the entropy of the relevant assumptions of the current trace conditional on that
proposition, as follows.

Definition 3 (Conjunctive Clause)
Where a literal ` is a proposition p or its negation ¬p, a conjunctive clause is a

term of the form `1 ^ `2 ^ .. ^ `
n

, written
V

i

`
i

. Given a clause �, we write s |= �,
pronounced “s models �”, if each positively occurring term p in � is contained in s,
i.e., p 2 s, and each negatively occurring literal ¬p is not, i.e., p 62 s. ⌅

Definition 4 (Assignments as Conjuncts) Writing 2X for the powerset of a set X ✓ P ,
then

�[X] ⌘ {
^

p2X

0\X

p ^
^

p2X\X0

¬p | X 0 2 2X},

In other words, �[X] is a set of conjunctions each of which corresponds to one truth
assignment to elements in X . ⌅

23

(A) Fully constrained belief (C) Partially constrained belief

(:init (=(is-in Robot)room0)
(.4 (and (= (category room0)kitchen)

(.8 (= (related-to milk)room0)))

(:init (=(is-in Robot)room0)
(.4 (and (= (category room0)kitchen)

(.8 (= (related-to milk)room0))
(.7 (= (related-to cup)room0)))))

(B) Underlying DTPDDL belief

(:init (=(is-in Robot)room0)
(.4 (and (= (category room0)kitchen)

(.8 (= (related-to milk)room0))
(.7 (= (related-to cup)room0)))

.4 (and (= (category room0)office)
(.1 (= (related-to milk)room0))
(.5 (= (related-to cup)room0)))
.2 (and (= (category room0)corridor)

(.2 (= (related-to cup)room0)))))

Figure 6: Simplified examples of belief-states from DT sessions.

Definition 5 (Conditional Entropy) Writing b(�) for the probability that a conjunction
� is satisfied in belief-state b – i.e. b(�) =

P
s2S,s|=�

b(s) – the entropy of propositions
X conditional on a proposition y, written H(X|y), is:

H(X|y) =
X

x2�[X],y02{y,¬y}

b(x ^ y0) log2
b(y0)

b(x ^ y0)

⌅

Here, a low H(X|y) value suggests that knowing the truth value of y is useful for deter-
mining whether or not some assumptions X hold. When removing a static constraint
on propositions during construction of the abstract process (Alg. 4, Line 6), y

i

is con-
sidered before y

j

if H(X|y
i

) < H(X|y
j

). For example, if the serial plan assumes a
bottle of milk is in room0which we assume to be a kitchen, then those propositions are
added to characterise the abstract process’ states. Taking the relevant assumptions X to
be {(= (category room0) kitchen), (= (is-in milk) room0)}, in relaxing
static constraints the following entropies are calculated:

H(X|(=(category room0) kitchen)) = 0.53
H(X|(=(category room0) office)) = 0.81
H(X|(=(category room0) corridor))= 0.59
H(X|(=(related-to milk) room0)) = 0.56
H(X|(=(related-to cup) room0)) = 0.99

Therefore, the first static constraint to be relaxed is for (=(related-to cup)room0),
giving a refined abstract belief state depicted in Fig. 6C. Summarising, if for Fig.6B the
DT session is restricted to belief-states with fewer than 8 elements, then the starting
belief-state of the DT session does not mention a “corridor” or “office”.

6 Case-based Analysis of System Behaviour
In order to test our system and analyse the generated behaviour we ran it in a real-
world office environment. To highlight its ability to achieve different tasks with one
and the same system we gave the robot three different goals to achieve, in series, in

24

Algorithm 4 FPAR() – Factored POMDP Abstraction and Refinement
1: Input:

• Current belief-state b formatted as a DTPDDL (:init) term

• Relevant assumptive actions A�R

• MAX, upper limit on the number of states allowed to occur with non-zero
probability in the initial belief of the resulting abstract process

2: Initialise:

• P> {p|b(s) > 0, p 2 s} – Facts that are necessarily true

• P� {p|A�(⇢
i

;T
i

) 2 A�, p 2 T
i

} – Facts that are assumed true in the
proceeding sequential session

• P? P\(P>[P�) – Facts that are statically false in a minimal abstraction

• Abstraction index i 0

• P
i

 P> [P� – Facts that characterise states in the i’th abstraction

• b
i

 ✓(P
i

, b) – Belief-state of i’th abstraction, see Def. 2.

3: while Cardinality of {s|b
i

(s) > 0} is less than MAX do
4: i i+ 1
5: Choose a p from P? \ P

i�1 so that H(P�|p) is minimal. See Def. 5.
6: P

i

 P
i

[p
7: b

i

 ✓(P
i

, b), see Def. 2
8: end while
9: return b

i

– Starting state distribution for abstract process

one run. First, we tasked the robot to explore autonomously highlighting its ability to
extend its map and to plan in some limited open-world. Then we gave it the goal to
determine the category of one of the three rooms, and finally to find a certain object
located in another room. This case-based analysis shall (i) prove the general ability
to engage in a variety of different tasks and generate intelligent behaviour acquiring
knowledge by invoking the right competences, (ii) serve as exemplary runs to help
the understanding of the actual processing within the system including planning and
reasoning, and (iii) highlight the ways our approach reasons and plans with uncertainty
taken into account. In previous work [2] we were able to show that this system can
successfully exploit uncertain knowledge, acquired through co-occurrence analysis of
room and object categories (cf. Sec. 3.3) and through inference over room properties,
to yield more efficient and robust object search behaviour. Here we build upon these
findings and analyse what course of action our system chooses for a variety of different
tasks.

6.1 Experimental Setup
To illustrate the capabilities of our integrated system we carried out a number of runs
in a environment consisting of an office and a meeting room, linked by a corridor. The

25

robot was given three different goals, one at a time. These goals were: to Explore
the environment and hence build maps of interconnected places (divided into rooms)
and obstacles / free space; to Categorise one of the rooms by asking a person if the
uncertainty of the inferred categorisation (following exploration) is above a threshold;
and to Find a specified object (a magazine) in an explored environment.

The focus for these runs was to demonstrate the ability of the system to achieve
these different goals. To ensure that the initial room categorisation (produced during
exploration) was sufficiently uncertain we adjusted the domain models by reducing
the probability that an ‘office-like’ place was actually in an office and increased the
probability that it was in a different room type (we also restricted the available room
types to the three present in this environment). To show that the robot will first search
in the most likely location for the magazine we adjusted the prior probabilities for its
location to be high for the meeting room and low for the office and corridor. To prevent
the robot from entering other offices or travelling too far down the corridor we inserted
artificial barriers into the spatial subarchitecture. Only parts of the office and meeting
room were accessible to the robot due to the placement of the furniture. The location
of the magazine was varied between runs. User input was through GUIs rather than
speech. One GUI was used to input the goals. Another GUI was used for the dialogue-
based interaction for the room categorisation task. The robot generated text output
which was also spoken using a text-to-speech component.

The robot started each run in the same location (the office) and orientation. The
following goals were issued, in this sequence: explore; determine the category of the
initial room; explore again; and find the magazine. The purpose of the second explo-
ration goal is to ensure that the map is complete before starting the object search task,
because new placeholders may be found when the robot returns to the office. We will
not analyse the performance of the second exploration task.

6.2 Analysis of System Behaviour
We discuss the behaviour of the system in one of the runs. The robot’s model of the
environment at the end of this run is shown in Fig. 7.

Explore!

The system was initialised in the office with the robot at Place 0 (to the left of Fig. 7)
and two new placeholders were created by the mapping & navigation competence
(Sec. 3.1). The robot was first given the goal of exploring the environment:

(forall (?p - place) (= (placestatus ?p) trueplace))

The exploration task is therefore carried out by planning to visit all placeholders. If
the robot successfully moves to a placeholder it is converted into a Place and further
placeholders are generated if new free space is discovered by the competence. This
may subsequently lead to re-planning because it can result in a change of the belief
state (the addition of new objects) that was not explicitly planned for. Fig. 8(a) shows
the actions carried out for this goal, where the blank space between actions is due to
re-planning. Each of the first 12 actions was a move (for its definition see line 320
in the planning domain in Appendix A) between a Place and an adjacent placeholder.
This took the robot from the office, out into the corridor and down to Place 13.

From Place 13 a move direct (line 336 in Appendix A) was planned to visit
placeholder 15 via Place 14. As noted in Sec. 3.1, this action enables the robot to move

26

Place 0 (Start)

Place 29

Place 13

Place 26

Place 11

Place 15

Figure 7: A visualisation of the robot’s model of the environment at the end of the example run described in section 6.2.
The robot is in the meeting room. The office is on the left. 3D obstacles are shown in green. Here the colours for the room
categories are: purple for office; yellow for corridor; and orange for meeting room .

more quickly between Places because it is allowed to cut corners rather than pass ex-
actly through the intermediate place. From Place 15 a sequence of three move direct
actions took the robot to Place 11 (cf Fig. 8(a)). Exploration continued down the cor-
ridor and into the meeting room, up to Place 26 (the left-most Place in the meeting
room, as shown in Fig. 7). The rest of the actions in the sequence took the robot to
the remaining placeholders (one in the meeting room and two in the corridor). The
exploration goal was achieved when the robot reached Place 29. (Place 30, to left of
Place 0, was created during the second exploration task.)

Categorise!

Next the robot was given the goal of determining the category of room 0 (the office):

(kval robot_0__c (category room_0_91))

where robot 0 c and room 0 91 are the working memory addresses for the beliefs
for the robot and room 0, respectively.

After the exploration goal had been achieved, the robot had the following probabil-
ities for the possible category of this room: office 0.61; meeting room 0.35; corridor
0.04 – i.e. it was most likely an office; the robot therefore planned to verify this hypoth-
esis by using a human as a knowledge source (cf Sec. 3.5). The robot had a prior belief
that any room contains a person with probability 0.9. It therefore chose to go to room 0
to ask someone there. The actions carried out by the robot are shown in Fig. 8(b).
Again, blank space is due to (re-)planning. The initial sequence of move direct
actions took the robot to Place 2 in room 0. After re-planning the robot executed a
look-for-people action (see Sec. 3.6 and line 449 in Appendix A) and found that
there was indeed a person in room 0 (located at Place 0 with probability 0.99). The
robot then moved to Place 0 and used an engage (line 467 in Appendix A) action to

27

establish a dialogue with the human. As part of this action the robot moved to Place 2
and then turned to face Place 0, before commencing the dialogue shown below:

robot: hello human
huan: hello dora
robot: ok

The planner then issued a command to move it back to Place 0. Finally, an
ask-for-category-polar action (line 485 in Appendix A) was executed to ask
the verfication question:

robot: is this room a office?
human: yes
robot: ok

The robot then updated its knowledge about the category of room 0, updating the prob-
ability of it being an office to 0.98 – hence in Fig. 7 (at the end of the run) the discs
around the places in room 0 are a solid purple colour.

Find!

The last goal given to the robot was to find the magazine:

(exists (?o - visualobject)
(and (= (label ?o) magazine)

(kval robot_0__c (related-to ?o)))

As noted above, the robot had a strong prior belief that the magazine is located in a
meeting room. After confirming with a human that room 0 is indeed an office, the
only room that might be a meeting room is room 2 (room 1 having been categorised
as a corridor). The probabilities of the category of room 2 were: meeting room 0.39;
office 0.39; corridor 0.22. The robot therefore planned to move to room 2 (as shown in
Fig. 8(c)). Once there it executed a create cones in room action (as described in
Sec. 3.4 and defined in line 355 in Appendix A). 17 viewpoints were selected, grouped
into 8 conegroups – see Fig 9 which shows the state after the robot has found the maga-
zine (the cyan viewcones have been searched; the red ones have not). The probability of
the magazine being in each of these conegroups ranged between 0.04 and 0.10, with the
sum being 0.61. The planner selects one conegroup at a time to process, based on the
cost of moving to the Place from the current location and the probability associated with
the viewpoints in the conegroup. Fig. 8(c) shows that three process conegroup
actions (cf. line 422 in Appendix A) were executed, after corresponding movement
actions to take the robot to the associated Place. The first conegroup processed was
at Place 24 and contained two viewpoints. The second was at Place 27 (3 viewpoints)
and the the third at Place 23 (2 viewpoints – the magazine was found in the second of
these). Re-planning occurred after each conegroup was processed, in order to select
which conegroup to process next.

As described in Sec. 3.4, as viewpoints are processed the probability that the maga-
zine is in the room decreases if the magazine is not detected. Therefore the probability
of room 2 being a meeting room decreased from the initial value of 0.39 to 0.14 (via
intermediate values of 0.28 and 0.19) as this additional information was used by the
conceptual layer (cf Sec.4). This is reflected the size of the orange segment around the
Places in the room in Fig. 7.

28

0 200 400 600 800 1000 1200

Time in sec.

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e

m
o
v
e

(a) Explore!

0 50 100 150 200 250 300

Time in sec.

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

l
o
o
k
−
f
o
r
−
p
e
o
p
l
e

m
o
v
e

e
n
g
a
g
e

m
o
v
e

a
s
k
−
f
o
r
−
c
a
t
e
g
o
r
y
−
p
o
l
a
r

(b) Categorise!

0 100 200 300 400 500 600

Time in sec.

m
o
v
e

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

m
o
v
e
_
d
i
r
e
c
t

c
r
e
a
t
e
_
c
o
n
e
s
_
i
n
_
r
o
o
m

m
o
v
e
_
d
i
r
e
c
t

p
r
o
c
e
s
s
_
c
o
n
e
g
r
o
u
p

m
o
v
e

m
o
v
e
_
d
i
r
e
c
t

p
r
o
c
e
s
s
_
c
o
n
e
g
r
o
u
p

m
o
v
e
_
d
i
r
e
c
t

p
r
o
c
e
s
s
_
c
o
n
e
g
r
o
u
p

(c) Find!

Figure 8: Sequence of actions executed for different goals, described in Sec. 6.2

7 Conclusion
We presented a mobile robot system that can accomplish a variety of epistemic goals,
taking into account uncertain sensing, and exploit uncertain knowledge, by employ-
ing probabilistic representations, reasoning, and planning, to generate intelligent be-
haviour. The system presented has a layered architecture that features a deliberative
layer accommodating planning and goal management algorithms that are completely
domain-independent. This gives our system the ability to engage in a variety of tasks
and achieve them in a goal-driven manner by just giving the system a different goal.

29

Place 24

Place 27

Place 23

Figure 9: Viewpoints for the object search task described in Sec. 6.2. Cyan viewpoints have been searched; Red ones
have not. The seven black numbers represent the probability that the magazine is contained within the viewpoints in each
conegroup. The probability is reduced as viewpoints are searched; hence the zero values for the three processed conegroups.

Unique to our system is its ability to self-extend, i.e. to pursue epistemic goals to pop-
ulate its belief state with new objects and additional knowledge. Our system pursues
these goals by actively exploiting various knowledge sources, from using its own vi-
sion system to see the world to consulting the web for background knowledge. It can
integrate the potentially unreliable evidence gathered from these sources into a coher-
ent probabilistic representation that in turn is compiled into the belief state used to plan
further actions. Key aspects of our work are: the probabilistic approach to representing
both pre-defined as well as gathered information; the domain-independent planning al-
gorithms that can plan in the vast state space resulting from the probabilistic approach;
and the coherent architectural approach to implement individual competences that are
controlled by the planning algorithms mediated through the conceptual layer that hosts
the domain-specific models. In this paper we were able to show that with this approach
our robot can autonomously explore unknown environments, it can get to know the
category of different rooms, and it can find objects, all by exploiting the probabilis-
tic domain knowledge about human-inhabited indoor environments that the robot is
endowed with.

We have developed an extensible robotic system that reflects on its knowledge,
detects knowledge gaps and plans for knowledge gathering actions. It contains re-
usable components that implement autonomous behaviour, accounting for uncertainty
(in acquired as well as pre-given knowledge) and explicitly represented hypotheses.
Our design allows us to integrate further competences and pursue other goals than the
three classes presented in this paper by adapting the domain models in the conceptual
layer, while not requiring any modification to the planning algorithms in the delibera-
tive layer. Future work includes letting the robot choose more intelligently which goal
to pursue next, extending our work on goal management [12]. Also, one of the most
limiting factors of our system at present is the requirement to provide pre-trained ob-
ject detectors. This limits the system to a rather small set of objects it could recognise,

30

even though potentially we could have a large body of background knowledge about
all sorts of objects. In our aim to reduce the fixed limitations of our system, merging
it with the “George” robot [11] that can interactively learn the appearance of objects,
following the same architectural schema and employing the same deliberative layer as
we do here, is a natural candidate for a future enhancement.

References
[1] S. Dickinson, “The evolution of object categorization and the challenge

of image abstraction,” in Object Categorization: Computer and Human
Vision Perspectives. Cambridge University Press, 2009, pp. 1–58. [On-
line]. Available: http://homepage.univie.ac.at/nicole.rossmanith/concepts/papers/
dickinson2009evolution.pdf

[2] M. Hanheide, C. Gretton, R. W. Dearden, N. A. Hawes, J. L. Wyatt, A. Pronobis,
A. Aydemir, M. Göbelbecker, and H. Zender, “Exploiting Probabilistic Knowl-
edge under Uncertain Sensing for Efficient Robot Behaviour,” in Proc. Int. Joint
Conf. on Artificial Intelligence (IJCAI), 2011.

[3] H. Jacobsson, N. Hawes, G.-J. Kruijff, and J. Wyatt, “Crossmodal content
binding in information-processing architectures,” in Proceedings of the
3rd international conference on Human robot interaction - HRI ’08.
New York, New York, USA: ACM Press, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1349822.1349834

[4] N. Hawes, H. Zender, K. Sjöö, M. Brenner, G.-J. M. Kruijff, and P. Jensfelt,
“Planning and Acting with an Integrated Sense of Space,” in Proc. of Int. Work-
shop on Hybrid Control of Autonomous Systems, Pasadena, CA, USA, July 2009,
pp. 25–32.

[5] J. L. Wyatt, A. Aydemir, M. Brenner, M. Hanheide, N. Hawes, P. Jensfelt,
M. Kristan, G.-J. M. Kruijff, P. Lison, A. Pronobis, K. Sjoo, A. Vrecko,
H. Zender, M. Zillich, and D. Skocaj, “Self-Understanding and Self-Extension:
A Systems and Representational Approach,” IEEE Transactions on Autonomous
Mental Development, vol. 2, no. 4, pp. 282–303, Dec. 2010. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5613920

[6] H. I. Christensen, G.-J. M. Kruijff, and J. L. Wyatt, Eds., Cognitive Systems,
ser. Cognitive Systems Monographs. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, vol. 8. [Online]. Available: http://www.springerlink.com/
index/10.1007/978-3-642-11694-0

[7] N. Hawes and J. L. Wyatt, “Engineering intelligent information-processing sys-
tems with CAST,” Adv. Eng. Inform., vol. 24, no. 1, pp. 27–39, 2010.

[8] K. Sjöö, H. Zender, P. Jensfelt, G.-J. M. Kruijff, A. Pronobis, N. Hawes, and
M. Brenner, “The Explorer system,” in Cognitive Systems, H. I. Christensen,
G.-J. M. Kruijff, and J. L. Wyatt, Eds. Springer, April 2010, pp. 395–421.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-11694-0 10

[9] N. Hawes, M. Hanheide, J. Hargreaves, B. Page, and H. Zender, “Home alone:
Autonomous extension and correction of spatial representations,” in Proc. Int.
Conf. Robotics and Automation (ICRA), 2011, to appear.

31

http://homepage.univie.ac.at/nicole.rossmanith/concepts/papers/dickinson2009evolution.pdf
http://homepage.univie.ac.at/nicole.rossmanith/concepts/papers/dickinson2009evolution.pdf
http://portal.acm.org/citation.cfm?doid=1349822.1349834
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5613920
http://www.springerlink.com/index/10.1007/978-3-642-11694-0
http://www.springerlink.com/index/10.1007/978-3-642-11694-0
http://dx.doi.org/10.1007/978-3-642-11694-0_10

[10] S. Edelkamp and P. Kissmann, “Pddl 2.1: The language for the classical part of
ipc-4,” in Proceedings of the International Planning Competition. International
Conference on Automated Planning and Scheduling. Whistler, Canada, 2004.

[11] D. Skočaj, M. Kristan, A. Vrečko, M. Mahnič, M. Janı́ček, G.-J. M.
Kruijff, M. Hanheide, N. Hawes, T. Keller, M. Zillich, and K. Zhou,
“A system for interactive learning in dialogue with a tutor,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems IROS 2011,
San Francisco, CA, USA, 25-30 September 2011. [Online]. Available:
http://cogx.eu/data/cogx/publications/skocajIROS11.pdf

[12] M. Hanheide, N. Hawes, J. L. Wyatt, M. Göbelbecker, M. Brenner, K. Sjöö,
A. Aydemir, P. Jensfelt, H. Zender, and G.-J. M. Kruijff, “A Framework for Goal
Generation and Management,” in Proceedings of the AAAI Workshop on Goal-
Directed Autonomy, 2010.

[13] A. Pronobis, K. Sjöö, A. Aydemir, A. N. Bishop, and P. Jensfelt, “A framework
for robust cognitive spatial mapping,” in Proceedings of the 14th International
Conference on Advanced Robotics (ICAR’09), Munich, Germany, June 2009.

[14] H. Zender, O. M. Mozos, P. Jensfelt, G.-J. M. Kruijff, and W. Burgard, “Concep-
tual spatial representations for indoor mobile robots,” Robotics and Autonomous
Systems, vol. 56, no. 6, pp. 493–502, June 2008.

[15] N. Hawes, M. Hanheide, J. Hargreaves, B. Page, H. Zender, and
P. Jensfelt, “Home alone: Autonomous extension and correction of spatial
representations,” in 2011 IEEE International Conference on Robotics and
Automation. IEEE, May 2011, pp. 3907–3914. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980004

[16] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and reasoning with
heterogeneous modalities,” in Proceedings of the 2012 IEEE International Con-
ference on Robotics and Automation (ICRA’12), Saint Paul, MN, USA, May
2012.

[17] A. Pronobis, O. M. Mozos, B. Caputo, and P. Jensfelt, “Multi-modal semantic
place classification,” Int. J. Robot. Res., vol. 29, no. 2-3, pp. 298–320, February
2010.

[18] T. Kollar and N. Roy, “Utilizing object-object and object-scene context when
planning to find things,” in ICRA’09: Proceedings of the 2009 IEEE international
conference on Robotics and Automation. Piscataway, NJ, USA: IEEE Press,
2009, pp. 4116–4121.

[19] A. Aydemir, M. Göbelbecker, A. Pronobis, K. Sjöö, and P. Jensfelt, “Plan-based
object search and exploration using semantic spatial knowledge in the real world,”
in Proc. of the European Conference on Mobile Robotics (ECMR’11), Örebro,
Sweden, Sept. 2011.

[20] S. Ekvall, D. Kragic, and P. Jensfelt, “Object detection and mapping for service
robot tasks,” Robotica: International Journal of Information, Education and Re-
search in Robotics and Artificial Intelligence, 2007.

32

http://cogx.eu/data/cogx/publications/skocajIROS11.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980004

[21] H. González-Banos, “A randomized art-gallery algorithm for sensor placement,”
in SCG ’01: Proceedings of the seventeenth annual symposium on Computational
geometry. New York, NY, USA: ACM, 2001, pp. 232–240.

[22] K. Sjöö, A. Aydemir, D. Schlyter, and P. Jensfelt, “Topological spatial relations
for active visual search,” Centre for Autonomous Systems, KTH, Stockholm,
Tech. Rep. TRITA-CSC-CV 2010:2 CVAP317, July 2010.

[23] A. Aydemir, K. Sjöö, J. Folkesson, and P. Jensfelt, “Search in the real world: Ac-
tive visual object search based on spatial relations,” in IEEE International Con-
ference on Robotics and Automation (ICRA), May 2011.

[24] A. Richtsfeld, T. Mörwald, M. Zillich, and M. Vincze, “Taking in shape: Detec-
tion and tracking of basic 3d shapes in a robotics context,” in Computer Vision
Winder Workshop, 2010, pp. 91–98.

[25] H. Zender, G.-J. M. Kruijff, and I. Kruijff-Korbayová, “Situated resolution and
generation of spatial referring expressions for robotic assistants,” in Proceed-
ings of the Twenty-First International Joint Conference on Artificial Intelligence
(IJCAI-09), Pasadena, CA, USA, July 2009, pp. 1604–1609.

[26] M. Schröder and J. Trouvain, “The German text-to-speech synthesis system
MARY: A tool for research, development and teaching,” International Journal
of Speech Technology, no. 6, pp. 365–377, 2003.

[27] R. H. Thomason, M. Stone, and D. DeVault, “Enlightened update: A compu-
tational architecture for presupposition and other pragmatic phenomena,” in Pre-
supposition Accommodation, D. Byron, C. Roberts, and S. Schwenter, Eds. Ohio
State Pragmatics Initiative, 2006.

[28] M. Brenner and B. Nebel, “Continual planning and acting in dynamic
multiagent environments,” Autonomous Agents and Multi-Agent Systems,
vol. 19, pp. 297–331, 2009, 10.1007/s10458-009-9081-1. [Online]. Available:
http://dx.doi.org/10.1007/s10458-009-9081-1

[29] M. Janı́ček, “Abductive reasoning for continual dialogue understanding,” in New
Directions in Logic, Language, and Computation, M. Slavkovik and D. Lassiter,
Eds. Springer, 2012.

[30] H. H. Clark, Using Language. Cambridge, UK: Cambridge University Press,
1996.

[31] M. Schröder, E. Bevacqua, R. Cowie, F. Eyben, H. Gunes, D. Heylen, M. ter
Maat, G. McKeown, S. Pammi, M. Pantic, C. Pelachaud, B. Schuller, E. de Sevin,
M. Valstar, and M. Wöllmer, “Building autonomous sensitive artificial listeners,”
IEEE Transactions on Affective Computing, vol. 99, no. 1, 2011.

[32] S. C. Pammi, M. Schröder, M. Charfuelan, O. Türk, and I. Steiner, “Synthesis of
listener vocalisations with imposed intonation contours,” in Seventh ISCA Tuto-
rial and Research Workshop on Speech Synthesis. ISCA, 2010.

[33] R. Lienhart and J. Maydt, “An extended set of Haar-like features for
rapid object detection,” in Proceedings International Conference on Image
Processing, vol. 1, no. 1, IEEE. Ieee, 2002, pp. 900–903. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1038171

33

http://dx.doi.org/10.1007/s10458-009-9081-1
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1038171

[34] A. Pronobis, K. Sjöö, A. Aydemir, A. N. Bishop, and P. Jensfelt, “Representing
spatial knowledge in mobile cognitive systems,” in 11th International Conference
on Intelligent Autonomous Systems (IAS-11), Ottawa, Canada, Aug. 2010.

[35] J. M. Mooij, “libDAI: A free and open source C++ library for discrete
approximate inference in graphical models,” J. Mach. Learn. Res., vol. 11,
pp. 2169–2173, Aug. 2010. [Online]. Available: http://www.jmlr.org/papers/
volume11/mooij10a/mooij10a.pdf

[36] H. L. S. Younes and M. Littman, “PPDDL1.0: An extension to PDDL for express-
ing planning domains with probabilistic effects,” School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, Tech. Rep. CMU-CS-04-
167, 2004.

[37] D. Bryce, S. Kambhampati, and D. E. Smith, “Sequential monte carlo in
reachability heuristics for probabilistic pl anning,” Artif. Intell., vol. 172, pp.
685–715, April 2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1342435.1342789

[38] S. Yoon, A. Fern, R. Givan, and S. Kambhampati, “Probabilistic planning via
determinization in hindsight,” in Proceedings of the 23rd national conference on
Artificial intelligence - Volume 2. AAAI Press, 2008, pp. 1010–1016. [Online].
Available: http://portal.acm.org/citation.cfm?id=1620163.1620229

A Planning Domain

1 (define (domain dora)
2 (:requirements :mapl :adl :fluents :partial-observability :dynamic-objects

:action-costs)
3

4 (:types
5 conegroup - object
6 robot - planning_agent
7 person robot - location
8 label category spatial_relation place room visualobject - object
9 visualobject room - location

10 place_status - object
11)
12

13 (:predicates
14 (connected ?p1 ?p2 - place)
15 (engaged ?p - person)
16 (is-visited ?c - conegroup)
17

18

19 (is-virtual ?o - object)
20 (position-reported ?o - visualobject)
21

22 ;; derived predicates
23 (attached_to_room ?p - place ?r - room)
24 (cones_exist ?l - label ?rel - spatial_relation ?where - (either visualobject

room))
25

26 ;;virtual predicates
27 (cones_created ?l - label ?rel - spatial_relation ?where - (either

visualobject room))
28)
29

30

31 (:functions
32 (is-in ?o - robot) - place
33 (is-in ?o - person) - place

34

http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf
http://portal.acm.org/citation.cfm?id=1342435.1342789
http://portal.acm.org/citation.cfm?id=1342435.1342789
http://portal.acm.org/citation.cfm?id=1620163.1620229

34

35 ;; === Default knowledge ===
36

37 ;; expected cost of searching for an object. Used by CP planner
38 (dora__cost_inroom ?l - label) - number
39 (dora__cost_inobject ?l1 ?l2 - label) - number
40 (dora__cost_on ?l1 ?l2 - label) - number
41 (search_cost ?l - label ?rel - spatial_relation ?where - (either visualobject

room)) - number
42 ;; default probabilities. These come from Coma.
43 (dora__inroom ?l - label ?c - category) - number
44 (dora__inobject ?l1 ?l2 - label ?c - category) - number
45 (dora__on ?l1 ?l2 - label ?c - category) - number
46

47 ;; === inferred knowledge ===
48

49 ;; The result of applying the default knowledge.
50

51 ;; E.g. category(r1) = kitchen AND (dora__in_room cornflakes
52 ;; kitchen) => (obj_exists cornflakes in kitchen)
53 ;; Also see the rules below
54 (obj_exists ?l - label ?rel - spatial_relation ?where - (either visualobject

room)) - boolean
55 (p-obj_exists ?l - label ?rel - spatial_relation ?where - (either

visualobject room) ?c - category) - number
56

57 ;; === room properties ===
58 (category ?r - room) - category
59 (identity ?r - room) - category
60 (roomid ?r - room) - number
61 (virtual-category ?r - room) - category
62 (virtual-place ?r - room) - place
63

64 ;; === place properties ===
65 (placestatus ?n - place) - place_status
66 (in-room ?p - place) - room
67 (place-exists ?p - place) - boolean
68

69 ;; === placeholder properties ===
70 (leads_to_room ?p - place ?c - category) - boolean
71

72 ;; === person properties ===
73 (associated-with ?p - person) - room
74 (does-exist ?p - person) - boolean
75 (contains-a-person-prior ?r - room) - boolean
76

77 (unresponsive ?p - person) - boolean
78

79 ;; === object properties ===
80 (label ?o - visualobject) - label
81 (related-to ?o - visualobject) - location
82 (relation ?o - visualobject) - spatial_relation
83

84 ;; === conegroup properties ===
85 ;; basic properties that determine what the conegroup was generated
86 ;; for (e.g. cone group for cornflakes ON table_1)
87 (cg-label ?c - conegroup) - label
88 (cg-relation ?c - conegroup) - spatial_relation
89 (cg-related-to ?c - conegroup) - (either visualobject room)
90 (cg-place ?c - conegroup) - place
91 ;; probability of seeing an object of type (label ?c) when looking
92 (p-visible ?c - conegroup) - number
93 ;; The ground truth. Distribution should conform to the probability
94 ;; above. Assumes that an object can only be seen from one CG
95 (visible_from ?o - visualobject) - conegroup
96

97

98 ;; === explanation properties ===
99 (entity-exists ?o - object) - boolean

100

101)
102

103 (:constants
104 placeholder trueplace - place_status

35

105 in on - spatial_relation)
106

107 ;;
108 ;; Rules that are applied to the initial state. Used to create
109 ;; virtual objects.
110 ;;
111

112 ;; create virtual visualobjects for each label
113 (:init-rule objects
114 :parameters(?l - label)
115 :precondition (not (exists (?o - visualobject)
116 (and (= (label ?o) ?l)
117 (is-virtual ?o))))
118 :effect (create (?o - visualobject)
119 (and (is-virtual ?o)
120 (assign (label ?o) ?l)
121 (assign (related-to ?o) UNKNOWN)))
122)
123

124 ;; create virtual persons for each (nonvirtual) room
125 (:init-rule persons
126 :parameters(?r - room)
127 :precondition (and (not (is-virtual ?r))
128 (not (exists (?p - person ?pl - place)
129 (or (and (= (in-room ?pl) ?r)
130 (in-domain (is-in ?p) ?pl))
131 (and (is-virtual ?p)
132 (= (associated-with ?p)

?r))))))
133 :effect (create (?p - person) (and
134 (is-virtual ?p)
135 (assign (associated-with ?p) ?r)))
136)
137

138 ;; create virtual rooms for each placeholder
139 (:init-rule rooms
140 :parameters(?p - place)
141 :precondition (and (= (placestatus ?p) placeholder)
142 (not (exists (?r - room)
143 (and (= (virtual-place ?r) ?p)
144 (is-virtual ?r)))))
145 :effect (create (?r - room)
146 (and (is-virtual ?r)
147 (assign (virtual-place ?r) ?p)))
148)
149

150

151 ;; Set undefined search costs to default values
152

153 (:init-rule default_search_costs_for_room
154 :parameters (?l - label ?r - room)
155 :precondition (= (search_cost ?l in ?r) unknown)
156 :effect (assign (search_cost ?l in ?r) (dora__cost_inroom ?l))
157)
158

159 (:init-rule default_search_costs_for_object_in
160 :parameters (?l - label ?o - visualobject)
161 :precondition (= (search_cost ?l in ?o) unknown)
162 :effect (assign (search_cost ?l in ?o) (dora__cost_inobject ?l

(label ?o)))
163)
164

165 (:init-rule default_search_costs_for_object_on
166 :parameters (?l - label ?o - visualobject)
167 :precondition (= (search_cost ?l on ?o) unknown)
168 :effect (assign (search_cost ?l on ?o) (dora__cost_on ?l (label

?o)))
169)
170

171

172 ;;
173 ;; Axioms
174 ;;
175

36

176 ;; Used to model whether a room is fully explored
177

178 (:derived (attached_to_room ?p - place ?r - room)
179 (exists (?p2 - place) (and (= (in-room ?p2) ?r)
180 (not (= (placestatus ?p) trueplace))
181 (connected ?p2 ?p))))
182

183 (:derived (not_fully_explored ?r - room)
184 (exists (?p - place) (and (attached_to_room ?p ?r))))
185

186

187 (:derived (cones_exist ?l - label ?rel - spatial_relation ?where - (either
visualobject room))

188 (exists (?c - conegroup) (and (= (cg-label ?c) ?l)
189 (= (cg-related-to ?c) ?where)
190 (= (cg-relation ?c) ?rel))))
191

192

193 ;;
194 ;; Assumptions
195 ;;
196

197

198 ;; rules that model the conditional probabilities from default.sa
199

200 ;; p(?label IN ?room | category(?room) = ?cat)
201 (:assume obj_in_room
202 :parameters (?l - label ?r - room ?c - category)
203 :precondition (and (= (category ?r) ?c)
204 (defined (dora__inroom ?l ?c))
205 (not (defined (p-obj_exists ?l in ?r ?c))))
206 :effect (probabilistic (dora__inroom ?l ?c) (assign (obj_exists ?l in

?r) true)))
207

208

209 ;; p(?label IN ?object | label(?object) = ?l2 AND ?object IN ?room
210 ;; AND category(?room) = ?cat)
211 (:assume obj_in_obj
212 :parameters (?l1 ?l2 - label ?o - visualobject ?r - room ?c - category)
213 :precondition (and (= (category ?r) ?c)
214 (= (label ?o) ?l2)
215 (= (related-to ?o) ?r)
216 (= (relation ?o) in)
217 (defined (dora__inobject ?l1 ?l2 ?c))
218 (not (defined (p-obj_exists ?l1 in ?o ?c))))
219 :effect (probabilistic (dora__inobject ?l1 ?l2 ?c) (assign (obj_exists

?l1 in ?o) true)))
220

221

222 ;; p(?label ON ?object | label(?object) = ?l2 AND ?object IN ?room
223 ;; AND category(?room) = ?cat)
224 (:assume obj_on_obj
225 :parameters (?l1 ?l2 - label ?o - visualobject ?r - room ?c - category)
226 :precondition (and (= (category ?r) ?c)
227 (= (label ?o) ?l2)
228 (= (related-to ?o) ?r)
229 (= (relation ?o) in)
230 (defined (dora__on ?l1 ?l2 ?c))
231 (not (defined (p-obj_exists ?l1 on ?o ?c))))
232 :effect (probabilistic (dora__on ?l1 ?l2 ?c) (assign (obj_exists ?l1

on ?o) true)))
233

234

235 ;; use posterior information from conceptual.sa
236 ;; force commitment to a room category to help the heuristic
237 (:assume object_existence_room
238 :parameters (?l - label ?rel - spatial_relation ?where - room ?c -

category)
239 :precondition (and (= (category ?where) ?c)
240 (defined (p-obj_exists ?l ?rel ?where ?c)))
241 :effect (probabilistic (p-obj_exists ?l ?rel ?where ?c) (and (assign

(obj_exists ?l ?rel ?where) true)))
242)
243

37

244 ;; use posterior information from conceptual.sa
245 (:assume object_existence_object
246 :parameters (?l - label ?rel - spatial_relation ?where - visualobject

?r - room ?c - category)
247 :precondition (and (= (related-to ?where) ?r)
248 (= (category ?r) ?c)
249 (defined (p-obj_exists ?l ?rel ?where ?c)))
250 :effect (probabilistic (p-obj_exists ?l ?rel ?where ?c) (and (assign

(obj_exists ?l ?rel ?where) true)))
251)
252

253 ;; p(?label IN ?room | category(?room) = ?cat)
254 (:assume person_in_room
255 :parameters (?p - person ?pl - place ?r - room)
256 :precondition (and (= (contains-a-person-prior ?r) true)
257 (= (in-room ?pl) ?r)
258 (= (associated-with ?p) ?r)
259 (is-virtual ?p))
260 :effect (probabilistic 1.0 (assign (is-in ?p) ?pl))) ;; will

automatically be normalised
261

262 ;; probability of an object being at a specific location
263 ;; used only by DT
264 (:assume sample_object_location
265 :parameters (?o - visualobject ?l - label ?rel - spatial_relation

?where - (either visualobject room))
266 :precondition (and (= (label ?o) ?l)
267 (is-virtual ?o)
268 (= (obj_exists ?l ?rel ?where) true))
269 :effect (probabilistic 1.0 (and (assign (related-to ?o) ?where)
270 (assign (relation ?o) ?rel)))
271)
272

273 ;; probability of finding a specific object in a conegroup
274 ;; used only by DT
275 (:assume sample_cone_visibility
276 :parameters (?o - visualobject ?c - conegroup ?l - label ?rel -

spatial_relation ?where - (either visualobject room))
277 :precondition (and (= (cg-relation ?c) ?rel)
278 (= (cg-related-to ?c) ?where)
279 (= (relation ?o) ?rel)
280 (= (related-to ?o) ?where)
281 (= (cg-label ?c) ?l)
282 (= (label ?o) ?l)
283 (not (is-visited ?c)))
284 :effect (probabilistic (p-visible ?c) (assign (visible_from ?o) ?c))
285)
286

287

288 ;; Assign virtual room to a placeholder
289 (:assume room_from_placeholder
290 :parameters (?p - place ?r - room ?c - category)
291 :precondition (and (= (placestatus ?p) placeholder)
292 (= (virtual-place ?r) ?p)
293 (= (leads_to_room ?p ?c) true)
294 (is-virtual ?r))
295 :effect (and (probabilistic 1.0 (and (assign (in-room ?p) ?r)
296 (assign (category ?r) ?c)))
297 (increase (total-cost) 10))
298)
299

300 ;;
301 ;; Actions
302 ;;
303

304 ;; Report the position of a found object to a person
305 ;; precondition: robot has found the object
306 ;; is engaged to the person and at the same place
307 (:action report_position
308 :agent (?a - robot)
309 :parameters (?o - visualobject)
310 :variables (?p - place ?h - person)
311 :precondition (and (kval ?a (related-to ?o))
312 (engaged ?h)

38

313 (= (is-in ?h) ?p)
314 (= (is-in ?a) ?p))
315 :effect (and (position-reported ?o)
316 (increase (total-cost) 1))
317)
318

319

320 ;; Moves from one place to another connected place
321 ;; precondition: places must be connected
322 ;; robot must be at the start place
323 (:action move
324 :agent (?a - robot)
325 :parameters (?to - place)
326 :variables (?from - place)
327 :precondition (and (or (connected ?from ?to)
328 (connected ?to ?from))
329 (= (is-in ?a) ?from))
330 :effect (and (assign (is-in ?a) ?to)
331 (assign (placestatus ?to) trueplace)
332 (kval ?a (in-room ?to))
333 (increase (total-cost) 2))
334)
335

336 ;; Moves from one place to another via a third one (cutting corners)
337 ;; precondition: places must be connected
338 ;; robot must be at the start place
339 (:action move_direct
340 :agent (?a - robot)
341 :parameters (?to - place)
342 :variables (?from - place ?via - place)
343 :precondition (and (or (connected ?from ?via)
344 (connected ?via ?from))
345 (or (connected ?via ?to)
346 (connected ?to ?via))
347 (= (is-in ?a) ?from))
348 :effect (and (assign (is-in ?a) ?to)
349 (assign (placestatus ?to) trueplace)
350 (kval ?a (in-room ?to))
351 (increase (total-cost) 3))
352)
353

354

355 ;; create cones for search in a room
356 ;; precondition: robot is in the specified room
357 (:action create_cones_in_room
358 :agent (?a - robot)
359 :parameters (?l - label ?r - room)
360 :variables (?p - place)
361 :precondition (and (= (is-in ?a) ?p)
362 (= (in-room ?p) ?r)
363 (poss (obj_exists ?l in ?r) true)
364 (not (not_fully_explored ?r)))
365 :effect (and (cones_created ?l in ?r)
366 (increase (total-cost) 5))
367)
368

369 ;; create cones for search in or on another object
370 ;; precondition: robot is in the same room as the specified object
371 (:action create_cones_at_object
372 :agent (?a - robot)
373 :parameters (?l ?lsupp - label ?rel - spatial_relation ?o -

visualobject ?r - room)
374 :variables (?p - place)
375 :precondition (and (= (is-in ?a) ?p)
376 (= (label ?o) ?lsupp)
377 (poss (obj_exists ?l ?rel ?o) true)
378 (= (in-room ?p) ?r)
379 (= (related-to ?o) ?r))
380 :effect (and (cones_created ?l ?rel ?o)
381 (increase (total-cost) 4))
382)
383

384 ;; Abstract search action for the CP planner
385 ;; Searches for an object in the room

39

386 ;; precondition: robot is in the specified room
387 (:action search_for_object_in_room
388 :agent (?a - robot)
389 :parameters (?l - label ?r - room)
390 :variables (?p - place ?o - visualobject)
391 :precondition (and (= (is-in ?a) ?p)
392 (= (in-room ?p) ?r)
393 (= (label ?o) ?l)
394 (or (cones_created ?l in ?r)
395 (cones_exist ?l in ?r))
396 (poss (related-to ?o) ?r)
397 (poss (relation ?o) in))
398 :effect (and (increase (total-cost) (search_cost ?l in ?r)))
399 :sense (= (related-to ?o) ?r)
400)
401

402 ;; Abstract search action for the CP planner
403 ;; Searches for an object ON another object
404 ;; precondition: robot is in the same room as the specified object
405 (:action search_for_object_at_object
406 :agent (?a - robot)
407 :parameters (?l - label ?o - visualobject ?rel - spatial_relation)
408 :variables (?p - place ?r - room ?o2 - visualobject)
409 :precondition (and (= (is-in ?a) ?p)
410 (= (in-room ?p) ?r)
411 (= (related-to ?o) ?r)
412 (= (label ?o2) ?l)
413 (or (cones_created ?l ?rel ?o)
414 (cones_exist ?l ?rel ?o))
415 (poss (related-to ?o2) ?o)
416 (poss (relation ?o2) ?rel))
417 :effect (and (increase (total-cost) (search_cost ?l ?rel ?o)))
418 :sense (related-to ?o2)
419)
420

421

422 ;; process one conegroup
423 ;; precondition: robot is at the location of the conegroup
424 (:action process_conegroup
425 :agent (?a - robot)
426 :parameters (?c - conegroup)
427 :variables (?p - place)
428 :precondition (and (= (cg-place ?c) ?p)
429 (= (is-in ?a) ?p))
430 :effect (increase (total-cost) 15)
431)
432

433

434 (:observe visual_object
435 :agent (?a - robot)
436 :parameters (?c - conegroup ?o - visualobject ?l - label ?where -

(either visualobject room) ?p - place)
437 :execution (process_conegroup ?a ?c ?p)
438 :precondition (and (= (label ?o) ?l)
439 (= (cg-label ?c) ?l)
440 (= (cg-related-to ?c) ?where))
441

442 :effect (and (when (= (visible_from ?o) ?c)
443 (observed (related-to ?o) ?where)))
444)
445

446

447 ;; Run the person detector at a place
448 ;; precondition: Robot must be at that place
449 (:action look-for-people
450 :agent (?a - robot)
451 :variables (?p - place)
452 :precondition (= (is-in ?a) ?p)
453 :effect (and
454 (increase (total-cost) 10))
455)
456

457 (:observe person
458 :agent (?a - robot)

40

459 :parameters (?p - person ?pl - place)
460 :execution (look-for-people ?a ?pl)
461 :effect (and (when (= (is-in ?p) ?pl)
462 (probabilistic 0.7 (observed (does-exist ?p) true)))
463 (when (not (= (is-in ?p) ?pl))
464 (probabilistic 0.001 (observed (does-exist ?p)

true))))
465)
466

467 ;; Engage with a person
468 ;; precondition: Robot must be at the location of the person
469 ;; The person must not be known to be unresponsive
470 (:action engage
471 :agent (?a - robot)
472 :parameters (?h - person)
473 :variables (?p - place)
474 :precondition (and (not (= (unresponsive ?h) true))
475 (= (is-in ?h) ?p)
476 (= (is-in ?a) ?p))
477 :effect (and (engaged ?h)
478 (increase (total-cost) 1)
479 (assign (failure-cost) 50))
480)
481

482 ;; Ask a person whether the current room is of a particular category
483 ;; precondition: Robot must be at the location of the person
484 ;; Robot must be in the room it asks about
485 (:action ask-for-category-polar
486 :agent (?a - robot)
487 :parameters (?r - room ?c - category)
488 :variables (?h - person ?p - place)
489 :precondition (and (engaged ?h)
490 (= (is-in ?h) ?p)
491 (= (is-in ?a) ?p)
492 (= (in-room ?p) ?r))
493 :effect (increase (total-cost) 5)
494)
495

496 (:observe room-category
497 :agent (?a - robot)
498 :parameters (?h - person ?c - category ?p - place ?r - room)
499 :execution (ask-for-category-polar ?a ?r ?c ?h ?p)
500 :precondition (and
501 (engaged ?h)
502 (= (is-in ?h) ?p))
503

504 :effect (and (when (= (category ?r) ?c)
505 (probabilistic 0.95 (observed (identity ?r) ?c))))
506)
507

508)

41

Explaining Surprises During Continual Planning⇤

Moritz Göbelbecker
Albert-Ludwigs-Universität

Freiburg, Germany

May 30, 2012

Abstract

Continual planning is an effective approach to decision making in uncertain
dynamic worlds. It involves creating plans based on assumptions about the real
world and replanning if those plans fail. We discuss methods for making these
assumptions explicit and providing explanations why a continual planning task
may have failed or produced unexpected outcomes.

1 Introduction
Every plan created for a real-world system contains assumptions – and its execution
will succeed if these assumptions apply to the current situation. Conversely, if the
execution of a plan fails, there is at least one assumption that was incorrect. It may be
desirable to find out what these assumptions were for several reasons: we may want to
inform a human operator why a tasks did not succeed (possibly giving them the chance
to improve the domain model), or we may try to use the explanations we found to
improve the system behaviour for future tasks.

Assumptions can have a number of sources: Reasoning about – or even creating
– a full model of the agent and its environment is usually not feasible for even mod-
erately complex systems. Every model that is used for planning will invariably be an
abstraction of the real system. When employing continual planning, the planner creates
optimistic plans and executes those plans as long as they remain viable. These plans
usually make assumptions that some unobservable or uncertain state variables have
certain values that would make the plan work, or that some action with probabilistic
effects will have exactly the outcome we desire.

We can roughly divide assumptions into two categories: Implicit assumptions are
those that come from the way the domain is modelled, choices made for discretisations
of continuous variables, preconditions and effects that were left out either because the
domain designer did not deem them relevant, did not consider them or because they
would have a too large impact on the complexity of the resulting planning problem

⇤The research reported here was performed in the EU FP7 IP “CogX: Cognitive Systems that Self-
Understand and Self-Extend” (ICT-215181).

1

(either for the planner or for the designer). The following is a model of a move action
for a robotic system:

(:action move

:parameters (?r - robot ?from ?to - place)

:precondition (and (= (connected ?from ?to) true)

(= (is-in ?r) ?from))

:effect (and (assign (is-in ?a) ?to)))

It contains several implicit assumptions: That the robot is not stuck, that the path
between the places is not blocked, that the robot’s battery is charged and many more
that this author did not think of.

In our continual planning framework, we introduce explicit assumptions to deal
with uncertain states. They are special actions that the planner may apply to the initial
state which make some previously uncertain facts true. As these assumptions can have
costs which are higher for more unlikely assumptions, this leads the planner to prefer
not only short plans but also more probable ones. For the “move” example, the truth
value of a connected variable may be uncertain, requiring the planner to explicitly
plan in an appropriate assumption (and incurring its costs) before it can use the move
action.

We note that continual planning does not require the use of explicit assumptions. If
we were to replace, for example, the precondition by

(and (not (= (connected ?from ?to) false))

(= (is-in ?r) ?from))

the planner would implicitly assume a MOVE action to be applicable, unless the con-
nectivity is known to be false. In our system, the connectivity variable must either
be set in the initial state or made true by an appropriate assumption.

If during the continual planning process an action does not have the desired out-
come, we must conclude that some assumption did not hold. If the robot is still at its
original position after executing a move action, the two places may not have been con-
nected, they may be blocked, or the battery is not charged. Our goal is to find a consis-
tent and likely explanation for the observations we made during action execution. For
example, the explanation that the battery is not charged would not be consistent with
a later move action succeeding. On the other hand, several move actions failing in the
same way would make that explanation more likely.

In this paper we deal exclusively with explaining surprises that result from explicit

assumptions being violated. As it is sometimes useful to work with implicit assump-
tions for normal planning, we will also describe how to make assumptions explicit only
for the purpose of finding explanations.

In the next section, we will describe our continual planning framework and for-
malise the concept of a continual planning task. We then describe how finding expla-
nations for surprises in these tasks can be formulated as a planning problem, and how
relevant explanations can be identified. We finish with a overview on related work and
conclude.

2

2 Framework
Our continual planner is based on a series of SAS

+planning tasks [Bäckström and
Nebel, 1995]. A SAS

+task ⇧ is a tuple hV,A, s0, gi of actions, variables, an initial
state and a goal description. Each variable x 2 variables has a finite domain Dx with
the unknown value ? 2 Dx 8x 2 V . A state s can be regarded as a set of facts v = x

which assigns to each v 2 V an element of its domain. By default, every variable is
set to the unknown value, we use def(s) = {x = v 2 s : v 6= ?} to denote the set of
defined variables of a state. The set of actions A can be further divided into physical

actions Ap and assumptive actions Aa. An action a 2 A has a set of preconditions,
pre(a), a set of (possibly conditional effects) e↵(a) and associated costs c(a).

Definition 1 An assumptive action a 2 Aa

is action with the following restrictions:

• In every plan ⇡, a must occur before any physical action a

p 2 Ap

.

• All effects in e↵(a) are of the form x = v, v 6= ?.

• If a has an effect x = v, x = ? must be part of the precondition.

Assumptions can be used to model probabilistic initial states. If a variable x has a
discrete value distribution P with P (v0) = p0, . . . , P (v

n

) = p

n

, we can create a set of
assumptions a0, . . . , an that represent this distribution by setting pre(a

i

) = {x = ?},
e↵(a

i

) = {x = v

i

} and c(a

i

) = � log(p

i

). Conditional probabilities P (X|Y) can be
modelled in a similar way by including preconditions for y.

In general every probability distribution can be modelled by assumptions, though
in extreme cases this may require enumerating the joint distribution of all uncertain
variables. We concentrate on distributions that can be represented (or approximated
by) using a factored representation, s.t. every assumption a has only one effect of the
form X = v.

Definition 2 (Action applicability) A physical action a is applicable in state s, iff

pre(a) ✓ s.

An assumption a is applicable in s iff the following holds for any precondition

x = v 2 pre(a):

• x = v 2 s

• v = ? and 9v0 2 V : x = v

0 2 eff(a) ^ x = v

0 2 s

The latter conditions makes sure that assumptions that are (partially) confirmed remain
applicable. For reasons of brevity, we refrain from giving a formal definition from
action and plan application, as those use normal SAS

+semantics. We refer to the result
of applying action a in state s as app(s, a) and of applying a sequence of actions
a0, . . . , an as app(s, a0, . . . , an).

Definition 3 (Plan validity) A sequence of actions a0, . . . , an is valid given a goal g

in state s if the following holds:

3

• a0 is applicable in s

• a

i

is applicable in app(s, a0, . . . , ai�1) 81 i n.

• app(s, a0, . . . , an) satisfies g.

Using those definitions, Algorithm 1, describes the continual planning process, re-
ferring to some variables that we will use later for analysing the process. It differs from
most representations of continual planning by the special treatment of assumptive ac-
tions and by keeping track of executed and unexecuted actions and intermediate states.
⇡

e

i

refers to the executed actions of the i-th plan and is initialised in line 13. Every
time an action is executed, it is removed from the unexecuted plan ⇡

u

i

(line 16) and
appended to ⇡

e

i

(line 18). As assumptive actions are not executable, they are split from
the set of unexecuted actions in line 13.

Algorithm 1 Continual Planning
1: Input: initial state s0, goal g
2: Output: success or failure

3: i 0

4: loop
5: if CHECKGOAL(s

i

) then
6: return success

7: end if
8: ⇡

i

 CREATEPLAN(s
i

, g)

9: if ⇡
i

= ; then
10: return failure

11: end if
12: ⇡

e

i

 []

13: ⇡

a

i

,⇡

u

i

 ⇡

i

14: s

i+1 s

i

15: while ⇡

a

i

,⇡

u

i

is valid in s

i+1 do
16: a,⇡

u

i

 ⇡

u

i

17: s

i+1 EXECUTE(a)
18: ⇡

e

i

 ⇡

e

i

, a

19: end while
20: i i+ 1

21: end loop

Using the definitions from Algorithm 1, we can define a complete continual plan-
ning process as follows:

Definition 4 A continual planning process P⇧ = h⇧,S
⇡

,S
s

i consists of a underly-

ing planning problem ⇧, a sequence of plans S
⇡

= [⇡0, . . . ,⇡n

] and a sequence of

observed states S
s

= [s0, . . . , sn+1], with s0 being equal to the initial state of the

planning problem. Each plan ⇡

i

= ⇡

a

i

,⇡

e

i

,⇡

u

i

can be divided into assumptions, exe-

cuted plan and unexecuted plan and we refer to app(s

i

,⇡

a

i

,⇡

e

i

) = s

0
i

as the expected
state after execution.

4

3 Surprises, Failures and Explanations
Given the formal definition of a continual planning process, we can now proceed with
defining what precisely we mean by a “surprise” and a “failure”. Our notion of surprise
is based on the differences between the expected states s0

i

and the perceived states s
i+1.

Definition 5 Let P⇧ be a continual planning process, then the surprises S of P⇧ are a

sequence of subsets of the differences between expected and observed states:

S = [S0, . . . ,Sn

]

S
i

✓ s

i+1 \ s0
i

This definition of “surprise” is quite general: any observed fact that was not pre-
dicted by the domain model can be considered as a failure. This may be a too broad
definition for many use cases, but the analyses of the general case also work for re-
stricted cases. A useful subset of surprises is what we call failures: it consists only of
those unpredicted facts that cause the rest of the plan to become invalid.

Definition 6 Given a sequence of surprises S , an explanation E for S
i

is a sequence

of assumptive actions so that:

S
i

✓ app(s0, E ,⇡e

0, . . . ,⇡
e

i

) and

def(app(s0, E ,⇡e

0, . . . ,⇡
e

j

)) ✓ s

j+1 \ Sj

0 < j n

E is an explanation for S iff it is an explanation for each S
i

2 S .

Or less formally: an explanation are assumptions that, if they were true, would
cause the observed behaviour of a surprise S

i

(first condition), without explicitly con-
tradicting other observations (second condition).

3.1 Explanation by omission
As it stands, there is a problem with this definition of explanation when trying to
explain the absence of an effect. If an action has a conditional effect of the form
x = v .y = w, explaining the absence of the effect on y may often be explained by not

making an assumption on x. We want to present two possible ways of dealing with that
problem, both involve additional forcing possible explanations E to contain a minimal
set of assumptions:

• If a 2 [n

i=0⇡
e

i

is an executed action and X . y = w is a conditional effect of a,
then for each condition x = v 2 X there must be an assumption e 2 E and a
value v

0 2 Dx with x = v

0 2 e↵(e).

• If a 2 [n

i=0⇡
a

i

is an assumption in the original plan with x = v 2 e↵(a), then
there must be an assumption e 2 E and a value v

0 2 Dx with x = v

0 2 e↵(e).

5

The first approach forces there to be an assumption for every possible conditional
effect that could have be triggered by an executed action. This will solve the “explana-
tion by omission” problem, but requires that there is actually an assumption for every
such condition in the planning domain. The second method is a bit more restricted, in
that it only requires us to make or modify assumptions made during the original task.
This may be sufficient, though, to explain the absence of conditional effects that were
part of the original plan, and it is likely that assumptions for the involved variables exist
(as they were part of the original plan).

3.2 Complexity
Theorem 1 Let S be a set of surprises for a continual planning process P⇧. Deter-

mining whether there is a set E that explain S is NP-complete.

Proof.
Membership in NP: We first note that the number of assumptions per plan – and

thus the size of E – is limited by the number of variables, |V|, as each effect x = v

must be accompanied by a precondition x = ?, and no other assumption can have
x = ? as an effect. Verifying whether a given solution E is an explanation for S takes
at most polynomial time, as checking applicability and computing action effects for
each action is polynomial in |V| and the number of actions is linear in |V|+

P
i

|⇡e

i

|.
Completeness: We show completeness by reduction from SAT. Given a set of

variables ✓0, . . . , ✓n and clauses C0, . . . , Cm

, we construct an explanation problem as
follows:

• V contains one variable for each ✓

i

and for each clause C

j

in addition to two
variables G and F . Dv

= {true, false,?} and v = ? 2 s0 8v 2 V .

• Aa contains two assumption a

t

i

, a

f

i

for each variable ✓

i

with e↵(a

t

i

) = {✓
i

=

true} and e↵(a

f

i

) = {✓
i

= false}. Additionally, if ✓
i

occurs positively/negatively
in clause C

j

, we add an assumption a

C

ij

with pre(a

C

ij

) = {✓
i

= true/false} and
e↵(a

C

ij

) = {C
j

= true}. Finally, there is one assumption a

F with pre(a

F

) =

{C
j

= true, 0 j m} and e↵(a

F

) = {F = true}.

• The goal g is set to G = true

• ⇡

e

0 = [a

e

0] contains exactly one action with no preconditions and a conditional
effect F = ? .G = true.

• The observed state after executing a

e

0, s1, contains G = ?.

An explanation for the surprise S0 = {G = ?} can only exist if there is a set of
assumptions that make F true, which can only be done by finding a set of assumptions
that correspond to a valuation of the variables ✓

i

that make all clauses true.

6

3.3 Adding diagnostic information
For performance or maintenance reasons it may be desirable to keep the complexity
of the planning domain as low as possible. For this reason, it may be reasonable to
use a separate, more detailed domain model for finding explanations. One of the most
distinct features of a diagnosis domain is the use of conditional effect. Remembering
the MOVE action from the introduction, it has a condition (= (connected ?from

?to) true). For diagnostic purposes, though, the concept of hard preconditions
is inconvenient, as they prevent the execution of the action completely. It is there-
fore necessary to replace those preconditions that are possible sources for failures with
conditional effects:

(:action move

:parameters (?r - robot ?from ?to - place)

:precondition (= (is-in ?r) ?from)

:effect (when (= (connected ?from ?to) true)

(assign (is-in ?a) ?to)))

The following formulation will ensure that, while the action can be executed as
long as the robot is at the ?from location, it will only have the desired effect if the two
places are connected.

4 Finding Explanations as a Planning Problem
From the definition of surprises and explanations, it is quite obvious that a planner can
be used for finding explanations. We create a new planning problem ˆ

⇧ = hˆV, ˆA, ŝ0, ĝi
that forces the planner to simulate the execution of the experienced task and requiring
that each action’s effect matches the observation.

Definition 7 (Observation action) For a pair of observed and expected states, s

i+1

and s

0
i

, and the identified surprises S
i

, the observation action o

i

has the preconditions

pre(o

i

) = S [def(s

i+1) and effects e↵(ø

i

) = s

i+1 \ pre(oi).

These observation actions o

i

are placed between the executed plans ⇡

e

i

and ⇡

e

i+1

and enforce that the simulated execution of the plans results in the observed behaviour.
Altogether, the new planning task contains the physical actions cAp

= {o0, . . . , øn} [
⇡

e

0 [. . . [⇡

e

n

. To force the planner to execute the actions in order, we use a helper
variable ve with D(

v

a

) =

cAp [{G}. We also set ve = a

e

0[0] in the initial state ŝ0 with
a

e

i

[j] denoting the j-th action of the i-th executed plan. We define a successor function
succ on the actions as follows:

succ(a

e

i

[j]) =

(
o

i

if j + 1 = |⇡e

i

|
a

i

[j + 1] else

succ(o

i

) =

(
G if i = n

a

i+1[0] else

7

We then set the goal ĝ of the new task to v

e

= G and augment every action a 2 cAp

as follows:

pre(a) pre(a) [{ve = a}
e↵(a) e↵(a) [{ve = succ(a)}

As we retain the restrictions on assumptions that they may only be executed before
any physical action, the planning problem only has a solution if the planner can find
a sequence of assumptions that allow all originally executed actions to be executed in
sequence, and that will result in the observations S

i

that we identified as surprises.
If we want to enforce the planner to make assumptions for certain variables x 2 VE

to prevent explanations by omission as described in section 3.1, we can add for each
such x a new variable x

0, with Dx

0
= {>,?} and a set of assumptions that make x

0

true if some assumption on x was made: av
x

0 , pre(a
v

x

0) = {x = v}, e↵(av
x

0) = {x0
=

>} 8v 2 Dx

, v 6= ? and add x

0
= > to the goal.

5 Object search example
We illustrate the process with an object search example from the Dora robot [Hanheide
et al., 2011]. The purpose of the robot is to find an object, for example a cereal box, and
has probabilistic background knowledge about occurrences of objects in certain types
of rooms. In this instance, this background knowledge may provide the information
that cereals are frequently found in kitchens. This knowledge, together with proba-
bilistic information about the type of the known rooms, is presented as assumptions
to the planner, which then selects a probable set of assumptions that make it possible
to reach the goal. If Dora starts out in room0, a minimal plan ⇡0, including those
assumptions, could look as follows:

(assume-kitchen room1)

(assume-object-in-room cereal-box room1 kitchen)

(move dora dora room1)

(look-for-object dora room1 cereal-box object0)

The first two actions are assumptions that establish a probable state: That room1
is a kitchen and that a cereal box is in that room. The look-for-object action
will search the room for an object, object0 of that type, providing the robot with the
exact location if the object is actually there:

(:action search-for-object

:parameters (?a - robot ?r - room ?l - label

?o - object)

:precondition (and (= (label ?o) ?l)

(= (is-in ?a) ?r))

:effect (when (= (object-exists ?l ?r) true)

(assign (known-location ?o) true)))

8

If, after executing the look action, (known-location object0) is not true,
the plan is no longer valid: The rest of the plan, ⇡u

0 , is empty and the current state does
not satisfy the plan. Let us say that the robot tries to look for the object twice more,
before giving up completely. The complete planning process would look as follows:

⇡0 = [(A-kitchen room1), (A-obj-in-room obj0 cereal-box room1 kitchen),

(move dora room1), (look-for-object dora room1 object0)]

⇡1 = ⇡2 = [(A-kitchen room1), (A-obj-in-room obj0 cereal-box room1 kitchen),

(look-for-object dora room1 object0)]

⇡

a

0 = ⇡

a

1 = ⇡

a

2 = [(A-kitchen room1), (A-obj-in-room obj0 cereal-box room1 kitchen)]

⇡

e

0 = [(move dora room1), (look-for-object dora room1 object0)]

⇡

e

1 = ⇡

e

2 = [(look-for-object dora room1 object0)]

s0 = {(= (is-in dora) room0)}
s1 = s2 = s3 = {(= (is-in dora) room1)}

The set of failures after all three plan executions is the same:

S0 = S1 = S2 = {(= (known-location object0) false)}

Any explanation for these failures must prevent the conditional effect of the
search-for-object action from triggering. If we prevent explanations by omis-
sion, we must assume that (object-exists cereal-box room1) is false.
There are several ways this could be achieved by the planner: If the probability of
finding cereals in a kitchen is low to begin with, the explanation may simply be that
cereals are not this kitchen. If the probability of room0 being a kitchen is low, the
explanation might be that the room is a living room and that cereals are usually not
found there.

By adding more diagnostic information to the domain, a more varied set of expla-
nations is possible. If we want to add the information, that small objects can be inside
other objects and thus be hidden from direct observation, we could do so my changing
the search action and adding some possible assumptions:

(:action search-for-object

:parameters (?a - robot ?r - room ?l - label

?o - object)

:precondition (and (= (label ?o) ?l)

(= (is-in ?a) ?r))

:effect (when (and (= (object-exists ?l ?r) true)

(= (directly-visible ?o) true))

(assign (known-location ?o) true)))

9

(:action assume-object-in-object

:parameters (?l ?l2 - label ?o - object ?r - room)

:precondition (and (= (label ?o) ?l2)

(= (size ?l) large)

(= (size ?l2) small)

(= (object-exists ?l ?r)

(= (object-exists ?l2 ?r)))

:effect (assign (directly-visible ?o) false))

The assume-object-in-object allows us to assume that an object is not
directly visible if it is small and a large object of some type exists in the room (note that
we also need an opposite assumption, which is not shown here). The search action’s
effect is extended with the condition that the object must be visible.

With the added possibilities the following explanation could be given if the likeli-
hood of finding cereals in room1 is high enough:

E = [(A-kitchen room1), (A-object-in-room object0 cereal-box room1 kitchen),

(A-object-in-room object1 basket room1 kitchen),

(A-object-in-object basket cereal-box object0 room1))]

6 Related Work
We have previously performed work that uses the approach of making modification to
the initial state of a planning problem to find reasons for failing to come up with a
plan [Göbelbecker et al., 2010]. Sohrabi et al.

[2011] use a similar approach to find
explanations for a given sequence of observations, but do not integrate the process of
finding explanations with a continual planning approach as we do.

7 Conclusion
We have formalised the notion of surprises and explanations in a continual planning
problem, and shown that finding those explanations can be effectively translated into a
new planning problem. using this approach, we can re-use the assumption formalism
we use for the original planning process and apply it directly to the task of explaining
surprises.

References
[Bäckström and Nebel, 1995] C. Bäckström and B. Nebel. Complexity results for

SAS+ planning. Comp. Intell., 11(4):625–655, 1995.

10

[Göbelbecker et al., 2010] Moritz Göbelbecker, Thomas Keller, Patrick Eyerich,
Michael Brenner, and Bernhard Nebel. Coming up with good excuses: What to
do when no plan can be found. In Proceedings of the 20th International Conference

on Automated Planning and Scheduling (ICAPS). AAAI Press, may 2010.

[Hanheide et al., 2011] Marc Hanheide, Nick Hawes, Charles Gretton, Hendrik Zen-
der, Andrzej Pronobis, Jeremy Wyatt, Moritz Göbelbecker, and Alper Aydemir. Ex-
ploiting Probabilistic Knowledge under Uncertain Sensing for Efficient Robot Be-
haviour. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI), 2011. to appear.

[Sohrabi et al., 2011] Shirin Sohrabi, Jorge A. Baier, and Sheila A. McIlraith. Pre-
ferred explanations: Theory and generation via planning. In Proceedings of the

25th Conference on Artificial Intelligence (AAAI-11), pages 261–267, San Fran-
cisco, USA, August 2011.

11

